• Title/Summary/Keyword: RAW 264.7 Macrophages

Search Result 907, Processing Time 0.033 seconds

Effects of aqueous extracts from Lonicera japonica and Tussilago farfara on RAW 264.7 Macrophages

  • Lee, Eung-Seok;Yang, Su-Young;Park, Yang-Chun;Oh, Young-Seon;Lee, Jin-Woo;Lee, Yong-Koo
    • Journal of Haehwa Medicine
    • /
    • v.19 no.1
    • /
    • pp.49-54
    • /
    • 2010
  • Inhalational drug is an attractive modality for local therapy of pulmonary diseases as well as systemic drug delivery. Flower of Lonicera japonica (FLJ) and flower of Tussilag farfara (FTF) are medicinal herbs for respiratory disease in traditional Korean medicine. As a preliminary study for effective inhalable formulation of FLJ and FTF, this study was to provide the toxicity and anti-inflammatory effect on murine macrophages. The dried FLJ and FTF were extracted with distilled water, filtered and freeze-dried. After treatment with FLJ and FTF extract on RAW 264.7 cells, the cell viabilities were measured by MTT assay. FLJ and FTF did not show cytotoxicity on RAW 264.7 cells. LPS stimulated RAW 264.7 cells were treated with 3 and $30\;{\mu}g/ml$ of FLJ or FTF. FLJ and FTF did not inhibit TNF-a and IL-6 secretion in both concentration of treatment. We suggest that FLJ and FTF may be useful drugs for respiratory disease. Future work will focus on the physical characteristics for inhalable formulation.

Effect of Forsythiae Fructus Exract on the Release of Inflammatory Mediatorinduced by Lipopolysaccharide in RAW 264.7 Macrophage

  • You, Bok-Jong;Kim, Hee-Taek
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.3
    • /
    • pp.765-770
    • /
    • 2007
  • Forsythiae fructus has traditionally been used for the treatment of erysipelas, skin rash and acute or chronic inflammatory disorders. The effect of Forsythiae fructus against lipopolysaccharide-induced inflammation was investigated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, reverse transcription-polymerase chain reaction (RT-PCR), on mouse RAW 264.7 macrophages. Forsythiae fructus extract suppressed the expression of iNOS, COX-2 and NF-$_K$B mRNAs on the lipopolysaccharide-stimulated enhancement in RAW 264.7 macrophages. We examined the expression of iNOS and COX-2 in both mRNA and protein levels to investigate the mechanism by which Forsythiae fructus extract inhibits NO production. Forsythiae fructus extract significantly reduced iNOS, NF-$_K$B and PGE$_2$, but didn't inhibit COX-2 expression which was induced by LPS treatment in Raw 264.7 cells. These results suggest that Forsythiae fructus exerts anti-inflammatory effects probably by suppression of the iNOS and NF-$_K$B expressions.

Immune-enhancing effects of Protaetia brevitarsis seulensis larvae extracts on RAW264.7 macrophages

  • Eu-Jin, Ban;Bong Sun, Kim;Ra-Yeong, Choi;In-Woo, Kim;Minchul, Seo;Jae Sam, Hwang;Joon Ha, Lee
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.45 no.2
    • /
    • pp.108-114
    • /
    • 2022
  • Protaetia brevitarsis seulensis larva is well-known as an edible insect. The present study aimed to explore the immune-enhancing effect of 30% ethanol extract of Protaetia brevitarsis seulensis larvae (PBE) in RAW264.7 macrophage cells. PBE were not cytotoxic to RAW264.7 cells and nitric oxide production increased on PBE treatment in a dose-dependent manner. Furthermore, PBE significantly promoted the expression of immune-related mediators (Inos and COX-2) and cytokines (TNF-α, IL-6, and IL-1β) and the phosphorylation of MAPKs (ERK, p38, and JNK). Taken together, the immune-enhancing effects of 30% ethanol extract of PBE in vitro were identified. These findings can be used as data for the development of edible insect-based functional foods that improve immune function.

Anti-inflammatory Effects of Aster glehni Water Extracts in LPS-stimulated RAW 264.7 Macrophages (산백국(山白菊) 열수추출물이 RAW 264.7 대식세포에 미치는 항염증 효과)

  • Ko, Ho-Geon;Lee, Kyou-Young;Hong, Chul-Hee
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.35 no.1
    • /
    • pp.1-10
    • /
    • 2022
  • Objectives : This study was conducted to confirm the anti-inflammatory effects of Aster glehni Water extracts. Methods : In this study, MTT assay was performed to detect cell viability. To evaluate the anti-inflammatory effects of Aster glehni Water extracts, we examined NO production in LPS-induced macrophages. Expressions of iNOS, COX-2, ERK, p38, JNK were also investigated by using western blot assay. Results : Aster glehni Water extracts have no cytotoxicity at 15.625-1,000㎍/㎖ in RAW 264.7 cells. Aster glehni Extracts inhibited the NO production in a dose-dependent manner in RAW 264.7 cells treated with LPS. Pretreated 250, 500, 1,000㎍/㎖ of Aster glehni water extracts had significantly suppressed expression levels of iNOS, COX-2, p-ERK, p-p38, p-JNK. Conclusions : These results suggest that Aster glehni Water extracts have anti-inflammatory effects and can be used for various inflammatory skin diseases.

Inhibitory effects of Sam-Myo-San on the LPS-induced production of nitric oxide and $TNF-{\alpha}$ in RAW 264.7 cells and BV-2 Microglia cells (삼묘환(三妙丸)의 LPS에 의해 활성화된 RAW 264.7 cells과 BV-2 Microglia cells로부터 생성되는 nitric oxide 및 $TNF-{\alpha}$의 생성억제효과)

  • Lee, Jae-Hyun;Jung, Hyo-Won;Park, Yong-Ki
    • The Korea Journal of Herbology
    • /
    • v.21 no.4
    • /
    • pp.59-67
    • /
    • 2006
  • Objectives : Sam-Myo-Whan(SMW) has been known traditional prescription with anti- anthritis activities. We investigated inhibitory effects of SMW on lipopolysaccharide (LPS)-induced nitric oxide(NO), $TNF-{\alpha}$ and inducible nitric oxide synthase(iNOS) production from RAW264.7 cells and BV-2 Microglia cells. Methods : SMW, which had been extracted with 70% MeOH, concentrated and freeze-dried was used for this experiment. After BV2 mouse brain macrophages and RAW264.7 mouse peritoneal macrophages were pretreated with increasing concentrations of SMW extract for 30min, and then activated with LPS. To investigate cytotoxicity of SMW extract, cell viability was measured by MTT assay. NO production was measured in each culture supernatant by Griess reaction. mRNA expression of iNOS in two type cells was investigated by RT-PCR. $TNF-{\alpha}$ production was measured in each culture supernatant by ELISA. Results : SMW extract significantly inhibited LPS-induced NO and $TNF-{\alpha}$ production in BV2 cells and RAW264.7 cells dose-dependently. SMW extract also greatly suppressed mRNA expression of iNOS in both type cells activated with LPS. Conclusion : These data suggests that SMW extract may have an anti-inflammatory effect through the inhibition of iNOS expression.

  • PDF

Anti-inflammatory Effect of Angelicae Gigantis Radix Water Extract on LPS-stimulated Mouse Macrophages (Lipopolysaccharide로 유발된 마우스 대식세포의 염증매개성 Cytokine 생성증가에 대한 참당귀 물추출물의 효능 연구)

  • Han, Hyo-Sang
    • The Korea Journal of Herbology
    • /
    • v.28 no.5
    • /
    • pp.113-119
    • /
    • 2013
  • Objectives : The purpose of this study was to investigate the effects of Angelicae Gigantis Radix Water Extract(AG) on the production of proinflammatory mediators in RAW 264.7 cells stimulated with lipopolysaccharide(LPS). Method : RAW 264.7 cells were cotreated with AG(50 and 100 ug/mL) and lipopolysaccharide(LPS; 1 ug/mL) for 24 hours. After 24 hour treatment, using Bead-based multiplex cytokine assay, concentrations of various cytokines such as interleukin(IL)-6, IL-$1{\beta}$, IL-10, tumor necrosis factor-alpha(TNF-${\alpha}$), granulocyte colony-stimulating factor(G-CSF), granulocyte macrophage colony-stimulating factor(GM-CSF), interferon inducible protein-10(IP-10), leukemia inhibitory factor(LIF), lipopolysaccharide-induced chemokine(LIX), monocyte chemoattractant protein-1(MCP-1), macrophage colony-stimulating factor(M-CSF), macrophage inflammatory protein(MIP)-$1{\alpha}$, MIP-$1{\beta}$, MIP-2, Regulated on Activation, Normal T cell Expressed and Secreted(RANTES) and vascular endothelial growth factor(VEGF) were measured. Result : AG significantly inhibited LPS-induced production of TNF-${\alpha}$, MIP-$1{\alpha}$, G-CSF, RANTES, IL-10, and M-CSF from LPS-stimulated RAW 264.7 cells at the concentrations of 50 and 100 ug/mL. AG significantly inhibited LPS-induced production of MIP-$1{\beta}$, MIP-2, GM-CSF, and IL-6 from LPS-stimulated RAW 264.7 cells at the concentrations of 50 ug/mL. AG significantly inhibited LPS-induced production of VEGF from LPS-stimulated RAW 264.7 cells at the concentrations of 100 ug/mL. But AG did not show any significant effect on the production of MCP-1, LIF, LIX, IP-10 and IL-$1{\beta}$ from LPS-induced RAW 264.7 cells. Conclusion : These results suggest that AG has anti-inflammatory effect related with its inhibition of proinflammatory mediators such as TNF-${\alpha}$, MIP-$1{\alpha}$, G-CSF, RANTES, IL-10, MIP-$1{\beta}$, MIP-2, GM-CSF, IL-6, VEGF and M-CSF in LPS-induced macrophages.

Macrophage activation by glycoprotein isolated from Dioscorea batatas

  • Huong, Pham Thi Thu;Jeon, Young-Jin
    • Toxicological Research
    • /
    • v.27 no.3
    • /
    • pp.167-172
    • /
    • 2011
  • We demonstrate that glycoprotein isolated from Dioscorea batatas (GDB) activates macrophage function. Analysis of the infiltration of macrophages into peritoneal cavity showed GDB treatment significantly increased the recruitment of macrophages into the peritoneal cavity. In order to further confirm and investigate the mechanism of GDB on macrophage activation, we analyzed the effects of GDB on the cytokine expression including IL-$1{\beta}$, TNF-${\alpha}$, and IL-6 in mouse peritoneal macrophages. GDB increased the expression of IL-$1{\beta}$, TNF-${\alpha}$, and IL-6. Cytokine induction by GDB was further confirmed by RT-PCR and ELISA in mouse macrophage cell line, RAW264.7 cells. Treatment of RAW264.7 cells with GDB produced strong induction of NF-${\kappa}B$ DNA binding and MAPK phosphorylation, markers for macrophage activation and important factors for cytokine gene expression. Collectively, this series of experiments indicates that GDB stimulates macrophage activation.

Anti-inflammatory Effect of Inonotus obliquus Extracts in Lipopolysaccharide-induced Mouse Peritoneal Macrophage (LPS로 유도된 마우스 복강 대식세포에서 차가버섯 열수 추출물의 염증 억제 효과)

  • Ko, Suk-Kyung;Pyo, Myoung-Yun
    • Korean Journal of Pharmacognosy
    • /
    • v.42 no.3
    • /
    • pp.253-259
    • /
    • 2011
  • Macrophages play a vital role in the innate immune system involving defensive cytokines such as TNF (tumor necrosis factor)-${\alpha}$ and nitric oxide (NO). Therefore, we try to elucidate the anti-inflammatory activity of Chaga mushroom (Inonotus Obliquus, IO) in murine macrophages. Raw 264.7 cells and peritoneal macrophages of mice were cultured with or without LPS/LPS + IFN-${\gamma}$ in the presence of IO aqueous extracts (IOE 0.2, 2, 20, 100 ${\mu}g$/mL) for 24 hr and 48 hr, respectively. Exposure of IOE caused the decrease of NO production and increase of TNF-${\alpha}$ production in dose-dependent manner in activated peritoneal macrophage in vitro. To further investigate anti-inflammatory effects of IO ex vivo, we orally administrated capsaicin (PC, 3 mg/kg/day) and IOE (100, 200, 400 mg/kg/day) for 4 consecutive days to C57BL/6 mice (7~9 weeks old, female), then observed the NO secretion and cytokine (TNF-${\alpha}$) production of LPS/LPS + INF-${\gamma}$-stimulated peritoneal macrophages. IOE inhibits NO secretion in dose-dependent manner both ex vivo and in vitro and increases the production of TNF-${\alpha}$ in vitro. In addition, we found that IOE possessed suppressive effects of LPS-stimulated TNF-${\alpha}$, IL-$1{\beta}$, COX-2, as well as iNOS expressions in Raw 264.7 cells. These findings indicate that IOE suppress not only the LPS-induced NO overproduction of murine peritoneal macrophages, but also iNOS, COX-2, TNF-${\alpha}$, and IL-$1{\beta}$ overexpression of LPS-induced Raw 264.7 cells. Consequently, our results suggest that IO may have the anti-inflammatory effects via suppression of the inflammatory cytokines and mediators, and be useful for the treatment of inflammatory diseases.

CD83 expression induced by CpG-DNA stimulation in a macrophage cell line RAW 264.7

  • Park, Min Chul;Kim, Dongbum;Lee, Younghee;Kwon, Hyung-Joo
    • BMB Reports
    • /
    • v.46 no.9
    • /
    • pp.448-453
    • /
    • 2013
  • CpG-DNA has various immunomodulatory effects in dendritic cells, B cells, and macrophages. While induction of cytokines by CpG-DNA has been well documented in macrophages, the expression of costimulatory molecules in CpG-DNA treated macrophages has not yet been defined. Therefore, we investigated the effects of CpG-DNA on the expression of costimulatory molecules in RAW 264.7 cells. The surface expression of CD80 was slightly increased and CD83 expression was significantly increased in response to CpG-DNA. However, the expression of CD86 and MHC class II was not changed. As expression of CD83 mRNA was also increased by CpG-DNA, CD83 expression is regulated at a transcriptional level. To understand the contribution of signaling pathways to CD83 induction, we used pathway specific inhibitors. The NF-${\kappa}B$ inhibitor significantly reduced surface expression of CD83 as well as phagocytic activity of RAW 264.7 cells. Therefore, CD83 expression may contribute to the immunostimulatory effects of CpG-DNA in macrophage cells.

Inhibition of Lipopolysaccharide-Induced Expression of Inducible Nitric Oxide and Cyclooxygenase-2 by Aquaous of Aconitum pseudo-laeve var. erectum in RAW 264.7 Macrophages

  • Han, Myung-Soo;Lee, Jae-Hyok;Kim, Ee-Hwa
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.3
    • /
    • pp.678-683
    • /
    • 2008
  • Aconitum pseudo-laeve var. erectum has traditionally been used for the treatment of water retention in the body. Administration of the aqueous extract of Aconitum pseudo-laeve var. erectum has the efficiency of anti-inflammatory activity and modulates the intestinal immune system. However, the mechanism of anti-inflammatory action of Aconitum pseudo-laeve var. erectum has not been clarified yet. In the present study, the effect of Aconitum pseudo-laeve var. erectum against LPS-stimulated expressions of COX-2 and iNOS in cells of the murine RAW 264.7 macrophages was investigated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, reverse transcription- polymerase chain reaction (RT-PCR), PGE2 immunoassay, and NO detection. The results of the present study indicate that Aconitum pseudo-laeve var. erectum is a potent inhibitor of the LPS-induced NO and $PGE_{2}$ production by blocking iNOS and $NF{\kappa}B$ activation in RAW 264.7 macrophages. These findings suggest that Aconitum pseudo-laeve var. erectum is a potential therapeutic for the treatment of inflammatory syndrome.