DOI QR코드

DOI QR Code

3D Circuit Visualization for Large-Scale Quantum Computing

대규모 양자컴퓨팅 회로 3차원 시각화 기법

  • Kim, Juhwan (Marine Disaster Research Center, Korea Institute of Ocean Science & Technology) ;
  • Choi, Byungsoo (Quantum Computing Research Section, Electronics and Telecommunications Research Institute) ;
  • Jo, Dongsik (School of IT Convergence, University of Ulsan)
  • Received : 2021.06.30
  • Accepted : 2021.07.21
  • Published : 2021.08.31

Abstract

Recently, researches for quantum computers have been carried out in various fields. Quantum computers performs calculations by utilizing various phenomena and characteristics of quantum mechanics such as quantum entanglement and quantum superposition, thus it is a very complex calculation process compared to classical computers used in the past. In order to simulate a quantum computer, many factors and parameters of a quantum computer need to be analyzed, for example, error verification, optimization, and reliability verification. Therefore, it is necessary to visualize circuits that can intuitively simulate the configuration of the quantum computer components. In this paper, we present a novel visualization method for designing complex quantum computer system, and attempt to create a 3D visualization toolkit to deploy large circuits, provide help a new way to design large-scale quantum computing systems that can be built into future computing systems.

최근, 양자컴퓨터를 활용하기 위한 연구개발이 다양한 분야에서 활발하게 이루어지고 있다. 양자컴퓨터는 양자 얽힘, 양자중첩과 같은 다양한 양자역학의 현상과 특성을 활용하여 연산을 수행하기 때문에 기존 컴퓨팅 환경에 비해 아주 복잡한 연산과정을 거치게 된다. 이러한 양자컴퓨터를 구동하기 위해서는 연산에 활용되는 양자게이트의 구성뿐만 아니라 큐비트의 종류, 배치, 연결성 등 물리적인 양자컴퓨터의 요소를 반영한 알고리즘이 구성되어야 한다. 따라서 양자컴퓨터 구성요소들의 상호간 영향을 포함한 구성 정보를 직관적으로 파악할 수 있는 회로 시각화가 필요하다. 본 논문에서는 양자컴퓨터를 구성하는 양자칩 정보와 양자컴퓨팅 회로 데이터를 3D로 시각화하여 직관적으로 데이터를 관측하고 활용할 수 있도록 시각화 하여 직관적인 정보를 분석할 수 있는 방법을 제안한다.

Keywords

Acknowledgement

This work was partly supported by Institute for Information & communications Technology Promotion (IITP) grant funded by the Korea government (MSIP) (No. 2019-0-00003, Research and Development of Core Technologies for Programming, Running, Implementing and Validating of Fault-Tolerant Quantum Computing System) and This study was carried out with the support of 'R&D Program for Forest Science Technology (Project No. "2021410 B10-2125-0101)' provided by Korea Forest Service (Korea Forestry Promotion Institute).

References

  1. R. P. Feynman, "Simulating physics with computers," Int. J.Theor. Phys., vol. 21, no. 6-7, pp. 467-488, Jun. 1982. https://doi.org/10.1007/BF02650179
  2. B. Sergey, D. Gosset, and R. Konig, "Quantum advantage with shallow circuits," Science 362.6412, pp. 308-311, 2018. https://doi.org/10.1126/science.aar3106
  3. P. W. Shor, "Algorithms for quantum computation: Discrete logarithms and factoring," in Proc. Annu. Symp. Found. Comput. Sci., pp. 124-134, 1994.
  4. B. Stephane, "Circuit for Shor's algorithm using 2n+ 3 qubits," Quantum Information and Computation, vol. 3, no. 2, pp. 175-185, 2002.
  5. F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends, S. Boixo, F. G. S. L. Brandao, D A. Buell, B. Burkett, Y. Chen, Z. Chen, R. Collins, W. Courtney, A. Dunsworth, E. Farhi, B. Foxen, A. Fowler, C. Gidney, M. Giustina, R. Graff, K. Guerin, S. Habegger, M. P. Harrigan, M. J. Hartmann, A. Ho, M. Hoffmann, T. Huang, S. V. Isakov, E. Jeffrey, Z. Jiang, D. Kafri, K. Kechedzhi, J. Kelly, P. V. Klimov, S. Knysh, A. Korotkov, F. Kostritsa, D. Landhuis, M. Lindmark, E. Lucero, J. R. McClean, A. Megrant, X. Mi, M. Mohseni, J. Mutus, O. Naaman, M. Neeley, C. Neill, M. Y. Niu, E. Ostby, A. Petukhov, J. C. Platt, C. Quintana, P. Roushan, N. C. Rubin, D. Sank, K. J. Satzinger, V. Smelyanskiy, K. J. Sung, M. D. Trevithick, A. Vainsencher, B. Villalonga, T. White, Z. J. Yao, P. Yeh, A. Zalcman, H. Neven, and J. M. Martinis, "Quantum supremacy using a programmable superconducting processor," Nature, 574, pp. 505-510. 2019. https://doi.org/10.1038/s41586-019-1666-5
  6. Z. Y. Chen, Q. Zhou, C. Xue, X. Yang, G. C. Guo, and G. P. Guo, "64-qubit quantum circuit simulation," Science Bulletin, vol. 63, no. 15, pp. 964-971, 2018. https://doi.org/10.1016/j.scib.2018.06.007
  7. J. Kelly, "A preview of Bristlecone, Google's new quantum processor," Google AI Blog, 2018.
  8. L. Rui and J. Chen, "Toward a deep understanding of what makes a scientific visualization memorable," IEEE Scientific Visualization Conference (SciVis), 2018.
  9. R. Prabhu and G. Varoquaux, "Mayavi: 3D visualization of scientific data," Computing in Science & Engineering, vol. 13, no. 2, pp. 40-51, 2011.