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Abstract

Support vector quantile regression (SVQR) can be obtained by applying support
vector machine with a check function instead of an e-insensitive loss function into
the quantile regression, which still requires to solve a quadratic program (QP) prob-
lem which is time and memory expensive. In this paper we propose an SVQR whose
objective function is composed of an asymmetric quadratic loss function. The pro-
posed method overcomes the weak point of the SVQR with the check function. We use
the iterative procedure to solve the objective problem. Furthermore, we introduce the
generalized cross validation function to select the hyper-parameters which affect the
performance of SVQR. Experimental results are then presented, which illustrate the
performance of proposed SVQR.

Keywords: Asymmetric quadratic loss function, generalized cross validation.

1. Introduction

Quantile regression has been a popular method for estimating the quantiles of a conditional
distribution on the values of input variables since Koenker and Basset (1978) introduced
linear quantile regression. Just as classical linear regression methods based on minimizing
sum of squared residuals enable us to estimate a wide variety of models for conditional
mean functions, quantile regression methods offer a mechanism for estimating models for
the full range of conditional quantile functions, including the conditional median function. By
supplementing the estimation of conditional mean functions with techniques for estimating
an entire family of conditional quantile functions, quantile regression is capable of providing
a better statistical analysis of the stochastic relationships among random variables. An
introduction to, and look at current research areas of quantile regression can be found in
Koenker and Hallock (2001) and Yu et al. (2003).
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Support vector machine (SVM) is used as a new technique for regression and classification
problems. The SVM is based on the structural risk minimization (SRM) principle, which has
been shown to be superior to the traditional empirical risk minimization (ERM) principle.
SRM minimizes an upper bound on the expected risk, unlike ERM, which minimizes the
error on the training data. By minimizing this bound, high generalization performance can
be achieved. In particular, for the SVM regression case, SRM results in regularized ERM
with e-insensitive loss function. Introductions to and overviews of recent developments of
SVM and kernel machines can be found in Vapnik (1995, 1998), Smola and Scholkopf (1998),
Shim and Hwang (2010) and Wang (2005).

The minimization problem associated with linear quantile regression is in essence the
linear programming (LP) optimization problem, which is based on simplex algorithm or
interior point algorithm. The current state of algorithms for nonlinear quantile regression
is far less satisfactory. The widely used algorithm is interior point algorithm. Nonlinear
quantile regression poses new algorithmic challenge. Refer to Koenker and Park (1996) and
Koenker and Hallock (2001) for the algorithms. Training an SVM requires the solution to a
quadratic programming (QP) optimization problem. But QP problem presents some inherent
limitations which results in computational difficulty especially for the large data sets. Platt
(1998), Flake and Lawrence (2002) developed the sequential minimal optimization (SMO)
algorithm which divides the QP problem into a series of small QP problems to avoid such
computational difficulty. Perez-Cruz et al. (2000) proposed IRWLS algorithm for SVR by
transforming the Lagrangian function into sum of quadratic terms by defining associated
weights of predicted errors.

Among kernel machines, least squares support vector machine (LS-SVM, Suykens and
Vandewalle, 1999) has been proved to be a very appealing and promising method. Solving
nonlinear modeling by convex optimization without suffering from many local minima like
SVM is one of its strong points. In addition, LS-SVM uses the liner equation which is simple
to solve and good for computational time saving. Many tests and comparisons showed great
performance of LS-SVM on several benchmark data set problems and are applicable to
various types of data. Introductions to and overviews of recent developments of LS-SVM
can be found in Suykens and Vandewalle (1999) and Shim and Seok (2014).

SVQR can be obtained by applying SVM with a check function instead of an e-insensitive
loss function into the quantile regression, which still requires to solve a quadratic program
(QP) problem which is time and memory expensive.

In this paper we use the asymmetric quadratic loss function instead of the check function
used in SVQR, which leads the fast computation. In Section 2 we briefly review SVQR with
quadratic programming. In Section 3 we propose the SVQR with asymmetric quadratic loss
function and introduce the generalized cross validation function (GCV) to select the hyper-
parameters. In Section 4 and 5 we perform numerical studies through artificial examples and
give the conclusions, respectively.

2. Support vector quantile regression

Let the training data set denoted by (xi,yi)
n
i=1, with each input xi ∈ Rd and the response

yi ∈ R, where the output variable yi is related to the input vector xi. Here the feature
mapping function φ(·) : Rd → Rdf maps the input space to the higher dimensional feature
space where the dimension df is defined in an implicit way. An inner product in feature space
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has an equivalent kernel in input space, φ(xi)
′φ(xj) = K(xi,xj) (Mercer, 1909). Several

choices of the kernel K(·, ·) are possible. We consider the nonlinear regression case, in which
the quantile regression function q(xi) of the response given xi can be regarded as a nonlinear
function of input vector xi such as qθ(xi) = ω′φ(xi) + b.

With a check function ρθ(·), the estimator of the θth quantile regression function can be
defined as any solution to the optimization problem,

min `(qθ|x) =

n∑
i=1

ρθ(yi − q(xi))

where the check function ρθ(r) = θrI(r>=0) + (1− θ)rI(r<0) .
We can express the regression problem by formulation for SVM as follows.

min L =
1

2
w′w + C

n∑
i=1

(θξi + (1− θ)ξ∗i )

subject to

yi −w′φ(xi)− b ≤ ξi, w′φ(xi) + b− yi ≤ ξ∗i , ξi, ξ∗i ≥ 0,

where C is a positive regularization parameter penalizing the training errors.
We construct a Lagrange function as follows:

L =
1

2
w′w + C

n∑
i=1

(θξi + (1− θ)ξ∗i )−
n∑
i=1

αi(ξi − yi +w′φ(xi) + b)

−
n∑
i=1

α∗i (ξ
∗
i + yi −w′φ(xi)− b)−

n∑
i=1

(ηiξi + η∗i ξ
∗
i ).

(2.1)

We notice that the positivity constraints αi, α
∗
i , ηi, η

∗
i ≥ 0 should be satisfied. After taking

partial derivatives of equation (2.1) with regard to the primal variables (w, b, ξi, ξ
∗
i ) and

plugging them into equation (2.1), we have the optimization problem with φ(xi)
′φ(xj) =

K(xi,xj) (Mercer, 1909) below.

max −
1

2

n∑
i,j=1

(αi − α∗i )(αj − α∗j )K(xi,xj) +

n∑
i=1

(αi − α∗i )yi (2.2)

with constraints

0 ≤ αi ≤ θC, 0 ≤ α∗i (1− θ)C and

n∑
i=1

(αi − α∗i ) = 0.

Solving the above equation (2.2) with the constraints determines the optimal Lagrange
multipliers, αi, α

∗
i , the estimator of the θth quantile regression function given the input

vector xt is obtained as follows:

q̂θ(xt) =

n∑
i=1

K(xt,xi)(α̂i − α̂∗i ) + b̂. (2.3)
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Here b̂ is obtained via Kuhn-Tucker conditions (Kuhn and Tucker, 1951) such as,

b̂ =
1

ns

∑
i∈Is

(yi −K(xi,x)(α̂− α̂∗)), (2.4)

where α̂ = (α̂1, · · · , α̂n)′, α̂∗ = (α̂∗1, · · · , α̂∗n)′ and ns is the size of the set Is = {i = 1, · · · , n|
0 < α̂i < Cθ, 0 < α̂∗i < C(1− θ)}.

The functional structures of SVQR in (2.3) is characterized by the hyper-parameters, C
and the kernel parameters. To select the hyper-parameters of SVQR we consider the cross
validation (CV) function as follows:

CV (λ) =
1

n

n∑
i=1

ρθ(yi − q̂θ(xi)(−i)), (2.5)

where λ is the set of hyper-parameters and q̂θ(xi)
(−i) is the quantile regression function

estimated without ith observation. Since for each candidates of parameters, q̂θ(xi)
(−i) for

i = 1, · · · , n, should be evaluated, selecting parameters using CV function is computationally
formidable. Yuan (2006) proposed the generalized approximate cross validation (GACV)
function to select the set of hyper-parameters λ for SVQR as follows:

GACV (λ) =

n∑
i=1

ρθ(yi − q̂θ(xi))

n− trace(H)
,

where H is the hat matrix such that q̂(θ|x) = Hy with the ( i, j )th element hij = ∂q̂θ(xi)
∂yj

.

From Li et al. (2007) we have that the trace of the hat matrix H equals to the size of set Is
used in (2.4).

3. SVQR with asymmetric quadratic loss function

With each input vector xi ∈ Rd and the response yi ∈ R, the θth quantile regression
function can be defined as any solution to the optimization problem,

min `(qθ|x) =

n∑
i=1

ρθ(yi − q(xi)).

Here the check function in ρθ(·) is defined as ρθ(r) = θrI(r>0) + (1− θ)rI(r<0), which can
be written as asymmetric quadratic loss function as follows:

ρθ(ri) =
θ

|ri|
I(ri > 0)r2i +

(1− θ)
|ri|

I(ri < 0)r2i . (3.1)

Using (3.1) we can express the regression problem by formulation for weighted LS-SVM
as follows:

min L =
1

2
w′w + C

n∑
i=1

ui(θ)e
2
i
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over {w, e} subject to equality constraints,

ei = yi − ω′φ(xi)− b, i = 1, · · · , n.,

where ui(θ) = θ
|ei|I(ei > 0) + (1−θ)

|ei| I(ei < 0) and C is a positive regularization parameter

penalizing the training errors.
The Lagrangian function can be constructed as

L =
1

2
w′w +

C

2

n∑
i=1

ui(θ)e
2
i +

n∑
i=1

αi(yi −w′φ(xi)− b− ei), (3.2)

where αi’s are Lagrange multipliers. The Karush-Kuhn-Tucker (Smola and Scholkopf, 1998)
conditions for optimality are given by

∂L

∂w
= 0 → w −

n∑
i=1

αiφ(xi) = 0

∂L

∂b
= 0 →

n∑
i=1

αi = 0

∂L

∂ei
= 0 → Cui(θ)ei − αi = 0, i = 1, · · · , n,

∂L

∂αi
= 0 → yi −w′φ(xi)− ei = 0, i = 1, · · · , n.

(3.3)

From the equations (3.2), (3.3) and the application of Mercer’s conditions (Mercer, 1909)

the optimal values of αi ’s and b̂ are obtained from the linear equations:(
K + U−1/C 1

1′ 0

)(
α
b

)
=

(
y
0

)
, (3.4)

where K = (K(xi,xj))n×n, U is the diagonal matrix of ui(θ) ’s and y = (y1, · · · , yn)′.
Since ui(θ) in (3.4) contains ( αi, b ), we need to apply iterative procedure which starts

with initialized value of U = I. In each iteration step, ( α̂i, b̂ ) is obtained from the linear
equations as follows:(
α̂

b̂

)
=

(
(K+U−1/C)−1−(K+U−1/C)−11(1′(K+U−1/C)−11)−11′(K + U−1/C)−1

(1′(K + U−1/C)−11)−11′(K + U−1/C)−1

)
y

where U is the diagonal matrix of ui(θ)’s computed by the optimal values of αi’s and b̂
obtained in the previous iteration step.

The estimator of the θth quantile regression function given the input vector xt is obtained
as follows:

q̂θ(xt) =

n∑
i=1

K(xt,xi)α̂i + b̂.
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To select the hyper-parameters of sparse SVQR with asymmetric quadratic loss function
we consider the cross validation (CV) function as follows:

CV (λ) =
1

n

n∑
i=1

ui(θ)(yi − q̂(−i)θ (xi|λ))2,

instead of CV function used in SVQR with check function (2.5), where λ is a set of hyper-

parameters and q̂
(−i)
θ (xi|λ) is the θth quantile regression function estimated without ith ob-

servation. Since for each candidates of hyper- parameters, q̂
(−i)
θ (xi|λ) for i = 1, · · · , n, should

be evaluated, selecting hyper- parameters using CV function is computationally formidable.
By using leaving- out-one lemma (Craven and Wahba, 1979) the ordinary cross validation
(OCV) function can be obtained as

OCV (λ) =
1

n

n∑
i=1

ui(θ)

 yi − q̂θ(xi|λ)

1−
∂q̂θ(xi|λ)

∂yi


2

=
1

n

n∑
i=1

ui(θ)

(
yi − q̂θ(xi|λ)

1− hii

)2

where H is the hat matrix such that q̂θ(x|λ) = Hy with the (i, j)th element hij =
∂q̂θ(xi)/∂yj . Here the hat matrix can be expressed as follows:

H=(K,1)

(
(K+U−1/C)−1−(K+U−1/C)−11(1′(K+U−1/C)−11)−11′(K+U−1/C)−1

(1′(K + U−1/C)−11)−11′(K + U−1/C)−1

)
where U is the final estimate. Replacing hii by their average tr(H)/n, the generalized cross
validation (GCV) function can be obtained as

GCV (λ) =

n
n∑
i=1

ui(θ)(yi − q̂θ(xi|λ))2

(n− tr(H))2
.

4. Numerical studies

In this section, we illustrate the performance of the proposed quantile regression estimation
with asymmetric quadratic loss function through the simulated examples on the nonlinear
quantile regression case. We generate 100 data sets of size 200 in a similar manner to Cawley
et al. (2004). The univariate input observations x follows a uniform distribution(0,2), the
corresponding responses y are generated as follows:

y = sin(2πx) + σ(x)ε,

where ε ∼ χ(2) − 2 and σ(x) = 0.5
√

2.1− x. The Gaussian kernel function is utilized in this
example, which is

K(x1, x2) = exp

(
− 1

σ2
||x1 − x2||2

)
.
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Figure 4.1 shows a family of quantile functions estimated by with asymmetric quadratic
loss function (SVQR AQ) and support vector quantile regression with check function (SVQR C)
for the training data set. The estimated quantile regression functions for θ = 0.1, 0.5, 0.9 are
superimposed on the scatter plots. In SVQR AQ with the values of C and σ2 are chosen
by GACV function such as (300, 1.5) for θ = 0.1, (400, 2) for θ = 0.5, and (400, 2) for
θ = 0.9. In SVQR C the values of C and σ2 are chosen by GCV function such as (400, 1.5)
for θ = 0.1, (300, 2) for θ = 0.5, and (300, 1.5) for θ = 0.9. As seen from Figure 4.1, in both
procedures the three estimated quantile regression functions reflect well the heteroscedastic
structure of the error term. They have their (local) minima and (local) maxima at different
x values. For example, the 0.1th, 0.5th and 0.9th quantile regression functions have maxima
at x =0.25 and 1.25, respectively, and minima at 0.75 and 1.75, respectively. To illustrate
the estimation performance of SVQR AQ, we compare it with SVQR QP via 100 data sets,
where the mean squared error (PMSE) is used as the performance measure defined by

MSE =
1

200

200∑
i=1

(q̂θ(xi)− qθ(xi))2 for θ = 0.1, 0.5, 0.9.

The averages of 100 MSEs from SVQR AQ and SVQR C are obtained in Table 4.1. We
can see that both procedures have almost same for the estimation performance.

Table 4.1 Comparison of MSEs for 100 simulated data sets (standard error in parenthesis)

θ
SVQR AQ SVQR C

0.1 0.5 0.9 0.1 0.5 0.9
0.0154 (0.0009) 0.0555 (0.0034) 0.3428 (0.0251) 0.0153 (0.0021) 0.0549 (0.0033) 0.3436 (0.0253)

Figure 4.1 An illustration of SVQR AQ (Left) and SVQR C (Right) for a data set of size 200 generated
from the process. True quantile regression function (solid line) and the estimated quantile regression

function (dotted line) for θ = 0.1, 0.5, 0.9 are superimposed on the scatter plots.

With 100 simulated data sets, CPU-times of SVQR AQ are compared with that of SVQR C
computed by the built-in function of MATLAB. Here (C, σ2) are fixed as (100, 1). Table 4.2
shows CPU-times in seconds of both procedures (run MATLAB R2006b over Core(TM) at
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3.6GHz) on 100 data sets with different sample sizes (n=300, 500, 700, 1000). From table 4.2
we can see that SVQR AQ is much faster than SVQR C, which implies that the proposed
procedure is appropriate procedure for the large training data sets.

Table 4.2 Average CPU times of training SVQR AQ and SVQR C (standard error in parenthesis)

θ n SVQR AQ SVQR C θ n SVQR AQ SVQR C

0.1
300 0.4373 (0.0038) 0.7780 (0.0062)

0.1
700 3.5217 (0.0228) 9.5533 (0.0214)

500 1.5762 (0.0133) 2.6008 (0.0102) 1000 8.9920 (0.0486) 25.5814 (0.0334)

0.5
300 0.4345 (0.0038) 0.8184 (0.0055)

0.5
700 3.5456 (0.237) 10.0324 (0.0235)

500 1.6165 (0.0120) 2.2732 (0.0114) 1000 9.0062 (0.0459) 26.7567 (0.0463)

0.9
300 0.4463 (0.0031) 0.7563 (0.0053)

0.9
700 3.5353 (0.0198) 9.3658 (0.0194)

500 1.5960 (0.0114) 2.5405 (0.0104) 1000 8.9443 (0.0472) 25.2274 (0.0314)

5. Conclusions

In this paper, we dealt with estimating the nonlinear quantile regression function by SVQR
with asymmetric quadratic loss function and obtained GCV function for the proposed pro-
cedure. Through the examples we showed that the proposed procedure derives the satisfying
solutions. We also found that SVQR with asymmetric quadratic loss function is much faster
than SVQR with check function, which implies that the proposed procedure is appropriate
for the large training data sets.
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