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LINEAR OPERATORS THAT PRESERVE SPANNING
COLUMN RANKS OF NONNEGATIVE MATRICES*

SUK-GEUN HwaNG, S1-Ju KIM AND SEOK-ZUN SONG

1. Introduction

If S is a semiring of nonnegative reals, which linear operators T on
the space of m x n matrices over S preserve the column rank of each
matrix? Evidently if P and @ are invertible matrices whose inverses
have entries in S, then T : X — PXQ is a column rank preserving,
linear operator. Beasley and Song obtained some characterizations of
column rank preserving linear operators on the space of m x n matrices
over Z, the semiring of nonnegative integers in [1] and over the binary
Boolean algebra in [7] and [8]. In [4], Beasley, Gregory and Pullman
obtained characterizations of semiring rank-1 matrices and semiring
rank preserving operators over certain semir:ngs of the nonnegative
reals. We consider some results in [4] in view of a certain column rank
instead of semiring rank.

In this paper, we define “spanning columr rank” (see Section 2),
which 1s the same as column rank on the space of matrices over a
field or Z; but differs from column rank in general semirings. We
obtain a characterization of spanning column rank 1 matrices. We
also characterize linear operators which preserve the spanning column
ranks of matrices over the nonnegative part of a unique factorization
domain that is not a field in the reals.

Received July 29, 1993.

1991 Mathematics subject classification. Primary 15A03. 14A04, 15A23.
Key words. Spanning column rank, linear operator

This research was supported by TGRC-KOSEF in 1991.




646 Suk-Geun Hwang, Si-Ju Kim and Seok-Zun Song

2. Definitions and basic properties of spanning column rank

Let S be any subset of R4 (the nonnegative reals). We'll call it a
nonnegative semidomain if it contains 0,1 and is closed under multi-
plication and addition (the usual operations). If D is a subring of R
containing 1 (so D is an integral domain), let D, denote the set of
its nonnegative elements. Then D, is a nonnegative semidomain. Ex-
amples are Ry, Q4 ,Z . (Z[v?2])5 etec., where Q denotes the rationals
and Z the integers. Note thar (Z[V2])y contains Z4[v2] properly.
since e.g. V2 — 1 is in the left member but not the right. There are
other nonnegative semidomains : eg. H= {0,1,2,3}U{q ¢ Q |¢ > 4}
1s not of the form D, for any integral domain D in R.

Hereafter, unless otherwise specified, S will denote an arbitrary non-
negative semidomain.

Let A be an m x n matrix over S. If A is a nonzero matrix, then the
semaring rank [1] of A,rg(A), is the least k for which shere exist m x k
and k x n matrices F and G over S such that A=FG. The zero matrix
1s assigned the semiring rank 0. The set of m x n matrices with entries
in S is denoted by M,, ,,(S). Addition, multiplication by scalars, and
the product of matrices are defined as if S were a fiel].

If Vis a nonempty subset of $* = My ;(S) that is closed under
addition and multiplication by scalars, then V is called a vector space
over S. The notions of subspace and of spanning sets are the same as
if § were a field.

A set A of vectors over S is linearly dependent if for some a € A, a is
a linear combination of the vectors in A — {a}. Otherwise A is linearly
independent.

As with fields, a basis for a vector space V is a spanning subset of
least cardinality. That cardinality is the dimension, dim(V), of V.

The column space of an m x n matrix A over S is the vector space
that is spanned by its columns. The column rank, cs(A), of a nonzero
m X n matrix A over S is the dimension of its column space. The
spanning column rank, scg(A), 1s the minimum number of the columns
of A which span its column sace. As with semiring rank, the zero
matrix is assigned column rank and spanning column rank 0.

It follows that

0 <rg(A) <es(A) < ses(d) <n (2.1)
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for all mn x n matrices A over S.

Over a field F we have cp(A) = scp(A) for all A € M, »(F). For,
if ecp(A) = k, then the column space of A has dimension k. So any
r columns of A are linearly dependent for r which is greater than k.
Hence scp(A) <k. Therefore the column rark and spanning column
rank functions are equal over any field by (2.1).

We can also show that the column rank and spanning column rank
are the same over My, ,(Z;) or M, »(B), where B is the two ele-
ment Boolean algebra. But they may differ over other semirings. The
spanning column rank may actually exceed its column rank over some
sernirings.

For example, consider 4 = [3 — V7, VT -- 2Jover§ = (Z[V7])4.
Since (3 —~ V7) + (V7 - 2) = 1,{1} is a spanning set of the column
space of A. So cs(A) = 1. But scg(A) = 2 since 3 — V7 # a(V7 — 2)
and V7 — 2 # a(3 — /7) for any a in S.

Here are some basic properties of spanning coluran rank.

If the columns of A € M, ,,(S) are linearly independent over S, then

seg(A) = n. (2.2)
If SC T, then scg(A) > sct(A) for arbitraiy A with entries in S.
(2.3)
Let A and B be matrices over S. Then
scs{AB) < scg(B). (2.4)

For, assume that scg(B) = k. Then withoutt loss of generality, we
may assume that {by,... ,bs} is a set of columns of B of minimum
cardinality that spans its coluinn space. Sinc: the jth column of AB
is of the form Ab; and b; = ZLI s;b; for some s; € S, we have
Ab; = Zf___l $iAb;. That is, any column of 4B can be written as a
linear combination of Ab;,... . Aby. Hence scg(AB) < k = scg(B).

But, in general scg(AB) is not less than scg(A) as shown in the
following example : let

A={3,77],B =

oo
[
b e e
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be matrices over S = Z,. Then scg(AB) = scs([3,10,17]) = 3, but
SCS(A) = 2.
If B is obtained by deleting some rows of A, then

scg(B) < seg(A). {2.5)

But suppressing a colummn may increase the spanning column rank. For
example, consider

0 11 00
{1 0 0 1 0
{1 1.0 0 1

1 1 1 1 0

over B, the two element Boolean algebra. Then scg{A) = 3 because
the last three columns are linearly independent and span the column
space of A. We delete column 5 from A to obtain A', then scg(4') = 4
since the four columns of A’ are linearly independent

If V,V~! have all entries in S, then

scg(VA) = scg(A) by (24). (2.6)

If X is a matrix over § and X = ax', then a, x are called left and right
factors of X respectively. Both a and x are referred to as factors of X.
In particular, a is called a strong right factor of X if a' has spanning
column rank 1. For X € M,, »(S), we write sc(X) for scg(X), e(X)
for cg(X) and r( X) for rg(X).

LEMMA 2.1. For A € M,;, »(S),s¢(A) = 1 if and only if A can be
factored as xa' for some a € S, x € 8™, where x #0 and a is a strong
right factor.

Proof. If s¢(A) = 1, then there exists one column & of A such that
all the other columns a, are expressed as a scalar multiple of ax, that is
a; = o,a for some «, € S. Therefore A = aa,... %, with oy = 1.
Let x = ay,a' = [a,... ,a,]. Then we have done. The converse is
clear. [

In the sequel, let U, be the nonnegative part of a inique factoriza-
tion domain U which is not a field in R - for example Ry N Q[e] with
transcendental ¢, etc.
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LEMMA 2.2. There are an infinite number of primes in U .

Proof. 1f there is no primes in Uy, then U is a field, which is not the
case. So there is at least one prime in U,. Let p1, p2,..., be primes in
Uy, and suppose that there is a last prime ; call it p,. Now consider
the positive element

Q=pip2--pnt+1.

Since @ € Uy, there are a unit « and primes q;,...,¢, in U, such
that @ has the form «aq; - - - ¢,. But py,pa,...,pn are the only primes,
so that ¢y must be equal to one of py,ps,... ,pn. Since ¢; divides both

P1p2 - - pn and @, we arrive at q; divides @ —pyps2 - - - p, or, equivalently,
g1 divides 1. Then ¢; is a unit, which is a rcontradiction. Thus the
number of primes is infinite. [

3. Spanning column rank preserving linear operators

If T maps M, ,(S) into itself and T(aX + YY) = aT(X) + T(Y)
for all @, 3 € S and for all X, Y € My, »(S), then T is a linear operator
on My, »(S).

In [4], it was shown that if S = U and T preserves real or semiring
ranks of matrices over U, then there exist nonsingular matrices U
and V such that T(X)=UXV ( or possibly T(X) = UX'V if m = n)
for all X € M, ,(Uy).

In [1], we obtained a characterization of linzar operators which pre-
serve column ranks on M, ,(Z4). Since the cclumn rank and spanning
column rank are the same on My, ,(Z4), the characterization holds for
spanning column ranks.

In this section we shall obtain a similar caaracterization of linear
operators which preserve spanning column ranks on My, ,(Uy). We
say that a linear operator T' preserves spanning column rank k provided
that sc(T(X)) = k if sc(X) = k, where X € M, .(S).

Let e; be the vector in S™ with a “1” in tae ith position and zero
elsewhere. We say that X is a column matriz if X = xe! for some
1 <7 < n and some vector x € S™.

LEMMA 3.1. Let T be a linear operator or: My, (U4 ),n > 2. If T
preserves spanning column ranks 1 and 2, then T maps column matrices
to column matrices.
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Proof. Suppose to the contrary that T maps a column matrix to a
matrix which is not a column matrix. Say x(e;)' = X, and T(X) has
more than one nonzero column. For each 1 <7 < n, let X, = x(e;)".
Let S = {1,... ,n} and let S; = {j:the jth column of T(X,) is zero for
all 1 <i < n}. Then foreach i € S~ 5), there is a j; such that the ith
column of T(X ;) is not zero. Now T(X,) has at lcast two nonzero
columns, say columns k; and ky. Let S; = S~ ) — {ky, k2}, and let
X=X+ Eiesz Xj1)- Note that for any k € S — Sy the kth column
of T(X) is nonzero. Further, since X consists of at most n — 1 distinct
summands, each of which is a column matrix, there is at least one zero
column in X, say the sth. Let ¥ = X;. Since T(X) Las zero columns
only corresponding to indices in S;(where T(Y") also must have a zero
column) we can restrict our attention to those columns in T(X) that
are nonzero; hence we lose no generality in assuming that T(X) has no
zero column. Thus, since X, and hence T(X), has spanning column
rank 1,7(X) = ua’, where a' = [a,... ,a,] has all nonzero entries.
Let T(Y) = vb' with b’ = [by,... ,b,]. Since uX + Y has spanning
column rank 1 for arbitrary p in U,

T(pX +Y)=[payu+byv | pagu+byv | ... | peyu 4 byv]

has also spanning column rank 1. Now we consider two cases:
Case 1) If cu # dv for all nonzero ¢,d in U, then we have, for some
fixed 7,

paga + bpv = re(pa;u 4 b;v)

for some ry € Uy, bk =1,..., n. If ax # ria, for some k, then

polag —rra; ju=|rbj— by |v.
which is a contradiction to the condition that cu # dv for all nonzero
¢,d in Uy, Thus ap = ria; and by = rib; bk = 1,..., n. That is,
a=gq;rand b = b;r, where r' = [ry,... ,r,] with r; = 1.
Case 2) Assume that cu = dv for some c,d in U,. By Lemma 2.2, we

can choose a prime p such that x4 does not divide all nonzero b;, 7 =
1,..., n. Consider

T(cp"X +Y) =[ptareu + byv|p"azeu + byv| -yt ancu + baV]
=v[p"ayd + by, pPagd + by, . ptagna + byl
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which has spanning column rank 1 for any positive integer h. Since the
columns of T(c,uhX + Y) are finite in number, there exists a column
7 and a sequence of h’s with the properties that i) the jth columns of
T(cp® X 4+ Y) spans the column space for each h, and ii) the difference
between two successive terms in the sequence is at most n. Therefore
for infinitely many h

plard + by = rae(pta,d + b)) (1)

for some rpx € Uyp,k = 1,..., n. In (1), if b; = 0 then by must be
divided by infinitely many nonunit p*. But it is impossible since p
does not divide b; for at least one nonzero bx. So b; is not zero. If the
column space of T(cu?X + Y) is spanned by its jth column, then we
get

wlapd + by = rgk(,ugajd+ b,) (2)

for some 1, € Ug. From (1) and (2), we get | 1 gx—7p [€ Uy for g >h.
By the choice of p, we can choose infinitely nmiany pairs h and ¢ such
that they satisfy h < g < h+n and the columr: spaces of T(cp"X +Y)
and T(cu?X + Y) are spanned by their jth column respectively. For
such pairs b and ¢, consider

op— ran] | rd D) (e 1k )
gk hk| — (,u,-qa,]'d _I_ b]) (ljhfl]'d + b])
_d | (axb; —azb) ("t — 1) | "

(p8a;d + bj)(/tha,-(l + ;)

(3)

Assume that rgx # rax for all such pairs h anl g. Since p is prime, g
is not divided by p*a,d + b;. If pha;d + bj Las i as its factor, then
pha;d + b; = Au for some 3 ¢ Uy, Thus pu(8 — p"~la;d) = b; and
hence b; is divided by p. which is a contradiction. Then p does not
have any factor of (p"a;d + b;)(pfa;d + b;). Since d | agb; — a;by |
is fixed and | 9% — 1 | is finite value for any pairs h and g with
1 < g - h < n, the prime factors of d | (a.b; - (]jbk)(/l,g_h - 1) |
are finite in nutnber. Thus we can choose sufficiently large pair I and
g with 1 < g — I < n such that d | (axb; — ajbi 'J(;t"“-q — 1) | does
not contain some prime factors of (pha,d + b;)(y%a,;d + b;). Then
the denominator of (3) contains some nonunit prime factors such that
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the numerator of (3) does not contain. Since U, contains no element
of the form r/y, where y has a prime factor which z does not, the
fractional expression of (3) is not an element of U,. Thus we have a
contradiction such that | ryx — rpx |¢ Uy for some pair ¢ and b with
h < g < h+4n. Hence Tk = Thi for some h and g. Subtracting (1) from
(2), we get a; = rhea; for all k = 1,..., n. And we get by = raib;
forall k = 1,... . n from (1). That is, a = a;r and b == b;r where
r=[rpy, ..., T4y with rp; = 1.

By cases 1) and 2), T(X) and T(Y') has the same s rong right factor
r. Thus se(T(aX 4+ 3Y)) = sc(aa;u+ gb;vir! = 1 for arbitrary «, 4 in
U,.. This contradicts that T' preserves spanning column rank 2 since
aX + BY has spanning column rank 2 for relatively prime o and 3 in
U,. Hence T maps column matrices to column matr ces. [

We use the notation F,; for the m x » matrix whose (4. | J-entry 1s 1
1] . J
and whose other entries are all 0. We also write x, for the jth column

of X.

PROPOSITION 3.2. Let A be an m x 1 matrix over S and T(X) =
AX for all X in M, 4(S}.

(1) If T preserves spauning column rank 1, then T(X) = 0 only if
X =0.

(2) If k > 2, and T preserves spanning column ranks 1 and 2, then
T is injective on M, x(S).

Proof. (1) If AX = 0 and X # 0. then there exists z, ; # 0 for some
1,j. Then 0 = (AX Mk = Z?:] ags¢; for arbitrary k. Hence ag, = 0 for
all k. That is, a,(the ith column of A) 1s zero. We mey take X = E;.
Then sc(X) = 1 but T(.Y) is a zero matrix and has spanning column
rank 0. This contradicts the fact that T preserves spanning column
rank 1.

(2) Suppose T(B) == T(C). Then for all J.-Ab; = Ac; = z;. If
z; = o then it follows from (1) that b; = o = c;,. If z, # o, let
Y =1[bj[c;]o0]... 0] Then se(T(Y)) = sc(AY) = sc(lz; | z; | o
... [ o]) = 1, but T preserves spanning column rank 2, so s¢(¥) = 1.
Therefore b; = ac; o ¢; = b, for some o, 4. If b; = «c,, then
Acj =1z; = Ab; = aAc, and z; # 0. So « = 1 and b, = ¢, for all
J. For c; = b, we hLave the same results. Thus 7' is njective on

M, «(S).O
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ExampLe 3.3. Let Ti(X) = (}:w. ri;)A for all X € M, .(S),
where A € M, ,,(S) and sc(A4)=k. Then T} preserves spanning column
rank k, but T} is not injective. Thus the condition (2) in Proposition
3.2 can not be relaxed by requiring that T preserves spanning colunn
rank 1 or T preserves spanning column rank 2. O

EXAMPLE 3.4, Let T(E ) = Eyy, T(Ey;) -= E,, and T(E;;))=Ey;
for all other i, j. Extend T to My, .(S) by lincarity. Let A = E;, + Ey,
and B = E;; + Ey;. Then sc(A) = 1 but se(T(A4)) = 2. Also se(B) = 2
but se(T(B)) = 1. Nevertheless, T is injective. In fact, T is bijective.
Thus injectivity alone does not ensure that spanning column rauks 1,
2 will be preserved by a linear operator.[J

THEOREM 3.5. Forn > 2, let T be a linear operator on M, ,(U, ).
Then T preserves spanning colunn ranks 1 and 2 if and only if there
exist QQ € My, (U4 ), D and P € M, ,(Uy) ruch that T(X )=QXDP
for all X € M,, .(Uy), where @ is invertibl> in M,, ,,(R). D is an
invertible diagonal matrix whose diagonal entries are all units in U,
and P is a permutation matrix.

Proof. We first show the sufficiency. Suppose T(.X )= QXDP and X
has spanning column rank 1, say X = oxa' for some nonzero o in U,
and a; = 1 for some i. Let P’ correspond to 7 € S, and i = 7(j). Then
QXDP= o¢Qx(P'Da)! and dp(;18n(jy = dn(y), which is a diagonal entry
of D and 1s a unit element in Uy. Hence QXDP has spanning column
rank 1. Then T preserves spanning column rank 1. If X has spanning
colmnn rank 2, then X has two linearly independent columns which
span all other columns of X. Without loss of generality, we may assume
that they are x; and x5. Then @x; and @x, span all the other columns
of QX. Now s¢(T(X)) = 1 or 2 by the facts taat multiplying DP on
the right hand of QX does not change column rank of QX and that
T preserves column rank 1. If se(T(X)) = 1, then «e{[@Qx;, @x3]) =
Hence either Qx| = r Q@xy or Qx, == r Qx, for some r € Uy, rlhus
X1 = rXy or Xz == rX; 1In R and hence in Uy since ¢ 15 invertible in R.
Then s¢(X) = 1, which is a contradiction. Herce se{T(X)) = 2 and T
preserves spanning column rank 2.

Conversely. suppose T preserves spanning column ranks 1 and 2
Let X; = x(e;)',7 = 1,... ,n, for some fixed % €(U,)™. By Lemma
3.1,7T(X;) = yil e,r(,))’ where (yi)' = [y1iY2: - . Y. is dependent
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on x and 7 : {1,...,n} — {1,...,n}. If 7 is not one-to-one, then
for some i and j,aT(X;) + AT(X;) has only one noazero column for
all @,. That is, T(aX, + #X,) has spanning colutan rank 1 for all
@, B, a contradiction since oX; + #X; has spanning column rank 2 for
relatively prime a, 3 in U,. Thus 7 is one-to-one and hence it is
a permutation. So without loss of generality, we assume 7 = ¢, the
identity permutation, so that T(X,) = y,(e;)! and T(X,) = ya(ey)'.
If yay # 0 and ypz = 0 or vice versa, then T(X; 4+ X,) = yi(e;)' +
y2(ez)" has spanning column rank 2, contradicting that T preserves
spanning column ranks 1 and 2 since X, + X3 has spanuing column
rank 1. Thus yz; = 0 if and only if ypy = 0. We assume without
loss of generality that y;; and y;» are positive. Sirce X + X, has
spanning column rank 1,y, = doy; or y; == dzy, for some dy in Ujg.
Let y2 = dyy;. If dz is not a unit, choose p relatively prime to dz in
U,, then

T(pXi+X2)=[py1|y2l0]... |0
= [py: | da2y) Jo]... | ]

has spanning column rank 2 while pX; + X, has spanning column rank
1,a contradiction. Thus dj is a unit. For the case y; = dyy,, we can
show that dy is a unit by a similar argument. Then y, = (d) 'y;.
It follows that T(X;) = (d;y;)(e;)! for some unit ;7 = 1,..., n.
In particular, when X; = Ej;, there exists some ve-tor yj' =u, =
(Y175 Y25, - - - yYmj|t € My, 1(Uy) and some unit d, € U, such that

T(E]'t) = (dzu])(ei}[ - uj((liei)t
for all i, j. Let @ be the matrix (u; | uy | ... | u,,] and D be the diago-
nal matrix diag(d;.d,, ... ,d,). Then for an arbitrary X € M, ,(U,),

m n m n

T()() = Z Z .’BJ,jT(E]‘,) = Z Z .l‘j,'llj(rl,ei)f.
=1 i=1 j=11=1
So the (s,t) entry of T(X) is Z;"zl T50ysidy. The (s,t) entry of QXD
18 Z;-n:] Ys; T jedy, which is the (s,¢) entry of T(X). Thus T(X)=QXD
for all X € M,, (U, ).
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Further we show that @ is nonsingular in M,, ,(R). Suppose that
Q = (gij) is singular. Say, @x = o for some nonzero x in M,, ,(R).
Since x can be considered as a solution of the homogenecous system of
linear equations with coefficients ¢;, € U, we may assume, without

loss of generality, that the entries of x are all in U. Solet o = 1+ Inax ]
Sinm

z;|,and z = aj+x wherej is the vector of all ’s. Thenz € M, ((Uy)
and Qz = Q(aj + X) = Q(«j). Thus

T(ze} + aje)) = Q(ze!)D + Q(~jel,)D
=Q(aj)eiD + Q(a})elD = Qaj)e, +e;)'D

has spanning column rank 1. Thus ze! +aje) also has spanning column
rank 1. Then z = raj or rz = «j for some r But then @z = o and
hence T(ze}) = o, contradicting that T preserves spanning column
rank 1. Thus ¢ is nonsingular in M., ,,(R).CJ

COROLLARY 3.6. Let T : M, ,(Uy) — M, ,(U,) be a linear
operator, n > 2. Then T preserves spauning column ranks if and
only if there exist Q € M,,, (U, ), D and P € M, o(U,) such that
T(X)=QXDP for all X € M,, »(Uy), where @ is invertible in M, ,,
(R). D is an invertible diagonal matrix whose diagonal entries are all
units in U, and P is a permutation matrix.

Now we have exawmples which show the Lemma 3.1, Theorem 3.5
and Corollary 3.6 do not hold if certain conditions were not satisfied.

EXAMHJ&%?ImtS:WZ[/thmdktT M, 2(S) — My 2(S) be

0
0 3
matrices to column matrices and it is of the form QXDP. But the
diagonal entries of D are not units over S. So we show that T does not

! ]} with

the linear operator given by T(X) = X Then T maps column

11

preserve spanning column ranks 1 and 2. Contider X; = [

«

se(Xy) = 1. Then T(X,) = [9

} has spanning colunn rank 2 over S.

2 3
And consider X, = [g Z with s¢(X9) = 2. Then T(X,) = [g g]
has spanning column rank 1 over S. Moreover. this example shows that

the converse of Lemma 3.1 does not hold.
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EXAMPLE 3.8. Let S = {0} U{¢g € @ | ¢ > }. Then Sis a
nonnegative semidomain, but § # U, for some unique factorization
domain U in R. Let T : M, 2(S) — M,, 2(S) be the linear operator
given by T(X) = X | 7
spanning column rank of X. Certainly, T preserves spanning column
rank 0. Let X = [x; | X2]. Suppose that sc(X) = 1; then for some
q € S, either x; = ¢gx, or X3 = ¢x,. In the former case, we find that
T(X)=[(¢g+2)x2 | (29 +1)x2]. If ¢ = 0, then evidently sc(T(X)) = 1.
while if ¢ > 1, then 2¢ +1 > ¢+ 2, and so p = (2¢ + 1)/iq + 2) €S.
Since the second colummn of T(X) is p times the first, we see that T(X)
has spanning column rank 1. A similar argument applies if x, = ¢x;,
and we see that T preserves spanning column rank 1

Conversely, suppose that T(X) = [x; + 2x; | 2x; + X7] has spanning
column rank 1. Then for some p € 8, either x; + 2x3 = p(2x; + x2) or
2% + X2 = p(x; + 2x,). Suppose that the former holls, and note that
p cannot be 0 (otherwise T(X ') would be the zero matrix). Thus p > 1,
and (2 — pixy = (2p — 1)x;. Note that 2 —p > 0, and if p = 2, then
x; = 0, and it follows that sc(X) = L. If p < 2, then from the fact that
2p—12>2--p, we have r = (2p - 1)/(2-p) €S. Since X, = rX;, we see
that sc(X) = 1. 4 similar arguinent applies if 2x; + <2 = p(x; + 2x3)
and we see that if sc(T(X)) = 1 then sc(X) = 1. It now follows that
T preserves spanning column ranks 1 and 2 on M, » S).

But T does not map column matrices to column matrices since
T(E;) = [(1) g} Moreover T( X'} is not of the for1n QXDP for any
2 x 2 invertible diagonal matrix D and a permutaticn matrix P over
S. O

Then we show that T preserves the

We have studied the spanning column rank preservers on My, o(S)
for n > 2. Now we make a remark on the spanning column rank pre-
servers on M,, 1(S).

PROPOSITION 3.9. Let T : M, ;(S) — M,, 1(S) Le a linear opera-
tor. Then T preserves spanning column rank if and only if there exists
Q€ M. m(S) each of whose columns have at least oae nonzero entry

such that T(X) = QX for all X € M,,, 1(S).

Proof. Let @ be the matrix of T with respect to the basis {Ej; |
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= 1,...,m} of M, (S). Then T(X) = QX and the jth column

Q is the coordinate of T(E;;), which is not zero since T preserves

spanning column rank 1. Hence each of the ~olumms of @ has at least
one nonzero entry. The converse is obvious.[]

~
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