Browse > Article
http://dx.doi.org/10.6109/jkiice.2021.25.8.1060

3D Circuit Visualization for Large-Scale Quantum Computing  

Kim, Juhwan (Marine Disaster Research Center, Korea Institute of Ocean Science & Technology)
Choi, Byungsoo (Quantum Computing Research Section, Electronics and Telecommunications Research Institute)
Jo, Dongsik (School of IT Convergence, University of Ulsan)
Abstract
Recently, researches for quantum computers have been carried out in various fields. Quantum computers performs calculations by utilizing various phenomena and characteristics of quantum mechanics such as quantum entanglement and quantum superposition, thus it is a very complex calculation process compared to classical computers used in the past. In order to simulate a quantum computer, many factors and parameters of a quantum computer need to be analyzed, for example, error verification, optimization, and reliability verification. Therefore, it is necessary to visualize circuits that can intuitively simulate the configuration of the quantum computer components. In this paper, we present a novel visualization method for designing complex quantum computer system, and attempt to create a 3D visualization toolkit to deploy large circuits, provide help a new way to design large-scale quantum computing systems that can be built into future computing systems.
Keywords
Quantum computing; Quantum circuit; Circuit visualization; Scientific visualization; Circuit optimization;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. Prabhu and G. Varoquaux, "Mayavi: 3D visualization of scientific data," Computing in Science & Engineering, vol. 13, no. 2, pp. 40-51, 2011.
2 R. P. Feynman, "Simulating physics with computers," Int. J.Theor. Phys., vol. 21, no. 6-7, pp. 467-488, Jun. 1982.   DOI
3 B. Sergey, D. Gosset, and R. Konig, "Quantum advantage with shallow circuits," Science 362.6412, pp. 308-311, 2018.   DOI
4 B. Stephane, "Circuit for Shor's algorithm using 2n+ 3 qubits," Quantum Information and Computation, vol. 3, no. 2, pp. 175-185, 2002.
5 F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends, S. Boixo, F. G. S. L. Brandao, D A. Buell, B. Burkett, Y. Chen, Z. Chen, R. Collins, W. Courtney, A. Dunsworth, E. Farhi, B. Foxen, A. Fowler, C. Gidney, M. Giustina, R. Graff, K. Guerin, S. Habegger, M. P. Harrigan, M. J. Hartmann, A. Ho, M. Hoffmann, T. Huang, S. V. Isakov, E. Jeffrey, Z. Jiang, D. Kafri, K. Kechedzhi, J. Kelly, P. V. Klimov, S. Knysh, A. Korotkov, F. Kostritsa, D. Landhuis, M. Lindmark, E. Lucero, J. R. McClean, A. Megrant, X. Mi, M. Mohseni, J. Mutus, O. Naaman, M. Neeley, C. Neill, M. Y. Niu, E. Ostby, A. Petukhov, J. C. Platt, C. Quintana, P. Roushan, N. C. Rubin, D. Sank, K. J. Satzinger, V. Smelyanskiy, K. J. Sung, M. D. Trevithick, A. Vainsencher, B. Villalonga, T. White, Z. J. Yao, P. Yeh, A. Zalcman, H. Neven, and J. M. Martinis, "Quantum supremacy using a programmable superconducting processor," Nature, 574, pp. 505-510. 2019.   DOI
6 Z. Y. Chen, Q. Zhou, C. Xue, X. Yang, G. C. Guo, and G. P. Guo, "64-qubit quantum circuit simulation," Science Bulletin, vol. 63, no. 15, pp. 964-971, 2018.   DOI
7 J. Kelly, "A preview of Bristlecone, Google's new quantum processor," Google AI Blog, 2018.
8 L. Rui and J. Chen, "Toward a deep understanding of what makes a scientific visualization memorable," IEEE Scientific Visualization Conference (SciVis), 2018.
9 P. W. Shor, "Algorithms for quantum computation: Discrete logarithms and factoring," in Proc. Annu. Symp. Found. Comput. Sci., pp. 124-134, 1994.