• Title/Summary/Keyword: Q-algebra

Search Result 76, Processing Time 0.02 seconds

The Factor Domains that Result from Uppers to Prime Ideals in Polynomial Rings

  • Dobbs, David Earl
    • Kyungpook Mathematical Journal
    • /
    • v.50 no.1
    • /
    • pp.1-5
    • /
    • 2010
  • Let P be a prime ideal of a commutative unital ring R; X an indeterminate; D := R/P; L the quotient field of D; F an algebraic closure of L; ${\alpha}$ ${\in}$ L[X] a monic irreducible polynomial; ${\xi}$ any root of in F; and Q = ${\alpha}$>, the upper to P with respect to ${\alpha}$. Then R[X]/Q is R-algebra isomorphic to $D[{\xi}]$; and is R-isomorphic to an overring of D if and only if deg(${\alpha}$) = 1.

SPHERICAL HALL ALGEBRAS OF CURVES AND HARDER-NARASIMHAN STRATAS

  • Schiffmann, Olivier
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.5
    • /
    • pp.953-967
    • /
    • 2011
  • We show that the characteristic function $1S_{\underline{\alpha}}$ of any Harder-Narasimhan strata $S{\underline{\alpha}}\;{\subset}\;Coh_X^{\alpha}$ belongs to the spherical Hall algebra $H_X^{sph}$ of a smooth projective curve X (defined over a finite field $\mathbb{F}_q$). We prove a similar result in the geometric setting: the intersection cohomology complex IC(${\underline{S}_{\underline{\alpha}}$) of any Harder-Narasimhan strata ${\underline{S}}{\underline{\alpha}}\;{\subset}\;{\underline{Coh}}_X^{\underline{\alpha}}$ belongs to the category $Q_X$ of spherical Eisenstein sheaves of X. We show by a simple example how a complete description of all spherical Eisenstein sheaves would necessarily involve the Brill-Noether stratas of ${\underline{Coh}}_X^{\underline{\alpha}}$.

EQUIMULTIPLE GOOD IDEALS WITH HEIGHT 1

  • Kim, Mee-Kyoung
    • Journal of the Korean Mathematical Society
    • /
    • v.39 no.1
    • /
    • pp.127-135
    • /
    • 2002
  • Let I be an ideal in a Gorenstein local ring A with the maximal ideal m. Then we say that I is an equimultiple good ideal in A, if I contains a reduction Q = ( $a_1$, $a_2$,ㆍㆍㆍ, $a_{s}$ ) generated by s elements in A and G(I) =(equation omitted)$_{n 0}$ $I^{n}$ / $I^{n+1}$ of I is a Gorenstein ring with a(G(I)) = 1 - s, where s = h $t_{A}$ I and a(G(I)) denotes the a-invariant of G(I). Let $X_{A}$$^{s}$ denote the set of equimultiple good ideals I in A with h $t_{A}$ I = s, R(I) = A [It] be the Rees algebra of I, and $K_{R(I)}$ denote the canonical module of R(I). Let a I such that $I^{n+l}$ = a $I^{n}$ for some n$\geq$0 and $\mu$$_{A}$(I)$\geq$2, where $\mu$$_{A}$(I) denotes the number of elements in a minimal system of generators of I. Assume that A/I is a Cohen-Macaulay ring. We show that the following conditions are equivalent. (1) $K_{R(I)}$(equation omitted)R(I)+as graded R(I)-modules. (2) $I^2$ = aI and aA : I$\in$ $X^1$$_{A}$._{A}$./.

ON THE SEMI-HYPONORMAL OPERATORS ON A HILBERT SPACE

  • Cha, Hyung-Koo
    • Communications of the Korean Mathematical Society
    • /
    • v.12 no.3
    • /
    • pp.597-602
    • /
    • 1997
  • Let H be a separable complex Hilbert space and L(H) be the *-algebra of all bounded linear operators on H. For $T \in L(H)$, we construct a pair of semi-positive definite operators $$ $\mid$T$\mid$_r = (T^*T)^{\frac{1}{2}} and $\mid$T$\mid$_l = (TT^*)^{\frac{1}{2}}. $$ An operator T is called a semi-hyponormal operator if $$ Q_T = $\mid$T$\mid$_r - $\mid$T$\mid$_l \geq 0. $$ In this paper, by using a technique introduced by Berberian [1], we show that the approximate point spectrum $\sigma_{ap}(T)$ of a semi-hyponomal operator T is empty.

  • PDF

Linear operators that preserve spanning column ranks of nonnegative matrices

  • Hwang, Suk-Geun;Kim, Si-Ju;Song, Seok-Zun
    • Journal of the Korean Mathematical Society
    • /
    • v.31 no.4
    • /
    • pp.645-657
    • /
    • 1994
  • If S is a semiring of nonnegative reals, which linear operators T on the space of $m \times n$ matrices over S preserve the column rank of each matrix\ulcorner Evidently if P and Q are invertible matrices whose inverses have entries in S, then $T : X \longrightarrow PXQ$ is a column rank preserving, linear operator. Beasley and Song obtained some characterizations of column rank preserving linear operators on the space of $m \times n$ matrices over $Z_+$, the semiring of nonnegative integers in [1] and over the binary Boolean algebra in [7] and [8]. In [4], Beasley, Gregory and Pullman obtained characterizations of semiring rank-1 matrices and semiring rank preserving operators over certain semirings of the nonnegative reals. We considers over certain semirings of the nonnegative reals. We consider some results in [4] in view of a certain column rank instead of semiring rank.

  • PDF

SPANNING COLUMN RANKS OF NON-BINARY BOOLEAN MATRICES AND THEIR PRESERVERS

  • Kang, Kyung-Tae;Song, Seok-Zun
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.2
    • /
    • pp.507-521
    • /
    • 2019
  • For any $m{\times}n$ nonbinary Boolean matrix A, its spanning column rank is the minimum number of the columns of A that spans its column space. We have a characterization of spanning column rank-1 nonbinary Boolean matrices. We investigate the linear operators that preserve the spanning column ranks of matrices over the nonbinary Boolean algebra. That is, for a linear operator T on $m{\times}n$ nonbinary Boolean matrices, it preserves all spanning column ranks if and only if there exist an invertible nonbinary Boolean matrix P of order m and a permutation matrix Q of order n such that T(A) = PAQ for all $m{\times}n$ nonbinary Boolean matrix A. We also obtain other characterizations of the (spanning) column rank preserver.