DOI QR코드

DOI QR Code

Probabilistic seismic and fire assessment of an existing reinforced concrete building and retrofit design

  • Miano, Andrea (Department of Structures for Engineering and Architecture, University of Naples Federico II) ;
  • de Silva, Donatella (Department of Structures for Engineering and Architecture, University of Naples Federico II) ;
  • Compagnone, Alberto (Department of Structures for Engineering and Architecture, University of Naples Federico II) ;
  • Chiumiento, Giovanni (Department of Structures for Engineering and Architecture, University of Naples Federico II)
  • Received : 2019.06.30
  • Accepted : 2019.12.20
  • Published : 2020.05.25

Abstract

In this paper, a probability-based procedure to evaluate the performance of existing RC structures exposed to seismic and fire actions is presented. The procedure is demonstrated with reference to an existing old school building, located in Italy. The vulnerability assessment of the building highlights deficiencies under both static and seismic loads. Retrofit operations are designed to achieve the seismic safety. The idea of the work consists in assessing the performance of the existing and retrofitted building in terms of both the seismic and fire resistance. The seismic retrofit and fire resistance upgrading follow different paths, depending on the specific configuration of the building. A good seismic retrofit does not entail an improving of the fire resistance and vice versa. The goal of the current work is to study the variation of response due to the uncertainties considered in records/fire curves selection and to carry out the assessment of the studied RC structure by obtaining fragility curves under the effect of different records/temperature. The results show the fragility curves before and after retrofit operations and both in terms of seismic performance and fire resistance performance, measuring the percent improving for the different limit states.

Keywords

References

  1. Aversa, S., Da Porto, F., Di Pasquale, G., Dolce, M., Foti, S., Griffini, L., Lanzo, G., Manfredi, G., Modena, C., Monaco, P., Montella, G., Moroni, C., Nose, G., Pingitore, D., Prota, A., Ricci, D., Silverstri, S.A., Totani, G. and Venturi, V. (2012), Linee Guida Per Modalita Di Indagine Sulle Strutture E Sui Terreni Per I Progetti Di Riparazione, Miglioramento E Ricostruzione Di Edifici Inagibili, Doppiavoce, Naples, Italy.
  2. Baker, J.W. (2015), "Efficient analytical fragility function fitting using dynamic structural analysis", Earthq Spectra, 31(1), 579-599. https://doi.org/10.1193/021113EQS025M.
  3. Bilotta, A., de Silva, D. and Nigro, E. (2016), "Tests on intumescent paints for fire protection of existing steel structures", Construct Building Mat, 144, 410-422. https://doi.org/10.1016/j.conbuildmat.2016.05.144.
  4. Bilotta, A., de Silva, D. and Nigro, E. (2016), "General approach for the assessment of the fire vulnerability of existing steel and composite steel concrete structures", J Build Eng, 8, 198-207. https://doi.org/10.1016/j.jobe.2016.10.011.
  5. BS British Standards 9999 (2008), Code of practice for fire safety in the design, management and use of buildings, BSI Group, London, United Kingdom.
  6. Circolare 2 febbraio (2009), n. 617 del Ministero delle Infrastrutture e dei Trasporti (G.U. 26 febbraio 2009 n. 27 - Suppl. Ord.), Istruzioni per l'applicazione delle 'Norme Tecniche delle Costruzioni' di cui al D.M. 14 gennaio 2008, el Ministero delle Infrastrutture e dei Trasporti; Rome, Italy.
  7. CDS Win (2018), Computer Design of Structures, Scientific and Technical Software, Softrware Technico Scientifico, Italy.
  8. Chieffo, N., Clementi, F., Formisano, A. and Lenci, S. (2019a), "Comparative fragility methods for seismic assessment of masonry buildings located in Muccia (Italy)", J. Build. Eng., 25, 100813. https://doi.org/10.1016/j.jobe.2019.100813.
  9. Chieffo, N., Formisano, A. and Miguel Ferreira, T. (2019b), "Damage scenario-based approach and retrofitting strategies for seismic risk mitigation: an application to the historical Centre of Sant'Antimo (Italy)", European J. Environ. Civil Eng., 1-20. https://doi.org/10.1080/19648189.2019.1596164.
  10. Chieffo, N. and Formisano, A. (2019), "The Influence of Geo-Hazard Effects on the Physical Vulnerability Assessment of the Built Heritage: An Application in a District of Naples", Buildings, 9(1), 26. https://doi.org/10.3390/buildings9010026.
  11. Consolidated Fire and Smoke Transport (CFAST), User's Guide, NIST, MD, U.S.A.
  12. Cornell, C.A., Jalayer, F., Hamburger, R.O. and Foutch, D.A. (2002), "Probabilistic basis for 2000 SAC federal emergency management agency steel moment frame guidelines", J. Struct. Eng. (ASCE), 128(4), 526-533. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:4(526).
  13. de Silva, D., Bilotta, A. and Nigro, E. (2017), "Effect of the thermal input on the behaviour of intumescent coatings", Proc. Appl. Struct. Fire Eng. (ASFE), September 2017, Manchester, United Kingdom. 325-334.
  14. de Silva, D., Bilotta, A. and Nigro, E. (2019), "Experimental investigation on steel elements protected with intumescent coating", Construct. Building Mat., 205, 232-244. https://doi.org/10.1016/j.conbuildmat.2019.01.223.
  15. de Silva, F., Ceroni, F., Sica, S. and Silvestri, F. (2019), "Fragility curves of slender towers accounting for soil-structure interaction", Proceedings of VII International Conference on Earthquake Geotechnical Engineering, Rome, 17-20, June.
  16. de Silva, F., Fabozzi, S., Nikitas, N., Bilotta, E. and Fuentes, R., (2020), "Site Specific Seismic Performance of Circular Tunnels in Dry Sand", Geotechnical Research for Land Protection and Development, CNRIG 2019. Lecture Notes in Civil Engineering, 40, Springer, Cham.
  17. Ebrahimian, H., Jalayer, F., Lucchini, A., Mollaioli, F. and Manfredi, G. (2015), "Preliminary ranking of alternative scalar and vector intensity measures of ground shaking", Bull. Earthq. Eng., 13(10), 2805-2840. https://doi.org/10.1007/s10518-015-9755-9.
  18. Eurocode (2005), Eurocode 8: Design of structures for earthquake resistance, Part 3: Assessment and retrofitting of buildings, CEN, Brussels, Belgium.
  19. Fajfar, P. (1999), "Capacity spectrum method based on inelastic demand spectra", Earth Eng. Struct. Dyn., 28(9), 979-994. https://doi.org/10.1002/(SICI)1096-9845(199909)28:9%3C979::AID-EQE850%3E3.0.CO;2-1.
  20. Fajfar, P. (2000), "A nonlinear analysis method for performance-based seismic design", Earth Spectra, 16(3), 573-592. https://doi.org/10.1193/1.1586128.
  21. Franssen, J.M. and Zahaia, R. (2005), "Design of steel structures subjected to fire", Les Edtiones de l'Universite de Liege, Belgium.
  22. Franssen, J.M. and Gernay, T. (2017), "Modeling structures in fire with SAFIR(R): Theoretical background and capabilities", J. Struc.t Fire. Eng., 8(3), 300-323. https://doi.org/10.1108/JSFE-07-2016-0010.
  23. Frascadore, R., Di Ludovico, M., Prota, A., Verderame, G.M., Manfredi, G., Dolce, M. and Cosenza, E. (2015), "Local strengthening of reinforced concrete structures as a strategy for seismic risk mitigation at regional scale", Earthq. Spectra, 31(2), 1083-1102. https://doi.org/10.1193/122912EQS361M.
  24. ISO 16733-1 (2015), Fire Safety Engineering -- Selection of Design fire scenarios and design fires -- Part 1: Selection of design fire scenarios, Geneva, Switzerland.
  25. Jalayer, F., Franchin, P. and Pinto, P. (2007), "A scalar damage measure for seismic reliability analysis of RC frames", Earthq. Eng. Struct. Dyn., 36(13), 2059-2079. https://doi.org/10.1002/eqe.704.
  26. Jalayer, F. and Cornell, C.A. (2003), "A technical framework for probability-based demand and capacity factor design (DCFD) seismic formats", Pacific Earthquake Engineering Center (PEER) 2003/08.
  27. Jalayer, F. and Cornell, C.A., (2009), "Alternative non-linear demand estimation methods for probability-based seismic assessments", Earth Eng. Struct. Dyn., 38(8), 951-972. https://doi.org/10.1002/eqe.876.
  28. Jalayer, F., De Risi, R. and Manfredi, G., (2015), "Bayesian Cloud Analysis: efficient structural fragility assessment using linear regression", Bull. Earth. Eng., 13(4), 1183-1203. https://doi.org/10.1007/s10518-014-9692-z.
  29. Jalayer, F. and Ebrahimian, H., (2017), "Seismic risk assessment considering cumulative damage due to aftershocks", Earthq. Eng. Struct. Dyn., 46(3), 369-389. https://doi.org/10.1002/eqe.2792.
  30. Jalayer, F., Ebrahimian, H., Miano, A., Manfredi, G. and Sezen H. (2017), "Analytical fragility assessment using un-scaled ground motion records", Earth. Eng. Struct. Dyn., 46(15), 2639-2663. https://doi.org/10.1002/eqe.2922.
  31. Jones, W.W., Peacock, R.D., Forney, G.P. and Reneke, P.A. (2009), "CFAST - Consolidated Model of Fire Growth and Smoke Transport (Version 6): Technical Reference Guide", NIST Special Publication 1026, Gaithersburg, National Institute of Standard and Technology, U.S.A.
  32. Miano, A., Jalayer, F., De Risi, R., Prota, A. and Manfredi, G. (2015), "A case-study on scenario-based probabilistic seismic loss assessment for a portfolio of bridges", Proceedings of 12th International Conference on Applications of Statistics and Probability in Civil Engineering, Vancouver, Canada, July.
  33. Miano, A., Jalayer, F. and Prota, A. (2017), "Considering Structural Modeling Uncertainties using Bayesian Cloud Analysis", Proceedings of 6th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering (COMPDYN), Rhodes, Greece, June.
  34. Miano, A., Jalayer, F., Ebrahimian, H. and Prota, A., (2018a), "Cloud to IDA: Efficient fragility assessment with limited scaling", Earth Eng. Struct. Dyn., 47(5), 1124-1147. https://doi.org/10.1002/eqe.3009.
  35. Miano, A., Sezen, H., Jalayer, F. and Prota, A. (2018b), "Performance Based Assessment and Retrofit of Non ductile Existing Reinforced Concrete Structures", Proceedings of the Structures Conference 2018, April 2018, Fort Worth, Texas.
  36. Miano, A., Sezen, H., Jalayer, F. and Prota, A. (2019), "Performance based assessment methodology for retrofit of buildings", ASCE J. Struct. Eng., 145(12), https://doi.org/10.1061/(ASCE)ST.1943-541X.0002419.
  37. Miano, A. and Chiumiento, G. (2019) "Case study on seismic retrofit and cost assessment for a school building" Struct. Eng. Mech., 73(1), 53-64. https://doi.org/10.12989/sem.2020.73.1.053.
  38. Moehle, J.P. (2000), "State of research on seismic retrofit of concrete building structures in the US", US-Japan Symposium and Workshop on Seismic Retrofit of Concrete Structures, U.S.A.
  39. Moehle, J. and Deierlein., G.G. (2004), "A framework methodology for performance-based earthquake engineering", Proceedings of 13th world conference on earthquake engineering, Vancouver, Canada. August.
  40. Nigro, E., Bilotta, A., Asprone, D., Jalayer, F., Prota, A. and Manfredi, G., (2014), "Probabilistic approach for failure assessment of steel structures in fire by means of plastic limit analysis" Fire Safety J., 68, 16-29. https://doi.org/10.1016/j.firesaf.2014.05.020.
  41. NTC (2008), D.M. Infrastrutture Trasporti 14 gennaio 2008, Norme tecniche per le Costruzioni, G.U. 4 febbraio 2008 n. 29 - Suppl. Ord., Infrastrutture Trasporti; Rome, Italy.
  42. NTC (2018), D.M. Infrastrutture Trasporti 17 gennaio 2018, Norme tecniche per le Costruzioni, G.U. 20 febbraio 2018 n. 42 - Suppl. Ord., Infrastrutture Trasporti; Rome, Italy.
  43. Rackauskaitea, E., Kotsovinosb, P., Jeffersc, A. and Reina, G. (2019) "Computational analysis of thermal and structural failure criteria of a multistorey steel frame exposed to fire", Eng Struct, 180, 524-543. https://doi.org/10.1016/j.engstruct.2018.11.026.
  44. Saribiyik, A. and Caglar, N. (2016), "Flexural strengthening of RC beams with low-strength concrete using GFRP and CFRP", Struct. Eng. Mech., 58(5), 825-845. https://doi.org/10.12989/sem.2016.58.5.825.
  45. Thermou, G.E. and Elnashai, A.S. (2006), "Seismic retrofit schemes for RC structures and local-global consequences", Prog. Struct. Eng. Mat., 8(1), 1-15. https://doi.org/10.1002/pse.208.
  46. Vidic, T., Fajfar, P. and Fischinger, M. (1994), "Consistent inelastic design spectra: strength and displacement", Earthq. Eng. Struct. Dyn., 23, 507-521. https://doi.org/10.1002/eqe.4290230504.
  47. Weng, D.G., Zhang, C., Lu, X.L., Zeng, S. and Zhang, S.M. (2012), "A simplified design procedure for seismic retrofit of earthquake-damaged RC frames with viscous dampers", Struct. Eng. Mech., 44(5), 611-631. https://doi.org/10.12989/sem.2012.44.5.611.