• Title/Summary/Keyword: R-package

Search Result 540, Processing Time 0.03 seconds

Antifuse Circuits and Their Applicatoins to Post-Package of DRAMs

  • Wee, Jae-Kyung;Kook, Jeong-Hoon;Kim, Se-Jun;Hong, Sang-Hoon;Ahn, Jin-Hong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.1 no.4
    • /
    • pp.216-231
    • /
    • 2001
  • Several methods for improving device yields and characteristics have been studied by IC manufacturers, as the options for programming components become diversified through the introduction of novel processes. Especially, the sequential repair steps on wafer level and package level are essentially required in DRAMs to improve the yield. Several repair methods for DRAMs are reviewed in this paper. They include the optical methods (laser-fuse, laser-antifuse) and the electrical methods (electrical-fuse, ONO-antifuse). Theses methods can also be categorized into the wafer-level(on wafer) and the package-level(post-package) repair methods. Although the wafer-level laser-fuse repair method is the most widely used up to now, the package-level antifuse repair method is becoming an essential auxiliary technique for its advantage in terms of cost and design efficiency. The advantages of the package-level antifuse method are discussed in this paper with the measured data of manufactured devices. With devices based on several processes, it was verified that the antifuse repair method can improve the net yield by more than 2%~3%. Finally, as an illustration of the usefulness of the package-level antifuse repair method, the repair method was applied to the replica delay circuit of DLL to get the decrease of clock skew from 55ps to 9ps.

  • PDF

The Low Height Looping Technology for Multi-chip Package in Wire Bonder (와이어 본더에서의 초저 루프 기술)

  • Kwak, Byung-Kil;Park, Young-Min;Kook, Sung-June
    • Journal of the Semiconductor & Display Technology
    • /
    • v.6 no.1 s.18
    • /
    • pp.17-22
    • /
    • 2007
  • Recent new packages such as MCP(Multi-Chip Package), QDP(Quadratic Die Package) and DDP(Dual Die Package) have stack type configuration. This kind of multi-layer package is thicker than single layer package. So there is need for the low height looping technology in wirebonder to make these packages thinner. There is stiff zone above ball in wirebonder wire which is called HAZ(Heat Affect Zone). When making low height loop (below $80\;{\mu}m$) with traditional forward loop, stiff wire in HAZ(Heat Affected Zone) above ball is bended and weakened. So the traditional forward looping method cannot be applied to low height loop. SSB(stand-off stitch) wire bonding method was applied to many packages which require very low loops. The drawback of SSB method is making frequent errors at making ball, neck damage above ball on lead and the weakness of ball bonding on lead. The alternative looping method is BNL(ball neckless) looping technology which is already applied to some package(DDP, QDP). The advantage of this method is faster in bonding process and making little errors in wire bonding compared with SSB method. This paper presents the result of BNL looping technology applied in assembly house and several issues related to low loop height consistence and BNL zone weakness.

  • PDF

Effect of Joule Heating on Electromigration Characteristics of Sn-3.5Ag Flip Chip Solder Bump (Joule열이 Sn-3.5Ag 플립칩 솔더범프의 Electromigration 거동에 미치는 영향)

  • Lee, Jang-Hee;Yang, Seung-Taek;Suh, Min-Suk;Chung, Qwan-Ho;Byun, Kwang-Yoo;Park, Young-Bae
    • Korean Journal of Materials Research
    • /
    • v.17 no.2
    • /
    • pp.91-95
    • /
    • 2007
  • Electromigration characteristics of Sn-3.5Ag flip chip solder bump were analyzed using flip chip packages which consisted of Si chip substrate and electroplated Cu under bump metallurgy. Electromigration test temperatures and current densities peformed were $140{\sim}175^{\circ}C\;and\;6{\sim}9{\times}10^4A/cm^2$ respectively. Mean time to failure of solder bump decreased as the temperature and current density increased. The activation energy and current density exponent were found to be 1.63 eV and 4.6, respectively. The activation energy and current density exponent have very high value because of high Joule heating. Evolution of Cu-Sn intermetallic compound was also investigated with respect to current density conditions.

Electromigration and Thermomigration Characteristics in Flip Chip Sn-3.5Ag Solder Bump (플립칩 Sn-3.5Ag 솔더범프의 Electromigration과 Thermomigration 특성)

  • Lee, Jang-Hee;Lim, Gi-Tae;Yang, Seung-Taek;Suh, Min-Suk;Chung, Qwan-Ho;Byun, Kwang-Yoo;Park, Young-Bae
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.5
    • /
    • pp.310-314
    • /
    • 2008
  • Electromigration test of flip chip solder bump is performed at $140^{\circ}C$ C and $4.6{\times}10^4A/cm^2$ conditions in order to compare electromigration with thermomigration behaviors by using electroplated Sn-3.5Ag solder bump with Cu under-bump-metallurgy. As a result of measuring resistance with stressing time, failure mechanism of solder bump was evaluated to have four steps by the fail time. Discrete steps of resistance change during electromigration test are directly compared with microstructural evolution of cross-sectioned solder bump at each step. Thermal gradient in solder bump is very high and the contribution of thermomigration to atomic flux is comparable with pure electromigration effect.

Numerical Analysis for Thermal-deformation Improvement in TSOP(Thin Small Outline Package) by Anti-deflection Adhesives (TSOP(Thin Small Outline Package) 열변형 개선을 위한 전산모사 분석)

  • Kim, Sang-Woo;Lee, Hai-Joong;Lee, Hyo-Soo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.3
    • /
    • pp.31-35
    • /
    • 2013
  • TSOP(Thin Small Outline Package) is the IC package using lead frame, which is the type of low cost package for white electronics, auto mobile, desktop PC, and so on. Its performance is not excellent compared to BGA or flip-chip CSP, but it has been used mostly because of low price of TSOP package. However, it has been issued in TSOP package that thermal deflection of lead frame occurs frequently during molding process and Au wire between semiconductor die and pad is debonded. It has been required to solve this problem through substituting materials with low CTE and improving structure of lead frame. We focused on developing the lead frame structure having thermal stability, which was carried out by numerical analysis in this study. Thermal deflection of lead frame in TSOP package was simulated with positions of anti-deflection adhesives, which was ranging 198 um~366 um from semiconductor die. It was definitely understood that thermal deflection of TSOP package with anti-deflection adhesives was improved as 30.738 um in the case of inside(198 um), which was compared to that of the conventional TSOP package. This result is caused by that the anti-deflection adhesives is contributed to restrict thermal expansion of lead frame. Therefore, it is expected that the anti-deflection adhesives can be applied to lead frame packages and enhance their thermal deflection without any change of substitutive materials with low CTE.

Development of an Ultra-Slim System in Package (SiP)

  • Gao, Shan;Hong, Ju-Pyo;Kim, Jin-Su;Yoo, Do-Jae;Jeong, Tae-Sung;Choi, Seog-Moon;Yi, Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.15 no.1
    • /
    • pp.7-18
    • /
    • 2008
  • This paper reviews the current development of an ultra-slim SiP for Radio Frequency (RF) application, in which three flip chips, additional passive components and Surface Acoustic Wave (SAW) filters are integrated side-by-side. A systematic investigation is carried out for the design optimization, process and reliability improvement of the package, which comprises several aspects: a design study based on the 3D thermo-mechanical finite element analysis of the packaging, the determination of stress, warpage distribution, critical failure zones, and the figuration of the effects of material properties, process conditions on the reliability of package. The optimized material sets for manufacturing process were determined which can reduce the number of testing samples from 75 to 2. In addition the molded underfilling (MUF) process is proposed which not only saves one manufacturing process, but also improves the thermo-mechanical performance of the package compared with conventional epoxy underfilling process. In the end, JEDEC's moisture sensitivity test, thermal cycle test and pressure cooker tests have also been carried out for reliability evaluation. The test results show that the optimized ultra-slim SiP has a good reliability performance.

  • PDF

Development of a Multimedia Package on Operation and Maintenance of Air Brake System for Indian Railways - A Case Study

  • Lalla, G.T.;Mehra, Chanchal
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.4
    • /
    • pp.668-675
    • /
    • 2003
  • Now a days many industries and bigger organisation (Indian Railways, Bharat Heavy Electricals Ltd.) are facing difficulties in implementing the new technology because of non-availability of fully trained staff. Also for the employed technical and other staff lot of resistance management has to face to get them trained for adoption of new technology. There are also very less organisations who can design effective training programmes and at the same time develop course material specially multimedia packages and computer base training (CBT) which can satisfy the need of different target groups of industries. Indian Railways was also facing similar situation while implementing the Air Brake System technology In Indian Railways. TTTI Bhopal took that challenge and designed, developed and trained Indian Railways trainer for implementation of the package on different target group. The present paper offers a case study on the same.

  • PDF

Integrated Management of the Pink Mealybug, Maconellicoccus hirsutus (Green) (Hemiptera : Pseudococcidae) Causing ′Tukra′in Mulberry

  • Katiyar, R.L.;Manjunath, D.;Kumar, Vineet;Datta, R.K.
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.3 no.2
    • /
    • pp.117-120
    • /
    • 2001
  • In India, mulberry (Morus spp.), the sole food plant of the silkworm, Bombyx mori (Linn.), is prone to infestation by the pink mealybug, Maconellicoccus hirsutus (Green). Infestation by this pest causes apical shoot malformation, popularly known as 'tukra'. Occurrence of tukra causes an appreciable reduction in leaf yield and quality, leading to low silkworm cocoon productivity. For management of M. hirsutus (Tukra), an IPM package comprising mechanical, chemical and biological measures was demonstrated in the mulberry gardens of five Government Silk Farms in Mysore District (Karnataka, India) during 1995-96. A suppression of 76.0% in tukra incidence and 90.19% in mealybug population was recorded by employ the IPM package which led to an estimated 4,000 kg recovery in leaf yield/ha/year. The impact of IPM package in the management of M. hirsutus, the role of biocontrol agent (Cryptolaemus montrouzieri Muls.) in pest suppression and the cost-benefit analysis of the IPM package are discussed.

  • PDF