Browse > Article

Anti-inflammatory Effect of Inonotus obliquus Extracts in Lipopolysaccharide-induced Mouse Peritoneal Macrophage  

Ko, Suk-Kyung (College of Pharmacy, Sookmyung Women's University)
Pyo, Myoung-Yun (College of Pharmacy, Sookmyung Women's University)
Publication Information
Korean Journal of Pharmacognosy / v.42, no.3, 2011 , pp. 253-259 More about this Journal
Abstract
Macrophages play a vital role in the innate immune system involving defensive cytokines such as TNF (tumor necrosis factor)-${\alpha}$ and nitric oxide (NO). Therefore, we try to elucidate the anti-inflammatory activity of Chaga mushroom (Inonotus Obliquus, IO) in murine macrophages. Raw 264.7 cells and peritoneal macrophages of mice were cultured with or without LPS/LPS + IFN-${\gamma}$ in the presence of IO aqueous extracts (IOE 0.2, 2, 20, 100 ${\mu}g$/mL) for 24 hr and 48 hr, respectively. Exposure of IOE caused the decrease of NO production and increase of TNF-${\alpha}$ production in dose-dependent manner in activated peritoneal macrophage in vitro. To further investigate anti-inflammatory effects of IO ex vivo, we orally administrated capsaicin (PC, 3 mg/kg/day) and IOE (100, 200, 400 mg/kg/day) for 4 consecutive days to C57BL/6 mice (7~9 weeks old, female), then observed the NO secretion and cytokine (TNF-${\alpha}$) production of LPS/LPS + INF-${\gamma}$-stimulated peritoneal macrophages. IOE inhibits NO secretion in dose-dependent manner both ex vivo and in vitro and increases the production of TNF-${\alpha}$ in vitro. In addition, we found that IOE possessed suppressive effects of LPS-stimulated TNF-${\alpha}$, IL-$1{\beta}$, COX-2, as well as iNOS expressions in Raw 264.7 cells. These findings indicate that IOE suppress not only the LPS-induced NO overproduction of murine peritoneal macrophages, but also iNOS, COX-2, TNF-${\alpha}$, and IL-$1{\beta}$ overexpression of LPS-induced Raw 264.7 cells. Consequently, our results suggest that IO may have the anti-inflammatory effects via suppression of the inflammatory cytokines and mediators, and be useful for the treatment of inflammatory diseases.
Keywords
Inonotus obliquus; Anti-inflammatory; Macrophages; NO; TNF-${\alpha}$; iNOS; COX-2; IL-$1{\beta}$;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 Kim, Y. O., Park, H. W., Kim, J. H., Lee, J. Y., Moon, S. H. and Shin, C. S. (2006) Anti-cancer effect and structural characterization of endo-polysaccharide from cultivated mycelia of Inonotus obliquus. Life Sciences 79: 72-80.   DOI   ScienceOn
2 Cha, J. Y., Jun, B. S., Kim, J. W., Park, S. H., Lee, C. H. and Cho, Y. S. (2006) Hypoglycemic effects of fermented chaga mushroom (Inonotus obliquus) in the diabetic Otsuka Long- Evans Tokushima Fatty (OLETF) rat. Food Science and Biotechnology 15: 739-745.
3 Wu, M. J., Wang, L., Ding, H. Y., Weng, C. Y. and Yen, J. H. (2004) Glossogyne tenuifolia acts to inhibit inflammatory mediator production in a macrophage cell line by downregulating LPS-induced NF-kappa B. J Biomed Sci. 11: 186- 199.
4 Aggarwal, B. B. (2003) Signalling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol. 3: 745-756.   DOI   ScienceOn
5 Ruimi, N., Rwashdeh, H., Wasser, S., Konkimalla, B., Efferth, T., Borgatti, M., Gambari, R. and Mahajna, J. (2010) Daedalea gibbosa substances inhibit LPS-induced expression of iNOS by suppression of NF-kappaB and MAPK activities in RAW 264.7 macrophage cells. Int J Mol Med. 25: 421- 432.
6 Rafi, M. M., Yadav, P. N. and Reyes, M. (2007) Lycopene inhibits LPS-induced proinflammatory mediator inducible nitric oxide synthase in mouse macrophage cells. J Food Sci. 72: S069-074.   DOI   ScienceOn
7 Hwang, J. S., Lee, S. A., Hong, S. S., Han, X. H., Lee, C., Kang, S. J., Lee, D., Kim, Y., Hong, J. T., Lee, M. K. and Hwang, B. Y. (2010) Phenanthrenes from Dendrobium nobile and their inhibition of the LPS-induced production of nitric oxide in macrophage RAW 264.7 cells. Bioorg Med Chem Lett. 20: 3785-3787.   DOI   ScienceOn
8 Luo, Y., Liu, M., Yao, X., Xia, Y., Dai, Y., Chou, G. and Wang, Z. (2009) Total alkaloids from Radix Linderae prevent the production of inflammatory mediators in lipopolysaccharide- stimulated RAW 264.7 cells by suppressing NF- [kappa]B and MAPKs activation. Cytokine 46: 104-110.   DOI   ScienceOn
9 Chuang, W. L., Haugland, O., Pan, B. S. and Evensen, O. (2008) Isoflavone-rich extracts from wooly glycine Glycine tomentella inhibits LPS-induced TNF-alpha expression in a macrophage cell line of Atlantic salmon (Salmo salar L.). Mol Immunol. 45: 3956-3964.   DOI   ScienceOn
10 Rocca, B. and FitzGerald, G. A. (2002) Cyclooxygenases and prostaglandins: shaping up the immune response. Int Immunopharmacol. 2: 603-630.   DOI   ScienceOn
11 Hu, H., Zhang, Z., Lei, Z., Yang, Y. and Sugiura, N. (2009) Comparative study of antioxidant activity and antiproliferative effect of hot water and ethanol extracts from the mushroom Inonotus obliquus. Journal of Bioscience and Bioengineering 107: 42-48.   DOI   ScienceOn
12 Hanada, T. and Yoshimura, A. (2002) Regulation of cytokine signaling and inflammation. Cytokine & Growth Factor Reviews 13: 413-421.   DOI   ScienceOn
13 Rodeberg, D. A., Chaet, M. S., Bass, R. C., Arkovitz, M. S. and Garcia, V. F. (1995) Nitric oxide: An overview. The American Journal of Surgery 170: 292-303.   DOI   ScienceOn
14 Reuter, S., Gupta, S. C., Chaturvedi, M. M. and Aggarwal, B. B. (2010) Oxidative stress, inflammation, and cancer: How are they linked? Free Radical Biology and Medicine 49: 1603-1616.   DOI   ScienceOn
15 Wang, H., Brown, J. and Martin, M. (2011) Glycogen synthase kinase 3: A point of convergence for the host inflammatory response. Cytokine 53: 130-140.   DOI   ScienceOn
16 Kim, C. S., Kawada, T., Kim, B. S., Han, I. S., Choe, S. Y., Kurata, T. and Yu, R. (2003) Capsaicin exhibits anti-inflammatory property by inhibiting I$\kappa$B-a degradation in LPS-stimulated peritoneal macrophages. Cellular Signalling 15: 299- 306.   DOI   ScienceOn
17 Marn, J. and Rodrguez-Martnez, M. A. (1997) Role of vascular nitric oxide in physiological and pathological conditions. Pharmacology & Therapeutics 75: 111-134.   DOI   ScienceOn
18 Green, L. C., Wagner, D. A., Glogowski, J., Skipper, P. L., Wishnok, J. S. and Tannenbaum, S. R. (1982) Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Analytical Biochemistry 126: 131-138.   DOI   ScienceOn
19 Doe Wf and Henson, P. M. (1978) Macrophage stimulation by bacterial lipopolysaccharides. I. Cytolytic effect on tumor target cells. J Exp Med. 148: 13.
20 Porta, C., Larghi, P., Rimoldi, M., Grazia Totaro, M., Allavena, P., Mantovani, A. and Sica, A. (2009) Cellular and molecular pathways linking inflammation and cancer. Immunobiology 214: 761-777.   DOI   ScienceOn
21 Hotta, O., Yusa, N., Kitamura, H. and Taguma, Y. (2000) Urinary macrophages as activity markers of renal injury. Clinica Chimica Acta 297: 123-133.   DOI   ScienceOn
22 Prieur, X., Roszer, T. and Ricote, M. (2010) Lipotoxicity in macrophages: evidence from diseases associated with the metabolic syndrome. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 1801: 327-337.   DOI   ScienceOn
23 Saha, P., Modarai, B., Humphries, J., Mattock, K., Waltham, M., Burnand, K. G. and Smith, A. (2009) The monocyte/macrophage as a therapeutic target in atherosclerosis. Current Opinion in Pharmacology 9: 109-118.   DOI   ScienceOn
24 Mosmann, T. (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 65: 55-63.   DOI
25 Tuppo, E. E. and Arias, H. R. (2005) The role of inflammation in Alzheimer's disease. The International Journal of Biochemistry & Cell Biology 37: 289-305.   DOI   ScienceOn
26 McLaren, J. E., Michael, D. R., Ashlin, T. G. and Ramji, D. P. (2011) Cytokines, macrophage lipid metabolism and foam cells: Implications for cardiovascular disease therapy. Progress in Lipid Research 50: 331-347.   DOI   ScienceOn
27 Behrens, E. M. (2008) Macrophage activation syndrome in rheumatic disease: What is the role of the antigen presenting cell? Autoimmunity Reviews 7: 305-308.   DOI   ScienceOn
28 Kim, H. G., Yoon, D. H., Kim, C. H., Shrestha, B., Chang, W. C., Lim, S. Y., Lee, W. H., Han, S. G., Lee, J. O., Lim, M. H., Kim, G. Y., Choi, S., Song, W. O., Sung, J. M., Hwang, K. C. and Kim, T. W. (2007) Ethanol extract of Inonotus obliquus inhibits lipopolysaccharide-induced inflammation in RAW 264.7 macrophage cells. J Med Food. 10: 80-89.   DOI   ScienceOn
29 Park, Y. M., Won, J. H., Kim, Y. H., Choi, J. W., Park, H. J. and Lee, K. T. (2005) In vivo and in vitro anti-inflammatory and anti-nociceptive effects of the methanol extract of Inonotus obliquus. J Ethnopharmacol. 101: 120-128.   DOI
30 Nakajima, Y., Sato, Y. and Konishi, T. (2007) Antioxidant small phenolic ingredients in Inonotus obliquus (persoon) Pilat (Chaga). Chem Pharm Bull (Tokyo). 55: 1222-1226.   DOI   ScienceOn
31 Lee, I. K., Kim, Y. S., Jang, Y. W., Jung, J. Y. and Yun, B. S. (2007) New antioxidant polyphenols from the medicinal mushroom Inonotus obliquus. Bioorg Med Chem Lett. 17: 6678-6681.   DOI   ScienceOn
32 Lee, K. W., You, H. J., Park, S. Y., Ryu, O. H., Kim, H. Y., Seo, J. A., Lee, Y. J., Kim, S. G., Kim, N. H., Choi, K. M., Choi, D. S. and Baik, S. H. (2006) Hypoglycemic activity of beta-glucans from Chaga mushroom (Inonotus obliquus). Diabetes 55: A472-A472.
33 Cui, Y., Kim, D. S. and Park, K. C. (2005) Antioxidant effect of Inonotus obliquus. J Ethnopharmacol. 96: 79-85.   DOI