Browse > Article
http://dx.doi.org/10.5857/RCP.2016.5.1.8

Charges of TIP4P water model for mixed quantum/classical calculations of OH stretching frequency in liquid water  

Jeon, Kiyoung (Department of Chemistry, Chungbuk National University)
Yang, Mino (Department of Chemistry, Chungbuk National University)
Publication Information
Rapid Communication in Photoscience / v.5, no.1, 2016 , pp. 8-10 More about this Journal
Abstract
The potential curves of OH bonds of liquid water are inhomogeneous because of a variety of interactions with other molecules and this leads to a wide distribution of vibrational frequency which hampers our understanding of the structure and dynamics of water molecules. Mixed quantum/classical (QM/CM) calculation methods are powerful theoretical techniques to help us analyze experimental data of various vibrational spectroscopies to study such inhomogeneous systems. In a type of those approaches, the interaction energy between OH bonds and other molecules is approximately represented by the interaction between the charges located at the appropriate interaction sites of water molecules. For this purpose, we re-calculated the values of charges by comparing the approximate interaction energies with quantum chemical interaction energies. We determined a set of charges at the TIP4P charge sites which better represents the quantum mechanical potential curve of OH bonds of liquid water.
Keywords
OH stretching; water; mixed quantum-classical calculation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ramasesha, K., De Marco, L., Mandal, A. and Tokmakoff, A., Nat. Chem., 2013, 5, 935.   DOI
2 De Marco, L., Ramasesha, K. and Tokmakoff, A., J. Phys. Chem. B, 2013, 117, 15319.   DOI
3 Eaves, J. D., Loparo, J. J., Fecko, C. J., Roberts, S. T., Tokmakoff, A. and Geissler, P. L., P. Natl. Acad. Sci. USA, 2005, 102, 13019.   DOI
4 Bakulin, A. A., Cringus, D., Pieniazek, P. A., Skinner, J. L., Jansen, T. L. C. and Pshenichnikov, M. S., J. Phys. Chem. B, 2013, 117, 15545.   DOI
5 Hsieh, C.-S., Campen, R. K., Okuno, M., Backus, E. H. G., Nagata, Y. and Bonn, M., P. Natl. Acad. Sci. USA, 2013, 110, 18780.   DOI
6 van der Post, S. T., Hsieh, C.-S., Okuno, M., Nagata, Y., Bakker, H. J., Bonn, M. and Hunger, J., Nat Commun, 2015, 6.
7 Zhang, Z., Piatkowski, L., Bakker, H. J. and Bonn, M., Nat. Chem., 2011, 3, 888.   DOI
8 Bakker, H. J. and Skinner, J. L., Chem. Rev., 2010, 110, 1498.   DOI
9 Gruenbaum, S. M., Tainter, C. J., Shi, L., Ni, Y. and Skinner, J. L., J. Chem. Theory Comput., 2013, 9, 3109.   DOI
10 Roy, S., Gruenbaum, S. M. and Skinner, J. L., J. Chem. Phys., 2014, 141, 18C502.   DOI
11 Ni, Y. and Skinner, J. L., J. Chem. Phys., 2014, 141, 024509.   DOI
12 Tainter, C. J., Ni, Y., Shi, L. and Skinner, J. L., J. Phys. Chem. Lett., 2013, 4, 12.   DOI
13 Choi, J.-H. and Cho, M., J. Chem. Phys., 2013, 138, 174108.   DOI
14 Auer, B. M. and Skinner, J. L., J. Chem. Phys., 2008, 128, 224511.   DOI
15 Berendsen, H. J. C., Grigera, J. R. and Straatsma, T. P., J. Phys. Chem., 1987, 91, 6269.   DOI
16 Jorgensen, W., Chandrasekhar, J., Madura, J., Impey, R. W. and Klein, M. L., J. Chem. Phys., 1983, 79, 926.   DOI
17 Chai, J.-D. and Head-Gordon, M., J. Chem. Phys., 2008, 128, 084106.   DOI
18 Frisch, M. J., et al., (Gaussian, Inc., Wallingford, CT, USA, 2009).
19 Jeon, K. and Yang, M., unpublished.
20 Cizek, J., J. Chem. Phys., 1966, 45, 4256.   DOI
21 Raghavachari, K., Trucks, G. W., Pople, J. A. and Head-Gordon, M., Chem. Phys. Lett., 1989, 157, 479.   DOI
22 Hess, B., Kutzner, C., van der Spoel, D. and Lindahl, E., J. Chem. Theory Comput., 2008, 4, 435.   DOI
23 Truhlar, D. G., Chem. Phys. Lett., 1998, 294, 45.   DOI