Browse > Article
http://dx.doi.org/10.5483/BMBRep.2013.46.9.023

CD83 expression induced by CpG-DNA stimulation in a macrophage cell line RAW 264.7  

Park, Min Chul (Department of Microbiology, College of Medicine, Hallym University)
Kim, Dongbum (Center for Medical Science Research, College of Medicine, Hallym University)
Lee, Younghee (Department of Biochemistry, College of Natural Sciences, Chungbuk National University)
Kwon, Hyung-Joo (Department of Microbiology, College of Medicine, Hallym University)
Publication Information
BMB Reports / v.46, no.9, 2013 , pp. 448-453 More about this Journal
Abstract
CpG-DNA has various immunomodulatory effects in dendritic cells, B cells, and macrophages. While induction of cytokines by CpG-DNA has been well documented in macrophages, the expression of costimulatory molecules in CpG-DNA treated macrophages has not yet been defined. Therefore, we investigated the effects of CpG-DNA on the expression of costimulatory molecules in RAW 264.7 cells. The surface expression of CD80 was slightly increased and CD83 expression was significantly increased in response to CpG-DNA. However, the expression of CD86 and MHC class II was not changed. As expression of CD83 mRNA was also increased by CpG-DNA, CD83 expression is regulated at a transcriptional level. To understand the contribution of signaling pathways to CD83 induction, we used pathway specific inhibitors. The NF-${\kappa}B$ inhibitor significantly reduced surface expression of CD83 as well as phagocytic activity of RAW 264.7 cells. Therefore, CD83 expression may contribute to the immunostimulatory effects of CpG-DNA in macrophage cells.
Keywords
CD83; Costimulatory molecule; CpG-DNA; Innate immunity; Macrophage;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Shoda, L. K., Kegerreis, K. A., Suarez, C. E., Mwangi, W., Knowles, D. P. and Brown, W. C. (2001) Immunostimulatory CpG-modified plasmid DNA enhances IL-12, TNF-alpha, and NO production by bovine macrophages. J. Leukoc. Biol. 70, 103-112.
2 Zhou, L. J., Schwarting, R., Smith, H. M. and Tedder, T. F. (1992) A novel cell-surface molecule expressed by human interdigitating reticulum cells, Langerhans cells, and activated lymphocytes is a new member of the Ig superfamily. J. Immunol. 149, 735-742.
3 Zhou, L. J. and Tedder, T. F. (1995) Human blood dendritic cells selectively express CD83, a member of the immunoglobulin superfamily. J. Immunol. 154, 3821-3835.
4 Caux, C., Massacrier, C., Vanbervliet, B., Dubois, B., Van Kooten, C., Durand, I. and Banchereau, J. (1994) Activation of human dendritic cells through CD40 cross-linking. J. Exp. Med. 180, 1263-1272.   DOI   ScienceOn
5 Zhou, L. J. and Tedder, T. F. (1996) CD14+ blood monocytes can differentiate into functionally mature CD83+ dendritic cells. Proc. Natl. Acad. Sci. U. S. A. 93, 2588-2592.   DOI   ScienceOn
6 Fujimoto, Y., Tu, L., Miller, A. S., Bock, C., Fujimoto, M., Doyle, C., Steeber, D. A. and Tedder, T. F. (2002) CD83 expression influences CD4+ T cell development in the thymus. Cell 108, 755-767.   DOI   ScienceOn
7 Breloer, M., Kretschmer, B., Luthje, K., Ehrlich, S., Ritter, U., Bickert, T., Steeg, C., Fillatreau, S., Hoehlig, K., Lampropoulou, V. and Fleischer, B. (2007) CD83 is a regulator of murine B cell function in vivo. Eur. J. Immunol. 37, 634-648.   DOI   ScienceOn
8 Luthje, K., Kretschmer, B., Fleischer, B. and Breloer, M. (2008) CD83 regulates splenic B cell maturation and peripheral B cell homeostasis. Int. Immunol. 20, 949-960.   DOI   ScienceOn
9 Kim, D., Rhee, J. W., Kwon, S., Kim, Y. E., Choi, S. Y., Park, J., Lee, Y. and Kwon, H. J. (2010) Enhancement of immunomodulatory activity by liposome-encapsulated natural phosphodiester bond CpG-DNA in a human B cell line. BMB Rep. 43, 250-256.   과학기술학회마을   DOI   ScienceOn
10 Jahrsdorfer, B., Hartmann, G., Racila, E., Jackson, W., Muhlenhoff, L., Meinhardt, G., Endres, S., Link, B. K., Krieg, A. M. and Weiner, G. J. (2001) CpG DNA increases primary malignant B cell expression of costimulatory molecules and target antigens. J. Leukoc. Biol. 69, 81-88.
11 Hartmann, G., Weiner, G. J. and Krieg, A. M. (1999) CpG DNA: a potent signal for growth, activation, and maturation of human dendritic cells. Proc. Natl. Acad. Sci. U. S. A. 96, 9305-9312.   DOI   ScienceOn
12 Kadowaki, N., Antonenko, S. and Liu, Y. J. (2001) Distinct CpG DNA and polyinosinic-polycytidylic acid double- stranded RNA, respectively, stimulate CD11c-type 2 dendritic cell precursors and CD11c+ dendritic cells to produce type I IFN. J. Immunol. 166, 2291-2295.   DOI
13 Kadowaki, N., Ho, S., Antonenko, S., Malefyt, R. W., Kastelein, R. A., Bazan, F. and Liu, Y. J. (2001) Subsets of human dendritic cell precursors express different toll-like receptors and respond to different microbial antigens. J. Exp. Med. 194, 863-869.   DOI   ScienceOn
14 Janeway, Jr. C. A. and Medzhitov, R. (1998) Introduction: the role of innate immunity in the adaptive immune response. Semin. Immunol. 10, 349-350.   DOI   ScienceOn
15 Krieg, A. M. (2002) CpG motifs in bacterial DNA and their immune effects. Annu. Rev. Immunol. 20, 709-760.   DOI   ScienceOn
16 Kim, D., Kwon, S., Ahn, C. S., Lee, Y., Choi, S. Y., Park, J., Kwon, H. Y. and Kwon, H. J. (2011) Adjuvant effect of liposome-encapsulated natural phosphodiester CpG-DNA. BMB Rep. 44, 758-763.   과학기술학회마을   DOI   ScienceOn
17 Jiang, T., Zhao, H., Li, X. F., Deng, Y. Q., Liu, J., Xu, L. J., Han, J. F., Cao, R. Y., Qin, E. D. and Qin, C. F. (2011) CpG oligodeoxynucleotides protect against the 2009 H1N1 pandemic influenza virus infection in a murine model. Antiviral Res. 89, 124-126.   DOI   ScienceOn
18 Wong, J. P., Christopher, M. E., Viswanathan, S., Karpoff, N., Dai, X., Das, D., Sun, L. Q., Wang, M. and Salazar, A. M. (2009) Activation of toll-like receptor signaling pathway for protection against influenza virus infection. Vaccine 27, 3481-3483.   DOI   ScienceOn
19 Aderem, A. and Ulevitch, R. J. (2000) Toll-like receptors in the induction of the innate immune response. Nature 406, 782-787.   DOI   ScienceOn
20 Anderson, K. V. (2000) Toll signaling pathways in the innate immune response. Curr. Opin. Immunol. 12, 13-19.   DOI   ScienceOn
21 Akira, S., Uematsu, S. and Takeuchi, O. (2006) Pathogen recognition and innate immunity. Cell 124, 783-801.   DOI   ScienceOn
22 Hemmi, H., Takeuchi, O., Kawai, T., Kaisho, T., Sato, S., Sanjo, H., Matsumoto, M., Hoshino, K., Wagner, H., Takeda, K. and Akira, S. (2000) A Toll-like receptor recognizes bacterial DNA. Nature 408, 740-745.   DOI   ScienceOn
23 Krieg, A. M. (2006) Therapeutic potential of Toll-like receptor 9 activation. Nat. Rev. Drug Discov. 5, 471-484.   DOI   ScienceOn
24 Stacey, K. J., Sweet, M. J. and Hume, D. A. (1996) Macrophages ingest and are activated by bacterial DNA. J. Immunol. 157, 2116-2122.
25 Yi, A. K. and Krieg, A. M. (1998) CpG DNA rescue from anti-IgM-induced WEHI-231 B lymphoma apoptosis via modulation of $I{\kappa}B\alpha$ and $I{\kappa}B\beta$ and sustained activation of nuclear factor-$\kappa{B}$/c-Rel. J. Immunol. 160, 1240-1245.
26 Yi, A. K., Klinman, D. M., Martin, T. L., Matson, S. and Krieg, A. M. (1996) Rapid immune activation by CpG motifs in bacterial DNA. Systemic induction of IL-6 transcription through an antioxidant-sensitive pathway. J. Immunol. 157, 5394-5402.