• Title/Summary/Keyword: Quantum communication

Search Result 186, Processing Time 0.024 seconds

3D Circuit Visualization for Large-Scale Quantum Computing (대규모 양자컴퓨팅 회로 3차원 시각화 기법)

  • Kim, Juhwan;Choi, Byungsoo;Jo, Dongsik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.8
    • /
    • pp.1060-1066
    • /
    • 2021
  • Recently, researches for quantum computers have been carried out in various fields. Quantum computers performs calculations by utilizing various phenomena and characteristics of quantum mechanics such as quantum entanglement and quantum superposition, thus it is a very complex calculation process compared to classical computers used in the past. In order to simulate a quantum computer, many factors and parameters of a quantum computer need to be analyzed, for example, error verification, optimization, and reliability verification. Therefore, it is necessary to visualize circuits that can intuitively simulate the configuration of the quantum computer components. In this paper, we present a novel visualization method for designing complex quantum computer system, and attempt to create a 3D visualization toolkit to deploy large circuits, provide help a new way to design large-scale quantum computing systems that can be built into future computing systems.

A Study on the R&D Roadmaps of Quantum Information and Communication Technology (퀀텀정보통신기술의 연구개발 로드맵에 관한 연구)

  • Rhee, Mooki Kyle;Park, Seong Taek;Kwon, Moon-Ju
    • Journal of Digital Convergence
    • /
    • v.12 no.9
    • /
    • pp.139-151
    • /
    • 2014
  • Quantum information and communication technology(QICT) holds out tremendous promise for efficiently solving some of the most difficult problems that are intractable on any present or future conventional computer. QICT is one of the most active research areas of modern science, attracting substantial funding that supports research groups at internationally leading academic institutions. To facilitate the progress of QICT research towards the commercialization, a roadmap needs to be formulated, providing some direction for the field with specific technical goals and elucidating interrelationships between approaches for synergistic solutions to obstacles within any one approach. In this paper, we suggest a brief version of roadmap for QICT research and give a discussion about the potential contribution of QICT in Korea industry.

The Effect of Quantum Well Structure on the Characteristics of GaN-based Light-Emitting Diode (양자 우물 구조가 GaN 기반 LED 특성에 미치는 영향)

  • Lee, Jae-Hyun;Yeom, Keesoo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.251-254
    • /
    • 2012
  • In this paper, the output characteristics of GaN-based LED considering quantum well structure are analyzed. The basic structure of the LED consists of active region of GaN barrier and InGaN quantum well between AlGaN EBL(Electron Blocking Layer) and AlGaN HBL(Hole Blocking Layer) on GaN buffer layer. The output power, internal quantum efficiency characteristics of LED active region considering thickness of quantum well, number of quantum well and doping of barrier are analyzed using ISE-TCAD.

  • PDF

The efficiency of the quantum key distribution depends on the characteristics of the detector system (양자암호화 키 전송에서 검출기 특성에 따른 전송효율)

  • 조기현;강장원;윤선현
    • Korean Journal of Optics and Photonics
    • /
    • v.12 no.2
    • /
    • pp.71-76
    • /
    • 2001
  • We studied quantum cryptography based on the quantum nature of light. We must reduce the intensity of the light pulse to the single photon regime for quantum cryptographic communication. Considering the noise and the quantum efficiency of the detector, however, we have to fmd a criterion for which we are able to distinguish the error caused by eavesdropping from other system noises. By changing the bias voltage of the detector and the threshold of the signal voltage, we find the safe region for which we can distribute the quantum key with positive proof of no-eavesdropping. The quantum key we used is a four state quantum key (BB84). BB84).

  • PDF

Implementation of Quantum Gates for Binary Field Multiplication of Code based Post Quantum Cryptography (부호 기반 양자 내성 암호의 이진 필드 상에서 곱셈 연산 양자 게이트 구현)

  • Choi, Seung-Joo;Jang, Kyong-Bae;Kwon, Hyuk-Dong;Seo, Hwa-Jeong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.8
    • /
    • pp.1044-1051
    • /
    • 2020
  • The age of quantum computers is coming soon. In order to prepare for the upcoming future, the National Institute of Standards and Technology has recruited candidates to set standards for post quantum cryptography to establish a future cryptography standard. The submitted ciphers are expected to be safe from quantum algorithm attacks, but it is necessary to verify that the submitted algorithm is safe from quantum attacks using quantum algorithm even when it is actually operated on a quantum computer. Therefore, in this paper, we investigate an efficient quantum gate implementation for binary field multiplication of code based post quantum cryptography to work on quantum computers. We implemented the binary field multiplication for two field polynomials presented by Classic McEliece and three field polynomials presented by ROLLO in generic algorithm and Karatsuba algorithm.

Volumetric three-dimensional display using Quantum optics

  • Baasantseren, Ganbat;Kim, Nam;Gil, Sang-Geun
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2007.07a
    • /
    • pp.329-330
    • /
    • 2007
  • Today some many types of 3D display are developed but that are not possibly multiviewer, multiview and full parallax. Our new research work uses the Quantum optic to develop 3D display. Quantum mechanically, we can think of the first photon making a virtual transition to the second state. If the second photon appears within the lifetime of that state, the absorption sequence to the third level can be completed. When the electron, located in the third state, shifts to the first state, that electron emits one visible photon. We controlled the two invisible lights to draw a pixel in volume.

  • PDF

A Compact Quantum Model for Cylindrical Surrounding Gate MOSFETs using High-k Dielectrics

  • Vimala, P.;Balamurugan, N.B.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.649-654
    • /
    • 2014
  • In this paper, an analytical model for Surrounding Gate (SG) metal-oxide- semiconductor field effect transistors (MOSFETs) considering quantum effects is presented. To achieve this goal, we have used variational approach for solving the Poission and Schrodinger equations. This model is developed to provide an analytical expression for inversion charge distribution function for all regions of device operation. This expression is used to calculate the other important parameters like inversion charge density, threshold voltage, drain current and gate capacitance. The calculated expressions for the above parameters are simple and accurate. This paper also focuses on the gate tunneling issue associated with high dielectric constant. The validity of this model was checked for the devices with different dimensions and bias voltages. The calculated results are compared with the simulation results and they show good agreement.

Charges of TIP4P water model for mixed quantum/classical calculations of OH stretching frequency in liquid water

  • Jeon, Kiyoung;Yang, Mino
    • Rapid Communication in Photoscience
    • /
    • v.5 no.1
    • /
    • pp.8-10
    • /
    • 2016
  • The potential curves of OH bonds of liquid water are inhomogeneous because of a variety of interactions with other molecules and this leads to a wide distribution of vibrational frequency which hampers our understanding of the structure and dynamics of water molecules. Mixed quantum/classical (QM/CM) calculation methods are powerful theoretical techniques to help us analyze experimental data of various vibrational spectroscopies to study such inhomogeneous systems. In a type of those approaches, the interaction energy between OH bonds and other molecules is approximately represented by the interaction between the charges located at the appropriate interaction sites of water molecules. For this purpose, we re-calculated the values of charges by comparing the approximate interaction energies with quantum chemical interaction energies. We determined a set of charges at the TIP4P charge sites which better represents the quantum mechanical potential curve of OH bonds of liquid water.

Graphene and Carbon Quantum Dots-based Biosensors for Use with Biomaterials

  • Lee, Cheolho;Hong, Sungyeap
    • Journal of information and communication convergence engineering
    • /
    • v.17 no.1
    • /
    • pp.49-59
    • /
    • 2019
  • Biosensors, which are analysis devices used to convert biological reactions into electric signals, are made up of a receptor component and a signal transduction part. Graphene quantum dots (GQDs) and carbon quantum dots (CQDs) are new types of carbon nanoparticles that have drawn a significant amount of attention in nanoparticle research. The unique features exhibited by GQDs and CQDs are their excellent fluorescence, biocompatibility, and low cytotoxicity. As a result of these features, carbon nanomaterials have been extensively studied in bioengineering, including biosensing and bioimaging. It is extremely important to find biomaterials that participate in biological processes. Biomaterials have been studied in the development of fluorescence-based detection methods. This review provides an overview of recent advances and new trends in the area of biosensors based on GQDs and CQDs as biosensor platforms for the detection of biomaterials using fluorescence. The sensing methods are classified based on the types of biomaterials, including nucleic acids, vitamins, amino acids, and glucose.

Optimization of LEA Quantum Circuits to Apply Grover's Algorithm (그루버 알고리즘 적용을 위한 LEA 양자 회로 최적화)

  • Jang, Kyung Bae;Kim, Hyun Jun;Park, Jae Hoon;Song, Gyeung Ju;Seo, Hwa Jeong
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.10 no.4
    • /
    • pp.101-106
    • /
    • 2021
  • Quantum algorithms and quantum computers can break the security of many of the ciphers we currently use. If Grover's algorithm is applied to a symmetric key cipher with n-bit security level, the security level can be lowered to (n/2)-bit. In order to apply Grover's algorithm, it is most important to optimize the target cipher as a quantum circuit because the symmetric key cipher must be implemented as a quantum circuit in the oracle function. Accordingly, researches on implementing AES(Advanced Encryption Standard) or lightweight block ciphers as quantum circuits have been actively conducted in recent years. In this paper, korean lightweight block cipher LEA was optimized and implemented as a quantum circuit. Compared to the previous LEA quantum circuit implementation, quantum gates were used more, but qubits were drastically reduced, and performance evaluation was performed for this tradeoff problem. Finally, we evaluated quantum resources for applying Grover's algorithm to the proposed LEA implementation.