References
- Cawley, G. C., Talbot, N. L. C., Foxall, R. J., Dorling, S. R. and Mandic, D. P. (2004). Heteroscedastic kernel ridge regression. Neurocomputing, 57, 105-124. https://doi.org/10.1016/j.neucom.2004.01.005
- Craven, P. andWahba, G. (1979). Smoothing noisy data with spline functions: Estimating the correct degree of smoothing by the method of generalized cross-validation. Numerical Mathematics, 31, 377-403.
- Flake, G. W. and Lawrence, S. (2002). Efficient SVM regression training with SMO. Machine Learning, 46, 271-290. https://doi.org/10.1023/A:1012474916001
- Koenker, R. and Bassett, G. (1978). Regression quantile. Econometrica, 46, 33-50. https://doi.org/10.2307/1913643
- Koenker, R. and Hallock, K. F. (2001). Quantile regression. Journal of Economic Perspectives, 40, 122-142.
- Koenker, R. and Park, B. J. (1996). An interior point algorithm for nonlinear quantile regression. Journal of Econometrics, 71, 265-283. https://doi.org/10.1016/0304-4076(96)84507-6
- Kuhn, H. W. and Tucker, A. W. (1951). Nonlinear programming. In proceedings of 2nd Berkeley symposium. Berkeley: University of California Press, 481-492.
- Li, Y., Liu, Y. and Zhu, J. (2007). Quantile regression in reproducing kernel Hilbert spaces. Journal of the American Statistical Association, 102, 255-268. https://doi.org/10.1198/016214506000000979
- Mercer, J. (1909). Functions of positive and negative type and their Connection with theory of integral equations. Philosophical Transactions of Royal Society A, 415-446.
- Perez-Cruz, F., Navia-Vazquez, A., Alarcon-Diana, P. L. and Artes-Rodriguez, A. (2000). An IRWLS procedure for SVR. In proceedings of European association for signal processing, EUSIPO 2000, Tampere, Finland.
- Platt, J. (1998). Sequential minimal optimization: A fast algorithm for training support vector machines, Microsoft Research Technical Report, CA. MSR-TR-98-14.
- Shim, J. and Hwang, C. (2010). Semiparametric support vector machine for accelerated failure time model. Journal of the Korean Data & Information Science Society, 21, 467-477.
- Shim, J. and Seok, K. (2014). A transductive least squares support vector machine with the difference convex algorithm. Journal of the Korean Data & Information Science Society, 25, 455-464. https://doi.org/10.7465/jkdi.2014.25.2.455
- Smola, A. and Scholkopf, B. (1998). On a kernel-based method for pattern recognition, regression, approximation and operator inversion. Algorithmica, 22, 211-231. https://doi.org/10.1007/PL00013831
- Suykens, J. A. K. and Vandewalle, J. (1999). Least square support vector machine classifier. Neural Processing Letters, 9, 293-300. https://doi.org/10.1023/A:1018628609742
- Vapnik, V. N. (1995). The nature of statistical learning theory, Springer, New York.
- Vapnik, V. N. (1998). Statistical Learning Theory . John Wiley, New York.
- Wang, L. (Ed.) (2005). Support vector machines : Theory and application, Springer, Berlin Heidelberg New York.
- Yu, K., Lu, Z. and Stander, J. (2003). Quantile regression: Applications and current research area. The Statistician, 52, 331-350.
- Yuan, M. (2006). GACV for quantile smoothing splines. Computational Statistics and Data Analysis, 50, 813-829. https://doi.org/10.1016/j.csda.2004.10.008
Cited by
- Robust varying coefficient model using L1 regularization vol.27, pp.4, 2016, https://doi.org/10.7465/jkdi.2016.27.4.1059