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Abstract

So far in a nonparametric regression model one of the interesting problems is esti-
mating the error variance. In this paper we propose an estimator of the mean of the
squared functions which is the numerator of SNR (Signal to Noise Ratio). To estimate
SNR, the mean of the squared function should be firstly estimated. Our focus is on
estimating the amplitude, that is the mean of the squared functions, in a nonparametric
regression using a simple linear regression model with the quadratic form of observa-
tions as the dependent variable and the function of a lag as the regressor. Our method
can be extended to nonparametric regression models with multivariate functions on
unequally spaced design points or clustered designed points.

Keywords: Difference-based estimator, error variance, mean of the squared functions,
nonparametric regression, quadratic form, SNR.

1. Introduction

Consider a nonparametric regression of the form

Yi = f(xi) +Wi = fi +Wi, i = 1, . . . , n, (1.1)

where f is an unknown mean function and the error Wi’s are independent and identically
distributed random variables with zero mean and variance σ2.We assume that the design
points xi’s lie in [0, 1] and have been ordered.

Usually the focus of nonparametric regression models is on estimating the mean function
or the error variance. The estimator of the error variance is obtained from fitting the mean
function f (Park, 2004, 2008; Wahba, 1990; Hall & Carroll, 1989; Carter & Eagleson 1992;
Neumann, 1994). The other approach to estimate the error variance is using difference-
based variance estimation which does not require an estimator of the mean function and is
to remove trend in the mean function, an idea originating in the time series analysis (Rice,
1984).
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In nonparametric regression SNR has been affecting the performance of the estimators
of the mean function. Our purpose is to suggest an estimator of the mean of the squared
functions which is the numerator of SNR, using the k-order difference-based estimators of
the error variance (see Tong and Wang, 2005).

In Sections 2 and 3 we consider equally spaced designs in [0 1]. We present our estimator in
Section 2 and asymptotic results in Section 3. A small simulation study examining the finite
sample behavior of our method is given in Section 4. Section 5 provides a brief discussion.
Some proofs of the technical results are deferred to Appendix.

2. The definition of the mean of the squared functions

Throughout this paper we assume for simplicity that all xi’s are equal spaced. The SNR
from (1.1) is given by

SNR =

∫ 1

0
f2(x)dx
σ2

.

The mean of the squared functions is denoted by

Q = σ2SNR =
1
n

n∑
i=1

f2
i . (2.1)

Our concern is on presenting an estimator of the mean of the squared functions Q from
(2.1) and exploring the statistical properties for the estimator of Q.

2.1. The k -order difference estimator of the error variance

Rice (1984) proposed the first-order difference-based estimator

σ̂2
R =

1
2(n− 1)

n∑
i=2

(Yi − Yi−1)2.

Rice’s estimator uses differences of all consecutive observations. We define a lag- k Rice
estimator σ̂2

R(k) as

σ̂2
R(k) =

1
2(n− k)

n∑
i=k+1

(Yi − Yi−1)2, k = 1, . . . , n− 1. (2.2)

From (2.2), taking expectation of the Rice estimator, we have

E(σ̂2
R(k)) = σ2 +

1
2(n− k)

n∑
i=k+1

(fi − fi−k)2, (2.3)

indicating that the expectation of the estimator of the error variance is always positively
biased (Rice, 1984).
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2.2. The estimator of the mean of the squared functions

From (2.3) we propose an estimator of the mean of squared functions

Qk =
1
n

n∑
i=1

Y 2
i −

1
2(n− k)

n∑
i=k+1

(Yi − Yi−k)2. (2.4)

From (1.1), (2.3) and E(Y 2
1 ) = f1 + σ2, taking expectation of (2.4), we have

E(Qk) =
1
n

n∑
i=1

f2
i −

1
2(n− k)

n∑
i=k+1

(fi − fi−k)2, (2.5)

indicating that the estimator of the mean of the squared functions is always negatively
biased.

Suppose that f has a bounded first derivative. Then, from (2.5), we have

E(Qk) =
1
n

n∑
i=1

f2
i −

k2

n2
J +O

{
k3

n2(n− k)

}
+ o

(
1
n2

)
,

where J =
∫ 1

0
f ′(x)2dx/2 .

For any fixed m = o(n), we have

E(Qk) ≈
1
n

n∑
i=1

f2
i −

k2

n2
J, (1 ≤ k ≤ m). (2.6)

We can estimate Q from (2.1), treating (2.6) as a simple linear regression model with
k2/n2 as the independent variable. Let dk = k2/n2 as the independent variable and Qk

as the dependent variable. We can regress Qk on dk to estimate α as the intercept. To be
specific, we fit the linear model

Qk = qn − sk = α+ βdk + ek, k = 1, . . . ,m,

where qn =
∑n

i=1 Y
2
i /n and sk =

∑n
i=k+1(Yi−Yi−k)2/(2(n−k)).To estimate the parameters,

we use the weighted sum of squares
∑m

k=1 wk(Qk − α − βdk)2, where wk = (n− k)/N and
N =

∑m
k=1(n− k), in details see Tong and Wang (2005).

Let s̄w =
∑m

k=1 wkQk and d̄w =
∑m

k=1 wkdk. Then

Q̂ = α̂ = s̄w − β̂d̄w,

where

β̂ =
∑m

k=1 wkQk(dk − d̄w)∑m
k=1 wk(dk − d̄w)2

.

When necessary, the dependence of Q̂ on m will be expressed explicitly.

Theorem 2.1 For the equally spaced design, we have the following;
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1. Q̂ is unbiased when f is constant and a linear function regardless of the choice of m.

2. Q̂ can be written as a quadratic form; Y T (In/tr(In)−D/tr(D))Y , where In is n×n
identity matrixes and D is n× n matrixes with elements.

dij =


∑m

k=1 bk +
∑min(i−1,n−i,m)

k=1 bk, 1 ≤ i = j ≤ n
−b|i−j|, 0 < |i− j| ≤ m
0, otherwise,

where

b0 = 0, bk = 1−
d̄w(dk − d̄w)∑m

k=1 wk(dk − d̄w)2
(k = 1, . . . ,m).

The proof of Theorem 2.1 is omitted as it is straightforward and partially shown in Tong
and Wang (2005).

3. Asymptotic results

Using the fact that Q̂ has a quadratic-form representation, we have the following formula
for the mean squared error:

MSE(Q̂) =
(
fTBf

)2
+ 4σ2fTB2f + 4gT [B diag(B)u]σ3γ3

+σ4tr[diag(B)2](γ4 − 3) + 2σ4tr(B2),

where u = (1, . . . , 1)T , γi = E[(ε/σ)i], for i = 3, 4, and B = In/tr(In) − D/tr(D) from
Theorem 2.1. When the random errors are normally distributed, we obtain the following
result.

MSE(Q̂) = Bias(Q̂) + V ar(Q̂) =
(
fTBf

)2
+ 4σ2fTB2f + 2σ4tr(B2).

Theorem 3.1 Assume that f has a bounded second derivative, a1 =
∫ 1

0
f(x)dx < ∞ and

a2 =
∫ 1

0
f(x)2dx <∞. For the equally spaced design with m→∞ and m/n→ 0, we obtain

MSE(Q̂) =
4a1

n
σ3γ3 +

4a2

n
σ2 +

9
4nm

σ4

+
9m

112n2
var(ε2) + o(

1
nm

) + o(
m

n2
) +O

(
m6

n6

)
. (3.1)

The last term in (3.1) comes from the bias and the remaining terms comes from the
variance. Theorem 3.1 indicates that Q̂ a consistent estimator of Q. The asymptotically
optimal bandwidth is mopt = (28nσ4/var(ε2))1/2.



An estimator of the mean of the squared functions 581

4. A numerical study

To evaluate our estimator of the mean of the squared functions, we assume that random
errors are normally distributed with mean zero and variance σ2. Then var(ε2) = 2σ4 and
mopt = (14n)1/2 which does not dependent on f under the conditions that f has a bounded
second derivative, m → ∞ and m/n → 0. On the discussion for selecting m, see Tong
and Wang (2005). Let m = n1/2 and m = n1/3. Also we use the same simulation setting
as in Seifert, Gasser and Wolf (1993) and Dette et al. (1998): f(x) = 5sin(wπx), where
w = 1, 2 and 4 corresponding to low, moderate, and high oscillations respectively, three
standard deviations, σ = 0.5, 1.5, 4, and three sample sizes, n = 15, 100, 500. We repeat
this simulation 1000 times and compute MSE which consists of the squared bias and the
variance of each estimator.

Table 4.1 lists MSE (mean squared errors), Bias2 (squared biases), and Var (variance) for
some estimators of the mean of the squared functions under various conditions such as the
sample sizes, error variances, and the oscillations.

Table 4.1 MSE (mean squared errors), Bias 2 (squared biases), and Var (variance)

w 1 2 4
σ2 0.52 1.52 42 0.52 1.52 42 0.52 1.52 42

n = 15 and
Pn

i=1 f(xi)
2/n = 12.5

0.85721 7.6575 63.2308 1.2746 8.0388 58.0211 29.5193 32.0196 65.5701

m = n1/2 0.01392 0.0055 0.0073 0.4962 0.4528 0.4509 29.1491 28.2760 28.3172
0.84333 7.6520 63.2235 0.7785 7.5860 57.5702 0.3701 3.7436 37.2529
0.86671 8.0896 86.2894 0.8492 8.6922 82.6068 1.6648 8.2781 83.0101

m = n1/3 0.00072 0.0066 0.0309 0.0217 0.0076 0.0222 0.9346 0.6571 0.7167
0.86613 8.0831 86.2584 0.8275 8.6846 82.5846 0.7302 7.6210 82.2935

n = 100 and
Pn

i=1 f(xi)
2/n = 12.5

0.1262 1.1671 8.5777 0.1237 1.1077 8.2643 0.1633 1.1443 8.2808

m = n1/2 0.0005 0.0032 0.0048 0.0004 0.0010 0.0003 0.0342 0.0186 0.0840
0.1257 1.1639 8.5729 0.1233 1.1067 8.2640 0.1291 1.1257 8.1968
0.1262 1.1835 9.2539 0.1237 1.1359 9.6774 0.1330 1.1722 9.2445

m = n1/3 0.0003 0.0034 0.0011 0.0000 0.0028 0.0056 0.0009 0.0003 0.0098
0.1259 1.1801 9.2528 0.1237 1.1331 9.6718 0.1322 1.1719 9.2347
0.1265 1.1622 9.3374 0.1242 1.0707 9.2281 0.2769 1.2634 8.6806

HKT 0.0013 0.0073 0.1382 0.0030 0.0003 0.1304 0.0709 0.0403 0.0020
0.1252 1.1549 9.1992 0.1212 1.0704 9.0977 0.2060 1.2231 8.6786

n = 500 and
Pn

i=1 f(xi)
2/n = 12.5

0.0244 0.2368 1.6029 0.0247 0.2282 1.6691 0.0246 0.2460 1.5116

m = n1/2 0.0001 0.0004 0.0011 0.0000 0.0000 0.0000 0.0002 0.0000 0.0005
0.0243 0.2364 1.6019 0.0247 0.2282 1.6691 0.0244 0.2459 1.5111
0.0245 0.2390 1.7326 0.0247 0.2313 1.7703 0.0245 0.2493 1.6251

m = n1/3 0.0002 0.0004 0.0009 0.0000 0.0000 0.0001 0.0000 0.0000 0.0012
0.0244 0.2386 1.7316 0.0247 0.2313 1.7702 0.0245 0.2493 1.6239

1. MSE 2. Bias2 3. Variance

The comparative performance of the estimators for the mean of the squared functions
depends on the smoothness of f , the sample size and error variance. The results for all con-
ditions is illustrated in Table 4.1. Q(m = n1/2) has slightly smaller mean squared errors than
that of Q(m = n1/3) except for the cases (n,w, σ) = (15, 2, 0.52), (n,w, σ) = (15, 4, 0.52),
and (n,w, σ) = (15, 4, 1.52) in which f is rough and sample size is small. Therefore we
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recommend Q(m = n1/3) when the sample size is small and f is rough.
The estimator, σ̂2

HKT (2), introduced by Hall et al. (1990) is defined as

ˆσ2
HKT (2) =

1
n− 2

n−2∑
i=1

(0.8090Yi − 0.5Yi+1 − 0.3090Yi+2)2.

5. Discussion

Most subjects in nonparametric regression models have been focusing on estimating the
mean function or error variance on univariate xd=1 or multivariate xd>1. The performance
for the estimators of the mean function have been affected by the smoothness of the mean
functions and error variance which SNR has been represented. This paper proposes an
estimator of the power of the mean functions, using the difference based estimators for
error variance which Tong and Wang (2005) provided. Our estimator is obtained from the
weighted least squares with weights that decrease as distance increases.

This performance of our estimators might depend on sample sizes and oscillations. In the
finite sample simulations, for the large sample the MSEs corresponding to the choice of the
bandwidth m would be similar. For the small sample, however, the MSEs are varying with
error variances and oscillations.

Further research on the estimators of the mean of the squared functions is necessary to
explore weights for weighted least squares and the choice of the bandwidth m ’s under
univariate and multivariate cases.

APPENDIX

Proof

We provide a sketch of the proof only. Details of the proofs can be found in a techni-
cal report available in APPENDIX at http://www.pstat.ucsb.edu/facult/yuedong/research
(Tong and Wang, 2005).

Quadractic form . The proof of the quadratic form in Theorem 2.1 can be shown as the
following; rewrite the proposed estimator as

Q̂ = s̄w − β̂d̄w = s̄w(qn)− β̂(qn)d̄w −
[
s̄w(sk)− β̂(sk)d̄w

]
= qn − σ̂2,

where s̄w(qn) =
∑m

k=1 wkqn, s̄w(sk) =
∑m

k=1 wksk, β̂(qn) =
∑m

k=1 wkqn(dk− d̄w)/
∑m

k=1 wk(
dk − d̄w), β̂(sk) =

∑m
k=1 wksk(dk − d̄w)/

∑m
k=1 wk(dk − d̄w), qn = s̄w(qn) − β̂(qn)d̄w and
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σ̂2 = s̄w(sk)− β̂(sk)d̄w. It is not difficult to check that

(a)
m∑

k=1

wk =
m∑

k=1

n− k
N

= 1,

(b)
m∑

k=1

wk(dk − d̄w) =
m∑

k=1

wk(dk − d̄w)

=
m∑

k=1

(wkdk − wkd̄w)

= d̄w − d̄w

m∑
k=1

wk

= d̄w(1−
m∑

k=1

wk)

= 0.

Therefore,

s̄w(qn)− β̂(qn)d̄w =
m∑

k=1

wkqn −
∑m

k=1 wkqn(dk − d̄w)d̄w∑m
k=1 wk(dk − d̄w)2

= qn,

and the quadratic form of σ̂2 was proved by Tong and Wang (2005).
Assume that n→∞, m→∞ and m/n→ 0.
Asymptotic bias. The bias is

E(Q̂) = E(qn − σ̂2) =
1
n

n∑
i=1

f2
i −O

(
m3

n3

)
,

E(Q̂−Q)2 = O

(
m6

n6

)
.

�
Asymptotic variance . From Appendix in Tong and Wang (2005) we prove the followings;

(a) fT

(
In

tr(In)
−

D

tr(D)

)2

f = A1 − 2A2 +A3 ,

A1 =
fT f

tr(In)2
=

1
n2

n∑
i=1

f2
i =

1
tr(In)

∫ 1

0

f(x)2dx,

A2 =
fTDf

tr(In)tr(D)
=

1
tr(In)

O

(
m3

n3

)
,

A3 =
fTD2f

tr(D)2
=

1
tr(D)2

O

(
m5

n2

)
,
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where tr(D) = 2N = 2(nm−m(m+ 1)/2),

(b) fT

{(
In

tr(In)
−

D

tr(D)

)
diag

(
In

tr(In)
−

D

tr(D)

)
u

}
= A4 −A5 −A6 +A7,

A4 =
fTu

tr(In)2
=

1
n2

n∑
i=1

fi =
1

tr(In)

∫ 1

0

f(x)dx,

A5 =
fT diag(D)u
tr(In)tr(D)

=
1

tr(In)tr(D)


n∑

i=1

fi

 m∑
k=1

bk +
min(i−1,n−i,m)∑

k=0

bk


=

1
tr(In)tr(D)

{
n∑

i=1

fi

((
m−

5m2

16n
+ o(

m2

n
)

)
+

(
4
9
l −

5l3

4m2
+ o(l) +O(1)

))}

=
1

tr(In)tr(D)

{∫ 1

0

f(x)dx

((
nm−

5m2

16
+ o(m2)

)
+

(
4nl
9
−

5nl3

4m2
+ o(nl) +O(n)

))}
,

where l = min(i− 1, n− i,m),

A6 =
fTDu

tr(In)tr(D)
=

1
tr(In)tr(D)

n∑
i=1

(
m∑

k=1

bk(fi − fi−k)−
m∑

k=1

bk(fi+k − fi)

)

=
1

tr(In)tr(D)
o

(
m3

n

)
,

A7 =
fTDdiag(D)u

tr(D)2
=

1
tr(D)2

O

(
m4

n

)
,

(c) tr

diag

(
In

tr(In)
−

D

tr(D)

)2
 = A8 − 2A9 +A10,

A8 = tr

diag

(
In

tr(In)

)2
 =

1
tr(In)

,

A9 = tr

{
diag

(
In

tr(In)

)
diag

(
D

tr(D)

)}

=
1

tr(In)tr(D)
tr {diag(D)}

=
1

tr(In)tr(D)

{
2

m∑
l=1

(
m∑

k=1

bk +
l−1∑
k=1

bk) +
n−m∑

l=m+1

(2
m∑

k=1

bk)

}

=
1

tr(In)tr(D)

(
2nm+

5m3

4n
−m2 +m−

5
8

+ o(m2)

)
,
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A10 = tr

diag

(
D

tr(D)

)2
 =

1
tr(D)2

(
4nm2 −

103
28
m3 + o(m3)

)
,

(d) tr


(

In

tr(In)
−

D

tr(D)

)2
 = A11 −A8,

A11 = tr


(

D

tr(D)

)2
 =

1
tr(D)2

(
4nm2 −

103
28
m3 +

9
2
nm+ o(m3) + o(nm)

)
.

Together with the fact that σ4(γ4 − 3) = var(ε2)− 2sigma4, we have

var(Q̂) = 4σ2fTB2f + 4fT [B diag(B)u]σ3γ3 + σ4tr[diag(B)2](γ4 − 3) + 2σ4tr(B2)

=
4a1

n
σ3γ3 +

4a2

n
σ2 +

9
4nm

σ4 +
9m

112n2
var(ε2) + o(

1
nm

) + o(
m

n2
) +O

(
m6

n6

)
.

where B = In/tr(In)−D/tr(D), a1 =
∫ 1

0
f(x)dx <∞ and a2 =

∫ 1

0
f(x)2dx <∞ . �

Asymptotic mean squared error . The proof of (3.1) can be completed from the asymptotic
bias and variance.
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