• 제목/요약/키워드: Quadratic regression

Search Result 248, Processing Time 0.033 seconds

Support Vector Quantile Regression with Weighted Quadratic Loss Function

  • Shim, Joo-Yong;Hwang, Chang-Ha
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.2
    • /
    • pp.183-191
    • /
    • 2010
  • Support vector quantile regression(SVQR) is capable of providing more complete description of the linear and nonlinear relationships among random variables. In this paper we propose an iterative reweighted least squares(IRWLS) procedure to solve the problem of SVQR with a weighted quadratic loss function. Furthermore, we introduce the generalized approximate cross validation function to select the hyperparameters which affect the performance of SVQR. Experimental results are then presented which illustrate the performance of the IRWLS procedure for SVQR.

Comparison of Powers in Goodness of Fit Test of Quadratic Measurement Error Model

  • Moon, Myung-Sang
    • Communications for Statistical Applications and Methods
    • /
    • v.9 no.1
    • /
    • pp.229-240
    • /
    • 2002
  • Whether to use linear or quadratic model in the analysis of regression data is one of the important problems in classical regression model and measurement error model (MEM). In MEM, four goodness of fit test statistics are available In solving that problem. Two are from the derivation of estimators of quadratic MEM, and one is from that of the general $k^{th}$-order polynomial MEM. The fourth one is derived as a variation of goodness of fit test statistic used in linear MEM. The purpose of this paper is to find the most powerful test statistic among them through the small-scale simulation.

SVQR with asymmetric quadratic loss function

  • Shim, Jooyong;Kim, Malsuk;Seok, Kyungha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.6
    • /
    • pp.1537-1545
    • /
    • 2015
  • Support vector quantile regression (SVQR) can be obtained by applying support vector machine with a check function instead of an e-insensitive loss function into the quantile regression, which still requires to solve a quadratic program (QP) problem which is time and memory expensive. In this paper we propose an SVQR whose objective function is composed of an asymmetric quadratic loss function. The proposed method overcomes the weak point of the SVQR with the check function. We use the iterative procedure to solve the objective problem. Furthermore, we introduce the generalized cross validation function to select the hyper-parameters which affect the performance of SVQR. Experimental results are then presented, which illustrate the performance of proposed SVQR.

An estimator of the mean of the squared functions for a nonparametric regression

  • Park, Chun-Gun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.3
    • /
    • pp.577-585
    • /
    • 2009
  • So far in a nonparametric regression model one of the interesting problems is estimating the error variance. In this paper we propose an estimator of the mean of the squared functions which is the numerator of SNR (Signal to Noise Ratio). To estimate SNR, the mean of the squared function should be firstly estimated. Our focus is on estimating the amplitude, that is the mean of the squared functions, in a nonparametric regression using a simple linear regression model with the quadratic form of observations as the dependent variable and the function of a lag as the regressor. Our method can be extended to nonparametric regression models with multivariate functions on unequally spaced design points or clustered designed points.

  • PDF

An Incremental Regression Model for Time Series Data Prediction (시계열 데이터 예측을 위한 점진적인 회귀분석 모델)

  • Kim Sung-Hyun;Lee Yong-Mi;Jin Long;Seo Sung-Bo;Ryu Keun-Ho
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2006.05a
    • /
    • pp.23-26
    • /
    • 2006
  • 기존의 데이터 마이닝 예측 기법 중 회귀분석은 학습 단계에서 생성된 모델을 변경 없이 새로운 데이터에 적용하였다. 그러나 시계열 데이터에 모델 변경 없이 동일하게 적용하면 시간이 지남에 따라 정확도가 낮아지는 단점이 있다. 따라서 이 논문에서는 시간에 따라 변화하는 시계열데이터의 특성을 고려하여 점진적으로 회귀 모델을 갱신하는 기법을 제안한다. 이 기법은 입력되는 모든 데이터를 회귀 모델에 적용하여 점진적으로 모델을 갱신한다. 제안된 기법의 타당성은 RME(Relative Mean Error)와 RMSE(Root Mean Square Error)를 이용하여 측정하였다. 정확도 측정 실험 결과 제안 기법인 IMQR(Incremental Multiple Quadratic Regression) 기법이 MLR(Multiple Linear Regression), MQR(Multiple Quadratic Regression), SVR(Support Vector Regression) 기법에 비해 RME 가 평균 2%, RMSE 가 평균 0.02 정도 우수한 결과를 얻었다.

  • PDF

Application of trajectory data mining to improve the estimation accuracy of launcher trajectory by telemetry ground system (원격자료수신장비의 발사체궤적 추정정확도 향상을 위한 궤적데이터마이닝의 적용)

  • Lee, Sunghee;Kim, Doo-gyung;Kim, Keun-hyung
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.20 no.5
    • /
    • pp.1-11
    • /
    • 2015
  • This paper is focused on how the trajectory of launch vehicle could be optimally estimated by the quadratic regression of trajectory data mining for the operation of telemetry ground system in NARO space center during real-time. To receive the telemetry data, the telemetry ground system has to track the space launch vehicle without tracking loss, and it is possible by the well-designed algorithm to estimate a flight position in real-time. For this reason, the quadratic regression model instead of interpolation was considered to estimate the exact position data of launch vehicle and the improvement of antenna performance. For analysis, the real trajectory data which had been logged during NARO 1st launch mission were used, the estimation result of launcher current position was analyzed by the mathematical modeling. In conclusion, the algorithm using quadratic regression based on trajectory data mining showed the better performance than previous interpolation algorithm to estimate the next flight position and the antenna driving performance.

Prediction Analysis of the Quadratic Errors-in-Variables Model (이차 변수 오차 모형의 예측분석)

  • Byeon, Jae-Hyeon;Lee, Seung-Hun
    • Journal of Korean Society for Quality Management
    • /
    • v.21 no.1
    • /
    • pp.152-160
    • /
    • 1993
  • In developing a quadratic regression relationship, independent variable is frequently measured with error. In this paper the integrated mean square error of prediction is developed for a quadratic functional relationship model as a measure of the effect of measurement error of the independent variable on the predicted values. The amount of the effect of error is presented and illustrated with an example.

  • PDF

Exploring interaction using 3-D residual plots in logistic regression model (3차원 잔차산점도를 이용한 로지스틱회귀모형에서 교호작용의 탐색)

  • Kahng, Myung-Wook
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.1
    • /
    • pp.177-185
    • /
    • 2014
  • Under bivariate normal distribution assumptions, the interaction and quadratic terms are needed in the logistic regression model with two predictors. However, depending on the correlation coefficient and the variances of two conditional distributions, the interaction and quadratic terms may not be necessary. Although the need for these terms can be determined by comparing the two scatter plots, it is not as useful for interaction terms. We explore the structure and usefulness of the 3-D residual plot as a tool for dealing with interaction in logistic regression models. If predictors have an interaction effect, a 3-D residual plot can show the effect. This is illustrated by simulated and real data.

Exact Confidence Intervals on the Regression Coeffcients in Multiple Regression Model with Nested Error Structure

  • Park, Dong-Joon
    • Communications for Statistical Applications and Methods
    • /
    • v.4 no.2
    • /
    • pp.541-548
    • /
    • 1997
  • In regression model with nested error structure interval estimations on regression coefficients in different stages are proposed. Ordinary least square estimators and generalized least square estimators of the regression coefficients in this model are derived for between and within group model. The confidence intervals are dervied by using independent idstributional properties between regression coefficient estimators and quadratic froms obtained from the model.

  • PDF

Hybrid Learning Algorithm for Improving Performance of Regression Support Vector Machine (회귀용 Support Vector Machine의 성능개선을 위한 조합형 학습알고리즘)

  • Jo, Yong-Hyeon;Park, Chang-Hwan;Park, Yong-Su
    • The KIPS Transactions:PartB
    • /
    • v.8B no.5
    • /
    • pp.477-484
    • /
    • 2001
  • This paper proposes a hybrid learning algorithm combined momentum and kernel-adatron for improving the performance of regression support vector machine. The momentum is utilized for high-speed convergence by restraining the oscillation in the process of converging to the optimal solution, and the kernel-adatron algorithm is also utilized for the capability by working in nonlinear feature spaces and the simple implementation. The proposed algorithm has been applied to the 1-dimension and 2-dimension nonlinear function regression problems. The simulation results show that the proposed algorithm has better the learning speed and performance of the regression, in comparison with those quadratic programming and kernel-adatron algorithm.

  • PDF