Browse > Article
http://dx.doi.org/10.12989/csm.2022.11.5.439

Numerical formulation of a new solid-layer finite element to simulate reinforced concrete structures strengthened by over-coating  

Suarez-Suarez, Arturo (Postgraduate Studies and Research Section, ESIME-UZ, Instituto Politecnico Nacional)
Dominguez-Ramírez, Norberto (Postgraduate Studies and Research Section, ESIME-UZ, Instituto Politecnico Nacional)
Susarrey-Huerta, Orlando (Postgraduate Studies and Research Section, ESIME-UZ, Instituto Politecnico Nacional)
Publication Information
Coupled systems mechanics / v.11, no.5, 2022 , pp. 439-458 More about this Journal
Abstract
Over-coating is one of the most popular engineering practices to strengthen Reinforced Concrete (RC) structures, due to the relative quickness and ease of construction. It consists of an external coat bonded to the outer surface of the structural RC element, either by the use of chemical adhesives, mechanical anchor bolts or simply mortar injection. In contrast to these constructive advantages, the numerical estimation of the bearing capacity of the strengthened reinforced concrete element is still complicated, not only for the complexity of modelling a flexible membrane or plate attached to a quasi-rigid solid, but also for the difficulties that raise of simulating any potential delamination between both materials. For these reasons, the standard engineering calculations used in the practice remain very approximated and clumsy. In this work, we propose the formulation of a new 2D solid-layer finite element capable to link a solid body with a flexible thin layer, as it were the "skin" of the body, allowing the potential delamination between both materials. In numerical terms, this "skin" element is intended to work as a transitional region between a solid body (modelled with a classical formulation of a standard quadrilateral four-nodes element) and a flexible coat layer (modelled with cubic beam element), dealing with the incompatibility of Degrees-Of-Freedom between them (two DOF for the solid and three DOF for the beam). The aim of the solid-layer element is to simplify the mesh construction of the strengthened RC element being aware of two aspects: a) to prevent the inappropriate use of very small solid elements to simulate the coat; b) to improve the numerical estimation of the real bearing capacity of the strengthened element when the coat is attached or detached from the solid body.
Keywords
delamination; finite element formulation; solid-layer bonding;
Citations & Related Records
Times Cited By KSCI : 18  (Citation Analysis)
연도 인용수 순위
1 Rezaiee-Pajand, M. and Karimipour, A. (2020), "Two rectangular elements based on analytical functions", Adv. Comput. Des., 5(2), 147-175. https://doi.org/10.12989/acd.2020.5.2.147.   DOI
2 Dominguez, N. (2005), "Etude de la liaison acier-beton: de la modelisation du phenomene a la formulation d'un element fini enrichi Beton Arme", Ph.D. dissertation, Ecole Normale Superieure de Cachan, France.
3 Siu, W.H. and Su, R.K.L. (2011), "Analysis of side-plated reinforced concrete beams with partial interaction", Comput. Concrete, 8(1), 71-96. https://doi.org/10.12989/cac.2011.8.1.071.   DOI
4 Sukumar, N. and Prevost, J.H. (2003), "Modeling quasi-static crack growth with the extended finite element method Part I: Computer implementation", Int. J. Solid. Struct., 40(26), 7513-7537. https://doi.org/10.1016/j.ijsolstr.2003.08.002.   DOI
5 Tahar, H.D., Abderezak, R., Rabia, B. and Tounsi, A. (2021), "Performance of damaged RC continuous beams strengthened by prestressed laminates plate: Impact of mechanical and thermal properties on interfacial stresse", Couple. Syst. Mech., 10(2), 161-184. https://doi.org/10.12989/csm.2021.10.2.161.   DOI
6 Turon, A., Camanho, P.P., Costa, J. and Davila, C.G. (2006), "A damage model for the simulation of delamination in advanced composites under variable-mode loading", Mech. Mater., 38(11), 1072-1089. https://doi.org/10.1016/j.mechmat.2005.10.003.   DOI
7 Yang, H., Song, H. and Zhang, S. (2015), "Experimental investigation of the behavior of aramid fiber reinforced polymer confined concrete subjected to high strain-rate compression", Constr. Build. Mater., 95, 143-151. https://doi.org/10.1016/j.conbuildmat.2015.07.084.   DOI
8 Zienkiewicz, O.C., Taylor, R.L. and Zhu, J.Z. (2006), The Finite Element Method-It's Basis and Fundamentals, Butterworth-Heinemann.
9 Moes, N., Dolbow, J. and Belytschko, T. (2012), "A finite element method for crack growth without remeshing", Int. J. Numer. Meth. Eng., 46(1), 131-150. https://doi.org/10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J.   DOI
10 Mohebi, B., Hosseinifard, S.M. and Bastami, M. (2016), "Plastic hinge characteristics of RC rectangular columns with Fiber Reinforced Polymer (FRP)", Comput. Concrete, 18(4), 853-876. https://doi.org/10.12989/cac.2016.18.4.853.   DOI
11 Park, J.G., Lee, K.M., Shin, H.M. and Park, Y.J. (2007), "Nonlinear analysis of RC beams strengthened by externally bonded plates", Comput. Concrete, 4(2), 119-134. https://doi.org/10.12989/cac.2007.4.2.119.   DOI
12 Abderezak, R., Daouadji, T.H. and Rabia, B. (2020), "Analysis of interfacial stresses of the reinforced concrete foundation beams repairing with composite materials plate", Couple. Syst. Mech., 9(5), 473-498. https://doi.org/10.12989/csm.2020.9.5.437.   DOI
13 Akbas, S.D. (2019), "Forced vibration analysis of functionally graded sandwich deep beams", Couple. Syst. Mech., 8(3), 259-271. https://doi.org/10.12989/csm.2019.8.3.259.   DOI
14 Akbas, S.D. (2020), "Dynamic analysis of a laminated composite beam under harmonic load", Couple. Syst. Mech., 9(6), 563-573. https://doi.org/10.12989/csm.2020.9.6.563.   DOI
15 Andrews, G.E., Askey, R. and Roy, R. (1987), Encyclopedia of Mathematics and its Applications; Special Functions, Cambridge University Press, Cambridge, U.K.
16 Bideci, A., Bideci, O.S., Oymael, S., Gultekin, A.H. and Yildirim, H. (2017), "Lightweight aggregates coated with colemanite", Comput. Concrete, 19(5), 451-455. https://doi.org/10.12989/cac.2017.19.5.451.   DOI
17 Ibrahimbegovic, A. (2010), Nonlinear Solid Mechanics: Theoretical Formulations and Finite Element Solution Methods, Springer, Dordrecht, Heidelberg, London, New York.
18 De Borst, R. and Remmers, J.C. (2006), "Computational modelling of delamination", Compos. Sci. Technol., 66(6), 713-722. https://doi.org/10.1016/j.compscitech.2004.12.025.   DOI
19 Ciavarella, M., Paggi, M. and Carpinteri, A. (2008), "One, no one, and one hundred thousand crack propagation laws: A generalized Barenblatt and Botvina dimensional analysis approach to fatigue crack growth", J. Mech. Phys. Solid., 56(12), 3416-3432. https://doi.org/10.1016/j.jmps.2008.09.002.   DOI
20 Cimellaro, G.P. (2013), "Resilience-based design (RBD) modelling of civil infrastructure to assess seismic hazards", Handbook of Seismic Risk Analysis and Management of Civil Infrastructure Systems, 268-303.
21 Ding, W. (1999), "Delamination Analysis of Composite Laminates", Ph.D. dissertation, University of Toronto, Canada.
22 Ebadi-Jamkhaneh, M., Homaioon-Ebrahimi, A. and Kontoni, D.P.N. (2021), "Numerical finite element study of strengthening of damaged reinforced concrete members with carbon and glass FRP wraps", Comput. Concrete, 28(2), 137-147. https://doi.org/10.12989/cac.2021.28.2.137.   DOI
23 Gobierno, del D.F. (2017), "Normas tecnicas complementarias para el diseno y construccion de estructuras de acero", Reglamento de Construcciones del Distrito Federal, Ciudad de Mexico, Mexico.
24 Hughes, T.J.R. (1987), The Finite Element Method. Linear Static and Dynamic Finite Element Analysis, Prentice-Hall International Editions, New Jersey, USA.
25 Iglesias, J., Robles, F.V., De la Cera, J.A. and Gonzalez, O. (1985), "Reparacion de estructuras de concreto y mamposteria, departamento de ciencias e ingenieria", UAM, Ciudad de Mexico, Mexico.
26 Liu, X. and Li, Y. (2019), "Static bearing capacity of partially corrosion-damaged reinforced concrete structures strengthened with PET FRP composites", Constr. Build. Mater., 211, 33-43. https://doi.org/10.1016/j.conbuildmat.2019.03.218.   DOI
27 Dominguez, N. and Ibrahimbegovic, A. (2012), "A non-linear thermodynamical model for steel-concrete bonding", Comput. Struct., 29(45), 29-45. https://doi.org/10.1016/j.compstruc.2012.04.005.   DOI
28 Kim, S.H. and Aboutaha, R.S. (2004), "Finite element analysis of carbon fiber-reinforced polymer (CFRP) strengthened reinforced concrete beams", Comput. Concrete, 1(4), 401-416. https://doi.org/10.12989/cac.2004.1.4.401.   DOI
29 Limaiem, M., Ghorbel, E. and Limam, O. (2019), "Comparative experimental study of concrete reparation with carbon epoxy & bio-resourced composites", Constr. Build. Mater., 201, 312-323. https://doi.org/10.1016/j.conbuildmat.2019.03.137.   DOI
30 Matthew, D.J. and Mehrdad, S. (2020), "Building performance for earthquake resilience", Eng. Struct., 210, 110371. https://doi.org/10.1016/j.engstruct.2020.110371.   DOI
31 Mejia-Nava, R.A., Ibrahimbegovic, A., Dominguez-Ramirez, N. and Flores-Mendez, E. (2021), "Viscoelastic behavior of concrete structures subject to earthquake", Couple. Syst. Mech., 10(3) 263-280. https://doi.org/10.12989/csm.2021.10.3.263.   DOI
32 Nasser, H., Van-Steen, Ch., Vandewalle, L. and Verstrynge, E. (2021), "An experimental assessment of corrosion damage and bending capacity reduction of singly reinforced concrete beams subjected to accelerated corrosion", Constr. Build. Mater., 286, 122773. https://doi.org/10.1016/j.conbuildmat.2021.122773.   DOI
33 Abderezak, R., Daouadji, T.H. and Rabia, B. (2021), "Fiber reinforced polymer in civil engineering: Shear lag effect on damaged RC cantilever beams bonded by prestressed plate", Couple. Syst. Mech., 10(4), 299-316. https://doi.org/10.12989/csm.2021.10.4.299.   DOI
34 Al-Osta, M.A. (2019), "Shear behaviour of RC beams retrofitted using UHPFRC panels epoxied to the sides", Comput. Concrete, 24(1), 37-49. https://doi.org/10.12989/cac.2019.24.1.037.   DOI
35 Camanho, P.P., Turon, A. and Costa, J. (2008), "Delamination propagation under cyclic loading", Delamination Behaviour of Composites, Woodhead Publishing Series in Composites Science and Engineering.
36 Shaw, I.D. and Andrawes, B. (2017), "Finite element analysis of CFRP laminate repairs on damaged end regions of prestressed concrete bridge girders", Adv. Comput. Des., 1(2), 147-168. https://doi.org/10.12989/acd.2017.1.2.147.   DOI
37 Tahar, H.D., Abderezak, R. and Rabia, B. (2020), "Hyperstatic steel structure strengthened with prestressed carbon/glass hybrid laminated plate", Couple. Syst. Mech., 10(5), 393-414. https://doi.org/10.12989/csm.2020.10.5.393.   DOI
38 Xiongfei, L. and Yue, L. (2018), "Experimental study of seismic behavior of partially corrosion-damaged reinforced concrete columns strengthened with FRP composites with large deformability", Constr. Build. Mater., 191, 1071-1081. https://doi.org/10.1016/j.conbuildmat.2018.10.072.   DOI
39 Dolbow, J. (1999), "An extended finite element method with discontinuous enrichment for applied mechanics", Ph.D. Dissertation, Northwestern University, Evanston, IL, USA.
40 Daouadji, T.H. (2017), "Analytical and numerical modeling of interfacial stresses in beams bonded with a thin plate", Adv. Comput. Des., 2(1), 57-69. https://doi.org/10.12989/acd.2017.2.1.057.   DOI
41 Dominguez, N., Fernandez, M.A. and Ibrahimbegovic, A. (2010), "Enhanced solid element for modelling of reinforced concrete structures with bond-slip", Comput. Concrete, 7(4), 347-364. https://doi.org/10.12989/cac.2010.7.4.347.   DOI
42 Hossain, K.M. and Olufemi, O.O. (2004), "Computational optimisation of a concrete model to simulate membrane action in RC slabs", Comput. Concrete, 1(3), 325-354. https://doi.org/10.12989/cac.2004.1.3.325.   DOI
43 Ibrahimbegovic, A. and Nava, R.A.M. (2021), "Heterogeneities and material-scales providing physically-based damping to replace Rayleigh damping for any structure size", Couple. Syst. Mech., 10(3) 201-216. https://doi.org/10.12989/csm.2021.10.3.201.   DOI
44 Lee, C., Bonacci, J.F. and Thomas, M.D.A. (2000), "Accelerated corrosion and repair of reinforced concrete columns using carbon fiber reinforced polymer sheets", Can. J. Civil Eng., 211, 941-948. https://doi.org/10.1139/l00-030.   DOI
45 Melenk, J.M. and Babuska, I. (1996), "The partition of unity finite element method: Basic theory and applications", Comput. Meth. Appl. Mech. Eng., 139(1-4), 289-314. https://doi.org/10.1016/S0045-7825(96)01087-0.   DOI
46 MacGregor, J.G., Wight, J.K., Teng, S. and Irawan, P. (1997), Reinforced Concrete: Mechanics and Design, Prentice Hall Upper Saddle River, NJ, U.S.A.