Browse > Article
http://dx.doi.org/10.6109/jicce.2019.17.1.49

Graphene and Carbon Quantum Dots-based Biosensors for Use with Biomaterials  

Lee, Cheolho (Department of Chemical and Biological Engineering, Seokyeong University)
Hong, Sungyeap (Department of Chemical and Biological Engineering, Seokyeong University)
Abstract
Biosensors, which are analysis devices used to convert biological reactions into electric signals, are made up of a receptor component and a signal transduction part. Graphene quantum dots (GQDs) and carbon quantum dots (CQDs) are new types of carbon nanoparticles that have drawn a significant amount of attention in nanoparticle research. The unique features exhibited by GQDs and CQDs are their excellent fluorescence, biocompatibility, and low cytotoxicity. As a result of these features, carbon nanomaterials have been extensively studied in bioengineering, including biosensing and bioimaging. It is extremely important to find biomaterials that participate in biological processes. Biomaterials have been studied in the development of fluorescence-based detection methods. This review provides an overview of recent advances and new trends in the area of biosensors based on GQDs and CQDs as biosensor platforms for the detection of biomaterials using fluorescence. The sensing methods are classified based on the types of biomaterials, including nucleic acids, vitamins, amino acids, and glucose.
Keywords
Biosensors; Carbon Quantum Dots; Fluorescence; Graphene Quantum Dots;
Citations & Related Records
연도 인용수 순위
  • Reference
1 O. J. Achadu and T. Nyokong, "Graphene quantum dots decorated with maleimide and zinc tetramaleimido-phthalocyanine: Application in the design of "OFF-ON" fluorescence sensors for biothiols," Talanta, vol. 166, pp. 15-26, 2017. DOI: 10.1016/j.talanta.2017.01.031.   DOI
2 Z. Li, Y. Wang, Y. Ni, and S. Koko, "A rapid and label-free dual detection of Hg (II) and cysteine with the use of fluorescence switching of graphene quantum dots," Sensors and Actuators B, vol. 207, pp. 490-497, 2015. DOI: 10.1016/j.snb.2014.10.071.   DOI
3 H. Li, Z. Kang, Y. Liu, and S. T. Lee, "Carbon nanodots: synthesis, properties and applications," J. Mater. Chem., vol. 22, pp. 24230-24253, 2012. DOI: 10.1039/C2JM34690G.   DOI
4 C. Ding, A. Zhu, and Y. Tian, 'Functional surface engineering of Cdots for fluorescent biosensing and in vivo bioimaging," Acc. Chem. Res., vol. 47, pp. 20-30, 2014. DOI: 10.1021/ar400023s.   DOI
5 L. Zhang, Y. Han, J. Zhu, Y. Zhai, and S. Dong, "Simple and sensitive fluorescent and electrochemical trinitrotoluene sensors based on aqueous carbon dots," Anal. Chem., vol. 87, pp. 2033-2036, 2015. DOI: 10.1021/ac5043686.   DOI
6 T. Liu, N. Li, J. X. Dong, Y. Zhang, Y. Z. Fan, S. M. Lin, H. Q. Luo, and N. Bing Li, "A colorimetric and fluorometric dual-signal sensor for arginine detection by inhibiting the growth of gold nanoparticles/carbon quantum dots composite" Biosensors and Bioelectronics, vol. 87, pp. 772-778, 2017. DOI: 10.1016/j.bios.2016.08.098.   DOI
7 L. Zhou, Y. H. Lin, Z. Z. Huang, J. S. Ren, and X. G. Qu, "Carbon nanodots as fluorescence probes for rapid sensitive, and label-free detection of $Hg^{2+}$ and biothiols in complex matrices," Chem. Commun., vol. 48, pp. 1147-1149, 2012. DOI: 10.1039/C2CC16791C.   DOI
8 W. Zhenzhu, L. Wenying, C. Jian, and Y. Cong, "A Graphene quantum dot-based method for the highly sensitive and selective fluorescence turns on detection of biothiols," Talanta, vol. 119, pp. 538-543, 2014. DOI: 10.1016/j.talanta.2013.11.065.   DOI
9 M. Zhao, Y. Wang, Q. Ma, Y. Huang, X. Zhang, J. Ping, Z. Zhang, Q. Lu, Y. Yu, H. Xu, Y. Zhao, and H. Zhang, "Ultrathin 2D metalorganic framework nanosheets," Adv. Mater., vol. 27, pp. 7372-7378, 2015. DOI: 10.1002/adma.201503648.   DOI
10 D. Giljohann, D. Seferos, W. Daniel, M. Massich, P. Patel, and C. Mirkin, "Gold nanoparticles for biology and medicine," Angew. Chem. Int. Ed., vol. 49, pp. 3280-3294, 2010. DOI: 10.1002/anie.200904359.   DOI
11 J. Lee, J. Kim, S. Kim, and D. H. Min, "Biosensors based on graphene oxide and its biomedical application," Adv. Drug Deliver. Rev., vol. 105, pt. B, pp. 275-287, 2016. DOI: 10.1016/j.addr.2016.06.001.   DOI
12 M. Zhang, and B. Ye, "Colorimetric chiral recognition of enantiomers using the nucleotide-capped silver nanoparticles," Anal. Chem., vol. 83, pp. 1504-1509, 2011. DOI: 10.1021/ac102922f.   DOI
13 L.Tan, J. Ge, M. Jiao, G. Jie, and S. Niu, "Amplified electrochemiluminescence detection of DNA based on novel quantum dots signal probe by multiple cycling amplification strategy," Talanta, vol. 183, pp. 108-113, 2018. DOI: 10.1016/j.talanta.2018.02.063.   DOI
14 R. Guo, B. Chen, F. Li, S. Weng, Z. Zheng, M. Chen, Wu, X. Lin, and C. Yang, "Positive carbon dots with dual roles of nanoquencher and reference signal for the ratiometric fluorescence sensing of DNA," Sensors and Actuators B, vol. 264, pp.193-201, 2018. DOI: 10.1016/j.snb.2018.02.175.   DOI
15 A. D. Castaneda, N. J. Brenes, A. Kondajji, and R. M. Crooks, "Detection of microRNA by electrocatalytic amplification: A general approach for single-particle biosensing," J. Am. Chem. Soc, vol. 139, pp. 7657-7664, 2017. DOI: 10.1021/jacs.7b03648.   DOI
16 Y. Yuan, S. Wu, F. Shu, and Z. Liu, "An $MnO_2$ nanosheet as a labelfree nanoplatform for homogeneous biosensing," Chem. Commun., vol. 50, pp. 1095-1097, 2014. DOI: 10.1039/C3CC47755J.   DOI
17 Y. Zhang, B. Zheng, C. Zhu, X. Zhang, C. Tan, H. Li, B. Chen, J. Yang, J. Chen, Y. Huang, L. Wang, and H. Zhang, "Single-layer transition metal dichalcogenide nanosheet-based nanosensors for rapid sensitive, and multiplexed detection of DNA," Adv. Mater., vol. 27, pp. 935-939, 2015. DOI: 10.1002/adma.201404568.   DOI
18 R. Guo, B. Chen, F. lanLi, S. Weng, Z. Zheng, M. Chen, W. Wu, X. Lin, and C. Yang, "Positive carbon dots with dual roles of nanoquencher and reference signal for the ratiometric fluorescence sensing of DNA," Sensors and Actuators B: Chemical, vol. 264, pp. 193-201, 2018. DOI: 10.1016/j.snb.2018.02.175.   DOI
19 Y. T. Yew, A. H. Loo, Z. Sofer, K. Klímová, and M. Pumera, "Cokederived graphene quantum dots as fluorescence nanoquencher in DNA detection," Applied Materials Today, vol. 7, pp. 138-143, 2017. DOI: 10.1016/j.apmt.2017.01.002.   DOI
20 S. Rostami, A. Mehdinia, and A. Jabbari, "Seed-mediated grown silver nanoparticles as acolorimetric sensor for detection of ascorbic acid," Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, vol. 180, pp. 204-210, 2017. DOI: 10.1016/j.saa.2017.03.020.   DOI
21 D. Zhao, G. Yu, K. Tian, and C. Xu, "A highly sensitive and stable electrochemical sensor for simultaneous detection towards ascorbic acid, dopamine, and uric acid based on the hierarchical nanoporous PtTi alloy," Biosensors & Bioelectronics, vol. 82, pp. 119-126, 2016. DOI: 10.1016/j.bios.2016.03.074.   DOI
22 M. Szultka, M. Buszewska-Forajta, R. Kaliszan, and B. Buszewski, "Determination of ascorbic acid and its degradation products by high-performance liquid chromatography-triple quadrupole mass spectrometry," Electrophoresis, vol. 35, no. 4, pp. 585-592, 2014. DOI: 10.1002/elps.201300439.   DOI
23 D. R. Shankaran, K. Iimura, and T. Kato, "Simultaneous determination of ascorbic acid and dopamine at a sol-gel composite electrode," Sensors and Actuators B: Chemical, vol. 94, no. 1, pp. 73-80, 2003. DOI: 10.1016/S0925-4005(03)00327-7.   DOI
24 X. Yu and Z. P. Yao, "Chiral recognition and determination of enantiomeric excess by mass spectrometry: A review," Analytica Chimica Acta, vol. 968, pp. 1-20, 2017. DOI: 10.1016/j.aca.2017.03.021.   DOI
25 H. Liu, W. Na, Z. Liu, X. Chen, and X. Su, "A novel turn-on fluorescent strategy for sensing ascorbic acid using graphene quantum dots as fluorescent probe," Biosensors and Bioelectronics, vol. 92, pp. 229-233, 2017. DOI: 10.1016/j.bios.2017.02.005.   DOI
26 H. Liu, N. Li, H. Zhang, F. Zhang, and X. Su, "A simple and convenient fluorescent strategy for the highly sensitive detection of dopamine and ascorbic acid based on graphene quantum dots," Talanta, In Press, Accepted Manuscript, May, 2018, [online] Available: https://www.sciencedirect.com/science/article/pii/S0039914018304739. DOI: 10.1016/j.talanta.2018.05.014.
27 R. Liu, R. Yang, C. Qu, H. Mao, Y. Hu, J. Li, and L. Qu, "Synthesis of glycine-functionalized graphene quantum dots as highly sensitive and selective fluorescent sensor of ascorbic acid in human serum," Sensors and Actuators B, vol. 241, pp. 644-651, 2017. DOI: 10.1016/j.snb.2016.10.096.   DOI
28 X. Zhu, T. Zhao, Z. Nie, Y. Liu, and S. Yao, "Non-redox modulated fluorescence strategy for sensitive and selective ascorbic acid detection with highly photoluminescent nitrogen-doped carbon nanoparticles via solid-state synthesis," Anal. Chem., vol. 87, pp. 8524-8530, 2015. DOI: 10.1021/acs.analchem.5b02167.   DOI
29 Q. Wang, L. Yu, C. B. Qi, J. Ding, X. M. He, R. Q. Wang, and Y. Q. Feng, "Rapid and sensitive serum glucose determination using chemical labeling coupled with black phosphorus-assisted laser desorption/ionization time-of-flight mass spectrometry," Talanta, vol. 176, pp. 344-349, 2018. DOI: 10.1016/j.talanta.2017.08.055.   DOI
30 X. Zhu, T. Zhao, Z. Nie, Y. Liu, and S. Yao, "Non-redox modulated fluorescence strategy for sensitive and selective ascorbic acid detection with highly photoluminescent nitrogen-doped carbon nanoparticles via solid-state synthesis," Anal. Chem., vol. 87, pp. 8524-8530, 2015. DOI: 10.1021/acs.analchem.5b02167.   DOI
31 Z. Liu, J. Xiao, X. Wu, L. Lin, S. Weng, M. Chen, X. Cai, and X. Lin, "Switch-on fluorescent strategy based on N and S co-doped graphene quantum dots (N-S/GQDs) for monitoring pyrophosphate ions in synovial fluid of arthritis patients," Sensors and Actuators B, vol. 229, pp. 217-224, 2016. DOI: 10.1016/j.snb.2016.01.127.   DOI
32 R. Guo, B. Chen, F. Li, S. Weng, Z. Zheng, M. Chen, W. Wu, X. Lin, and C. Yang, "Positive carbon dots with dual roles of nanoquencher and reference signal for the ratiometric fluorescence sensing of DNA," Sensors and Actuators B, vol. 264, pp. 193-201, 2018. DOI: 10.1016/j.snb.2018.02.175.   DOI
33 A. H. Loo, A. Bonanni, and M. Pumera, "Impedimetric thrombin aptasensor based on chemically modified graphenes," Nanoscale, vol. 4, pp. 143-147, 2012. DOI: 10.1039/C1NR10966A.   DOI
34 S. Aiyer, R. Prasad, M. Kumar, K. Nirvikar, B. Jain, and O. S. Kushwaha, "Fluorescent carbon nanodots for targeted in vitro cancer cell imaging," Appl. Mater. Today, vol. 4, pp. 71-77, 2016. DOI: 10.1016/j.apmt.2016.07.001.   DOI
35 Z. Xu, Y. Y. Ren, X. Fan, S. Cheng, Q. Xu, and L. Xu, "A naphthalimide-based fluorescent probe for highly selective detection of pyrophosphate in aqueous solution and living cells," Tetrahedron, vol. 71, pp. 5055-5058, 2015. DOI: 10.1016/j.tet.2015.05.111.   DOI
36 H. R. Xu, K. Li, S. Y. Jiao, S. L. Pan, J. R. Zeng, and X. Q. Yu, "Tetraphenylethene-pyridine salts as the first self-assembling chemosensor for pyrophosphate," Analyst, vol. 140, pp. 4182-4188, 2015. DOI: 10.1039/C5AN00484E.   DOI
37 H. Liu, Xing Li, M. Wang, X. Chen, X. Su, "A redox-modulated fluorescent strategy for the highly sensitive detection of metabolites by using graphene quantum dots," Analytica Chimica Acta, vol. 990, pp. 150-156, 2017. DOI: 10.1016/j.aca.2017.07.031.   DOI
38 W. Liu, F. Ding, Y. Wang, L. Mao, R. Liang, P. Zou, X. Wang, Q. Zhao, and H. Rao, "Fluorometric and colorimetric sensor array for discrimination of glucose using enzymatic-triggered dual-signal system consisting of Au@Ag nanoparticles and carbon nanodots," Sensors and Actuators B, vol. 265, pp. 310-317, 2018. DOI: 10.1016/j.snb.2018.03.060.   DOI
39 S. Sun, X. Zhang, Y. Sun, S. Yang, X. Song, and Z. Yang, "Facile water-assisted synthesis of cupric oxide nanourchins and their application as nonenzymatic glucose biosensor," ACS Appl. Mater. Interfaces, vol. 5, pp. 4429-4437, 2013. DOI: 10.1021/am400858j.   DOI
40 L. Hu, Y. Yuan, L. Zhang, J. Zhao, S. Majeed, and G. Xu, "Copper nanoclusters as peroxidase mimetics and their applications to $H_2O_2$ and glucose detection," Anal. Chim. Acta, vol. 762, pp. 83-86, 2013. DOI: 10.1016/j.aca.2012.11.056.   DOI
41 A. H. Loo, Z. Sofer, D. Bousa, P. Ulbrich, A. Bonanni, and M. Pumera, "Carboxylic carbon quantum dots as a fluorescent sensing platform for DNA detection," ACS Appl. Mater. Interfaces, vol. 8, pp. 1951-1957, 2016. DOI: 10.1021/acsami.5b10160.   DOI
42 J. J. Xu, W. W. Zhao, S. Song, C. Fan, and H. Y. Chen, "Functional nanoprobes for ultrasensitive detection of biomolecules: An update". Chem. Soc. Rev., vol 43, pp. 1601-1611, 2014. DOI: 10.1039/C3CS60277J.   DOI
43 T. Drummond, M. Hill, and J. Barton, "Electrochemical DNA sensors," Nat. Biotechnol., vol. 21, pp. 1192-1199, 2003. DOI: 10.1038/nbt873.   DOI
44 S. Aiyer, R. Prasad, M. Kumar, K. Nirvikar, B. Jain, and O. S. Kushwaha, "Fluorescent carbon nanodots for targeted in vitro cancer cell imaging," Appl. Mater. Today, vol. 4, pp. 71-77, 2016. DOI: 10.1016/j.apmt.2016.07.001.   DOI
45 Z. S. Qian, X. Y. Shan, L. J. Chai, J. J. Ma, J. R. Chen, and H. Feng, "DNA nanosensor based on biocompatible graphene quantum dots and carbon nanotubes," Biosensors and Bioelectronics, vol. 60, pp. 64-70, 2014. DOI: 10.1016/j.bios.2014.04.006.   DOI
46 W. Qiang, W. Li, X. Li, X. Chen, and D. Xu, "Bioinspired polydopamine nanospheres: a superquencher for fluorescence sensing of biomolecules," Chem. Sci., vol. 5, pp. 3018-3024, 2014. DOI: 10.1039/C4SC00085D.   DOI
47 B. Dubertret, M. Calame, and A. Libchaber, "Single-mismatch detection using gold-quenched fluorescent oligonucleotides," Nat. Biotechnol., vol. 19, pp. 365-370, 2001. DOI: 10.1038/86762.   DOI
48 X. Yan, H. Li, and X. Su, "Review of optical sensors for pesticides," Trends in Analytical Chemistry, vol. 103, pp. 1-20, 2018. DOI: 10.1016/j.trac.2018.03.004.   DOI
49 Y. L. Dong, H. G. Zhang, Z. U. Rahman, L. Su, X. J. Chen, J. Hu, and X. G. Chen, "Graphene oxide-$Fe_3O_4$ magnetic nanocomposites with peroxidase-like activity for colorimetric detection of glucose," Nanoscale, vol 4, pp. 3969-3976, 2012. DOI: 10.1039/c2nr12109c.   DOI
50 Y. Li, Y. Zhong, Y. Zhang, W. Weng, and S. Li, "Carbon quantum dots/octahedral $Cu_2O$ nanocomposites for non-enzymatic glucose and hydrogen peroxide amperometric sensor," Sens. Actuators B, vol. 206, pp. 735-743, 2015. DOI: 10.1016/j.snb.2014.09.016.   DOI
51 A. Ejaz, Y. Joo, and S. Jeon, "Fabrication of 1,4-bis(aminomethyl) benzene and cobalt hydroxide @ graphene oxide for selective detection of dopamine in the presence of ascorbic acid and serotonin," Sensors and Actuators B: Chemical, vol. 240, pp. 297-307, 2017. DOI: 10.1016/j.snb.2016.08.171.   DOI
52 J. Lovric, J. Dunevall, A. Larsson, L. Ren, S. Andersson, A. Meibom, P. Malmberg, M. E. Kurczy, and A. G. Ewing, "Nano secondary ion mass spectrometry imaging of dopamine distribution across nanometer vesicles," ACS nano, vol. 11, no. 4, pp. 3446-3455, 2017. DOI: 10.1021/acsnano.6b07233.   DOI
53 F. Qu, W. Huang, and J. You, "A fluorescent sensor for detecting dopamine and tyrosinase activity by dual-emission carbon dots and gold nanoparticles," Colloids and Surfaces B: Biointerfaces, vol. 162, pp. 212-219, 2018. DOI: 10.1016/j.colsurfb.2017.   DOI
54 M. Ozyurek, S. Baki, N. Gungor, S. Celik, K. Guclu, and R. Apak, "Determination of biothiols by a novel on-line HPLC-DTNB assay with post-column detection," Anal. Chim. Acta, vol. 750, pp. 173-181, 2012. DOI: 10.1016/j.aca.2012.03.056.   DOI
55 F. Li, H. Pei, L. Wang, J. Lu, J. Gao, B. Jiang, X. Zhao, and C. Fan, "Nanomaterial-Based Fluorescent DNA Analysis: A Comparative Study of the Quenching Effects of Graphene Oxide, Carbon Nanotubes, and Gold Nanoparticles," Adv. Funct. Mater., vol. 23, pp. 4140-4148, 2013. DOI: 10.1002/adfm.201203816.   DOI
56 A. H. Loo, Z. Sofer, D. Bousa, P. Ulbrich, A. Bonanni, and M. Pumera, "Carboxylic carbon quantum dots as a fluorescent sensing platform for DNA detection," ACS Appl. Mater. Interfaces, vol. 8, pp. 1951-1957, 2016. DOI: 10.1021/acsami.5b10160.   DOI
57 Z. S. Qian, X. Y. Shan, L. J. Chai, J. J. Ma, J. R. Chen, and H. Feng, "DNA nanosensor based on biocompatible graphene quantum dots and carbon nanotubes," Biosensors and Bioelectronics, vol. 60, pp. 64-70, 2014. DOI: 10.1016/j.bios.2014.04.006.   DOI
58 M. Isokawa, T. Kanamori, T. Funatsu, and M. Tsunoda, "Analytical methods involving separation techniques for determination of lowmolecular-weight biothiols in human plasma and blood," Journal of chromatography B, vol. 964, pp. 103-115, 2014. DOI: 10.1016/j.jchromb.2013.12.041.   DOI
59 M. Labib, E. H. Sargent, and S. O. Kelley, "Electrochemical methods for the analysis of clinically relevant biomolecules," Chem. Rev., vol. 116, pp. 9001-9090, 2016. DOI: 10.1021/acs.chemrev.6b00220.   DOI
60 E. Sharifi, A. Salimi, and E. Shams, "DNA/nickel oxide nanoparticles/osmium(III)-complex modified electrode toward selective oxidation of l-cysteine and simultaneous detection of l-cysteine and homocysteine," Bioelectrochemistry, vol. 86, pp. 9-21, 2012. DOI: 10.1016/j.bioelechem.2011.12.013.   DOI
61 M. Isokawa, T. Funatsu, and M. Tsunoda, "Fast and simultaneous analysis of biothiols by high-performance liquid chromatography with fluorescence detection under hydrophilic interaction chromatography conditions," Analyst, vol. 138, pp. 3802-3808, 2013. DOI: 10.1039/c3an00527e.   DOI
62 B. Chen, F. Li, S. Li, W. Weng, H. Guo, T. Guo, X. Zhang, Y. Chen, T. Huang, X. Hong, S. You, Y. Lin, K. Zeng, and S. Chen, "Large scale synthesis of photoluminescent carbon nanodots and their application for bioimaging," Nanoscale, vol. 5, no. 5, pp. 196-1971, 2013. DOI: 10.1039/C2NR32675B.
63 Y. Wang and A. Hu, "Carbon Quantum Dots: Synthesis, Properties and Applications," J. Mater. Chem. C, vol. 2, pp. 6921-6939, 2014. DOI: 10.1039/C4TC00988F.   DOI
64 S. Y. Lim, W. Shen, and Z. Gao, "Carbon quantum dots and their applications," Chem. Soc. Rev., vol. 44, pp. 362-381, 2015. DOI: 10.1039/C4CS00269E.   DOI
65 S. Bhunia, A. Saha, A. Maity, S. Ray, and N. Jana, "Carbon nanoparticle-based fluorescent bioimaging probes," Sci. Rep., vol. 3, no. 1473, 2013. DOI: 10.1038/srep01473.
66 Q. Li, T. Y. Ohulchanskyy, R. Liu, K. Koynov, D. Wu, A. Best, R. Kumar, A. Bonoiu, and P. N. Prasad. "Photoluminescent carbon dots as biocompatible nanoprobes for targeting cancer cells in vitro," J. Phys. Chem. C, vol. 114, pp. 12062-12068, 2010. DOI: 10.1021/jp911539r.   DOI
67 J. Kim, J. Park, H. Kim, K. Singha, and W. J. Kim, "Transfection and intracellular trafficking properties of carbon dot-gold nanoparticle molecular assembly conjugated with PEI-pDNA," Biomaterials, vol. 34, pp. 7168-7180, 2013. DOI: 10.1016/j.biomaterials.2013.05.072.   DOI
68 M. Zheng, S. Liu, J. Li, D. Qu, H. Zhao, X. Guan, X. Hu, Z. Xie, X. Jing, and Z. Sun, "Integrating oxaliplatin with highly luminescent carbon dots: An unprecedented theranostic agent for personalized medicine," Adv. Mater., vol. 26, no. 12, pp. 3554-3560, 2014. DOI: 10.1002/adma.201306192.   DOI
69 X. Guo, C. F. Wang, Z. Y. Yu, L. Chen, and S. Chen, "Facile access to versatile fluorescent carbon dots toward light-emitting diodes," Chem. Commun., vol. 48, pp. 2692-2694, 2012. DOI: 10.1039/C2CC17769B.   DOI
70 J. Espina, M. Montes-Bayon, E. Blanco-Gonzalez, and A. Sanz-Medel, "Determination of reduced homocysteine in human serum by elemental labelling and liquid chromatography with ICP-MS and ESI-MS detection," Anal. Bioanal. Chem., vol. 407, pp. 7899-7906, 2015. DOI: 10.1007/s00216-015-8956-z.   DOI
71 E. M. Krupp, B. F. Milne, A. Mestrot, A. A. Meharg, and J. Feldmann, "Investigation into mercury bound to biothiols: Structural identification using ESI-ion-trap MS and introduction of a method for their HPLC separation with simultaneous detection by ICP-MS and ESIMS," Anal. Bioanal. Chem., vol. 390, pp. 1753-1764, 2008. DOI: 10.1007/S00216-008-1927-X.   DOI
72 Z. Liu, Y. Liu, E. Kim, W. E. Bentley, and G. F. Payne, "Electrochemical probing through a redox capacitor to acquire chemical information on biothiols," Anal. Chem., vol. 88, pp. 7213-7221, 2016. DOI: 10.1021/acs.analchem.6b01394.   DOI
73 S. Wu, X. Lan, F. Huang, Z. Luo, H. Ju, C. Meng, and C. Duan, "Selective electrochemical detection of cysteine in complex serum by graphene nanoribbon," Biosensors and Bioelectronics, vol. 32, pp. 293-296, 2012. DOI: 10.1016/j.bios.2011.12.006.   DOI
74 J. Yang, H. Wu, P. Yang, C. Houa, and D. Huo, "A high performance N-doped carbon quantumdots/5,5_-dithiobis-(2-nitrobenzoic acid) fluorescent sensor for biothiols detection," Sensors and Actuators B, vol. 255, pp. 3179-3186, 2018. DOI: 10.1016/j.snb.2017.09.143.   DOI
75 S. Liao, X. Zhao, F. Zhu, M. Chen, Z. Wu, X. Song, H. Yang, and X. Chen, "Novel S, N-doped carbon quantum dot-based "off-on" fluorescent sensor for silver ion and cysteine," Talanta, vol. 180, pp. 300-308, 2018. DOI: 10.1016/j.talanta.2017.12.040.   DOI
76 J. Hou, F. Zhang, X. Yan, L. Wang, J. Yan, H. Ding, and L. Ding, "Sensitive detection of biothiols and histidine based on the recovered fluorescence of the carbon quantum dots-Hg(II) system," Analytica Chimica Acta, vol. 859, pp.72-78, 2015. DOI: 10.1016/j.aca.2014.12.021.   DOI
77 S. He, B. Song, D. Li, C. Zhu, W. Qi, Y. Wen, L. Wang, S. Song, H. Fang, and C. Fan, "A graphene nanoprobe for rapid, sensitive, and multicolor fluorescent DNA analysis," Adv. Funct. Mater., vol. 20, no. 3, pp. 453-459, 2010. DOI: 10.1002/adfm.200901639.   DOI
78 M. J. Krysmann, A. Kelarakis, P. Dallas, and E. P. Giannelis, "Formation mechanism of carbogenic nanoparticles with dual photoluminescence emission," J. Am. Chem. Soc., vol. 134, pp. 747-750, 2012. DOI: 10.1021/ja204661r.   DOI
79 X. Zhou, Y. Zhang, C. Wang, X. Wu, Y. Yang, B. Zheng, H. Wu, S. Guo, and J. Zhang, "Photo-fenton reaction of graphene oxide: A New strategy to prepare graphene quantum dots for DNA cleavage," ACS Nano, vol. 6, no. 8, pp. 6592-6599, 2012. DOI: 10.1021/nn301629v.   DOI
80 H. Zhao, Y. Chang, M. Liu, S. Gao, H. Yu, and X. Quan, "A universal immunosensing strategy based on regulation of the interaction between graphene and graphene quantum dots," Chem. Commun., vol. 49, pp. 234-236, 2013. DOI: 10.1039/C2CC35503E.   DOI
81 D. Wang, L. Wang, X. Dong, Z. Shi, and J. Jin, "Chemically tailoring graphene oxides into fluorescent nanosheets for $Fe^{3+}$ ion detection," Carbon, vol. 50, no. 6, pp. 2147-2154, 2012. DOI: 10.1016/j.carbon.2012.01.021.   DOI
82 X. Wang, L. Cao, S. Yang, F. Lu, M. J. Meziani, L. Tian, K. W. Sun, M. A. Bloodgood, and Y. Sun, "Bandgap-like strong fluorescence in functionalized carbon nanoparticles," Angew Chem. Int. Ed., vol. 49, pp. 5310-5314, 2010. DOI: 10.1002/anie.201000982.   DOI
83 L. Cao, M. J. Meziani, S. Sahu, and Y. P. Sun, "Photoluminescence properties of graphene versus other carbon nanomaterials," Acc. Chem. Res., vol. 46, no. 1, pp. 171-180, 2013. DOI: 10.1021/ar300128j.   DOI
84 B. Y. Yu and S. Y. Kwak, "Carbon quantum dots embedded with mesoporous hematite nanospheres as efficient visible light-active photocatalysts," J. Mater. Chem., vol. 22, pp. 8345-8353, 2012. DOI: 10.1039/C2JM16931B.   DOI