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SPHERICAL HALL ALGEBRAS OF CURVES AND

HARDER-NARASIMHAN STRATAS

Olivier Schiffmann

Abstract. We show that the characteristic function 1Sα of any Harder-

Narasimhan strata Sα ⊂ Cohα
X belongs to the spherical Hall algebra

Hsph
X of a smooth projective curve X (defined over a finite field Fq). We

prove a similar result in the geometric setting: the intersection coho-
mology complex IC(Sα) of any Harder-Narasimhan strata Sα ⊂ Cohα

X
belongs to the category QX of spherical Eisenstein sheaves of X. We

show by a simple example how a complete description of all spherical
Eisenstein sheaves would necessarily involve the Brill-Noether stratas of
Cohα

X
.

0. Introduction

Let X be a smooth projective curve defined over a finite field Fq. To such a
curve is associated, through a general formalism developed by Ringel, a Hopf
algebra HX (called the Hall algebra of X). As a vector space, HX consists of
all finitely supported functions on the set of (isomorphism classes of) coherent
sheaves over X, and the (co)product encodes the structure of the extensions
between coherent sheaves over X (see e.g. [15]).

Hall algebras were first considered by Ringel in the context of representa-
tions of quivers. He showed that a certain natural subalgebra CQ⃗ of the Hall

algebra HQ⃗ of a quiver Q⃗ is isomorphic to the quantized enveloping algebra

U+
q (g) of a Kac-Moody algebra g attached to Q⃗ ([13]). This discovery paved

the way for a completely new approach to the theory of quantum groups based
on the representation theory of quivers (see e.g. [7], [11], [21],. . . ). One of the
most important development is the work of Lusztig who considered a geomet-
ric version of the Hall algebra of a quiver, in which functions are replaced by
constructible sheaves (on moduli stacks); this gave rise to the theory canonical
bases of quantum groups, whose impact in algebraic and geometric representa-
tion theory is well-known (see [10]).
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In the context of smooth projective curves, Hall algebras first appeared in
pioneering work of Kapranov in relation to the theory of automorphic forms
over function fields (see [6]). He observed some striking similarities between
the Hall algebras of curves and quantum affine algebras U+

q (ĝ) (more precisely
between the functional equations for Eisenstein series over function fields and
the so-called Drinfeld relations in quantum affine algebras). This analogy be-
comes very precise for X = P1 (see [2]). Motivated by the theory of quantum

loop algebras, we introduced in [14] a natural subalgebra Hsph
X of HX which

we call the spherical Hall algebra of X; in the language of automorphic forms,

Hsph
X is generated by the Fourier coefficients of all Eisenstein series induced

from the trivial character of a maximal torus. Inspired by work of Laumon,
we also singled out a category QX of simple perverse sheaves over the moduli

stacks Cohr,d
X of coherent sheaves over X = X ⊗ Fq. These simple perverse

sheaves (which we call spherical Eisenstein sheaves) are expected to provide
(by means of the Faisceaux-Fonctions correspondence) a canonical basis for

the spherical Hall algebras Hsph
X . From [19] it is also natural to expect QX to

play a role in the geometric Langlands program for local systems in the formal
neighborhood of the trivial local system.

The spherical Hall algebras HX and the spherical Eisenstein sheaves QX of
several low-genus (possibly orbifold) curves were computed in a series of papers
(see [14], [4], [16], [17]) where they were shown to yield interesting quantum loop
algebras (such as quantum toroidal algebras or spherical Cherednik algebras of
type A) equipped with some canonical bases. Much less is known for higher

genus curves; a combinatorial realization of Hsph
X as a shuffle algebra is given in

[19] for an arbitrary curve, but it is rather hard to analyze directly algebraically.
In this note, as a first step towards understanding these higher genus spher-

ical Hall algebras, we exhibit an explicit class of elements in Hsph
X when X is

of genus g > 1. Namely we prove (see Theorem 3.1) that the characteristic

functions of all the Harder-Narasimhan stratas Sα belong to Hsph
X (see Sec-

tion 2 for notations). We also give a geometric version of the same result: the
intersection cohomology complex IC(Sα) of any Harder-Narasimhan strata is

a spherical Eisenstein sheaf (Theorem 5.1). As we show by an example, these
classes of functions (resp. simple perverse sheaves) come very far from exhaust-

ing the whole of Hsph
X (resp. QX): a full description would (at least) involve

the various Brill-Noether loci in Cohr,d
X (see Remark 5.3).

1. Spherical Hall algebras of curves

1.1. Let X be a connected smooth projective curve of genus g defined over
the finite field Fq. We will assume here that g > 1, although most of the
results proved in this note hold for rational and elliptic curves as well (see [16],
[17]). Let Coh(X) stand for the category of coherent sheaves over X. Let
us denote by ⟨ , ⟩ the Euler form on the Grothendieck group K0(X), and let
K ′

0(X) = K0(X)/rad⟨ , ⟩ be the numerical Grothendieck group of X. We have
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K ′
0(X) = Z rk ⊕ Z deg, where rk and deg are the rank and degree functions

respectively. The Euler form on K0(X) is given by

(1.1) ⟨F ,G⟩ = (1− g)rk(F)rk(G) +
∣∣∣∣ rk(F) rk(G)
deg(F) deg(G)

∣∣∣∣ .
1.2. Let us briefly recall the definition of the Hall algebra HX of X. We refer
the reader to [15, Lecture 4] for more details. Let IX stand for the set of all
coherent sheaves over X. Put

HX = {f : IX → C | # supp f < ∞} =
⊕
F∈I

C1F ,

where 1F is the characteristic function of the point F ∈ I. Let us fix a square
root v of q−1. The multiplication in HX is defined by the following formula

(f · g)(R) =
∑
N⊆R

v−⟨R/N ,N⟩f(R/N )g(N )

and the comultiplication is

∆(f)(M,N ) =
v⟨M,N⟩

|Ext1(M,N )|

∑
ξ∈Ext1(M,N )

f(Xξ),

where Xξ is the extension of N by M corresponding to ξ. Notice that the

coproduct ∆ takes values in a completion HX⊗̂HX of the tensor space HX ⊗
HX only (see e.g. [4, Section 2]). The triple (HX , ·,∆) is not a (topological)
bialgebra, but it becomes one if we suitably twist the coproduct. For this
we introduce an extra subalgebra K = C[κr,d], (r, d) ∈ Z2, and we define an

extended Hall algebra H̃X = HX ⊗K with relations

κr,d κs,l = κr+s,d+l, κ0,0 = 1, κr,d1M κ−1
r,d = v−2r(1−g)rk(M)1M.

The new coproduct is given by the formulas

∆̃(κr,d) = κr,d ⊗ κr,d,

∆̃(f) =
∑
M,N

∆(f)(M,N )1MκrN ,dN ⊗ 1N .

Then (H̃X , ·, ∆̃) is a topological bialgebra.

The Hall algebras HX and H̃X are Z2-graded (by the class in the numerical

Grothendieck group). We will sometimes write ∆α,β or ∆̃α,β in order to specify
the graded components of the coproduct.
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1.3. We will especially be interested in the spherical subalgebra Hsph
X of HX ,

which is defined as follows. For any d ∈ Z let Picd(X) stand for the (finite) set
of line bundles over X of degree d, and let us set

1ss
1,d =

∑
L∈Picd(X)

1L.

Next, let d ≥ 1 and let Tord(X) stand for the (finite) set of all torsion sheaves
over X of degree d. We now set

10,d =
∑

T ∈Tord(X)

1T .

The spherical Hall algebra Hsph
X is generated by the elements {1ss

1,d | d ∈
Z} ∪ {10,d | d ≥ 1}. In an effort to unburden the notation, and because this

should not cause any confusion here, we will simply write UX for Hsph
X . The

spherical Hall algebra contains two natural subalgebras, namely U>
X which is

generated by {1ss
1,d | d ∈ Z}, and U0

X which is generated by {10,d | d ≥ 1}.
Moreover, the multiplication map gives an isomorphism U>

X ⊗U0
X → UX (see

e.g. [18, Section 6]).

2. Harder-Narasimhan stratifications

2.1. Let us now briefly recall the various notions related to semistability of
coherent sheaves over curves. We refer to [5], [20] for more details. We fix a
smooth projective curve X of genus g as in Section 1.1. The slope of a coherent
sheaf F over X is defined to be

µ(F) =
deg(F)

rank(F)
∈ Q ∪ {∞}.

The sheaf F is said to be semistable of slope ν if µ(F) = ν and if µ(G) ≤ ν for
any subsheaf G of F . If the above condition holds with < instead of ≤, then we
say that F is stable. We denote by Cν the full subcategory of Coh(X) whose
objects are semistable sheaves of slope ν. The categories Cν are abelian and
artinian. The simple objects of Cν are precisely given by the stable sheaves of
slope ν.

The fundamental properties of the categories Cν are listed below.

Proposition 2.1. The following hold:

i) Hom(Cν ,Cη) = 0 if ν > η,
ii) Ext(Cν ,Cη) = 0 if η > ν + 2(g − 1),
iii) any coherent sheaf F possesses a unique filtration

(2.1) 0 ⊊ Fl ⊊ · · · ⊊ F1 = F
satisfying the following conditions: Fi/Fi+1 is semistable for all i and

µ(F1/F2) < · · · < µ(Fl−1/Fl) < µ(Fl).
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The filtration (2.1) is called the Harder-Narasimhan (or HN) filtration of
F). We also define the HN-type of F to be HN(F) = (α1, . . . , αl) with αi =
Fi − Fi+1. Here G = (rank(G), deg(G)) ∈ Z2 is the class of a sheaf G in the
(numerical) Grothendieck group of Coh(X)–see Section 1.1. Note that the
weight α := α1 + · · ·+ αl of the HN type of F is equal to F .

It is convenient to view an HN type (α1, . . . , αl) as a polygon as follows:

qo
q
α1

Z
Z
Z
Zaaaaaq

α1 + α2
�����

q���
�
q���
�
qα

Figure 1. A Harder-Narasimhan polygon of weight α.

This polygon, called the HN polygon of F , is convex by construction. The
following useful result is a consequence of Proposition 2.1 (see e.g. [20, Theo-
rem 2]).

Proposition 2.2. Let F be a coherent sheaf over X of class α ∈ Z2. Let
0 ⊊ Fl ⊊ · · · ⊊ F1 = F be the HN filtration of F . Let G be a subsheaf of F of
class γ. Then

i) the point β := α− γ lies above the HN polygon of F ,
ii) if moreover β is a vertex of the HN polygon of F , that is if γ = αi +

· · ·+ αl for some 1 ≤ i ≤ l, then G = Fi.

2.2. We may stratify the set IX of all isomorphism classes of coherent sheaves
over X by the HN-type and write IX =

⊔
α Sα where α runs through the set

of all possible HN types, i.e., tuples α = (α1, . . . , αl) with αi ∈ (Z2)+ and
µ(α1) < · · · < µ(αl). Here (Z2)+ = {(r, d) ∈ Z2 | r ≥ 1 or r = 0, d > 0}. For
instance, if α = (α), then Sα is the set of isomorphism classes of semistable
sheaves of class α. Let us denote by 1Sα ∈ HX the characteristic function of
the set of sheaves of a fixed HN type α. Since X is defined over a finite field,
Sα is finite for any α hence 1Sα is a well-defined element of HX . For α ∈ (Z2)+

we will simply denote by 1ss
α the characteristic function of Sα.

From the uniqueness of the HN filtration of a given coherent sheaf we easily
deduce
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Proposition 2.3. For any HN type α = (α1, . . . , αl) we have

1Sα = v
∑

i<j⟨αi,αj⟩1ss
α1

· · ·1ss
αl
.

We use the stratification by HN type to define a completion of the Hall
algebra HX as follows. For n ∈ Z let us write α ≥ n if α = (α1, . . . , αl) with
µ(α1) ≥ n. Let C≥n be the full subcategory of Coh(X) generated by Cν for
all ν ≥ n. By definition, the HN type α of a sheaf F satisfies α ≥ n if and only
if F ∈ C≥n.

The set of HN types of a fixed weight α satisfying α ≥ n is finite for any
n. Let H<n

X [α] be the subspace of HX [α] consisting of functions supported on
the complement of

∪
α≥n Sα. It is a subspace of HX [α] of finite codimension.

Moreover there are some obvious inclusions H<m
X [α] → H<n

X [α] for any m < n.

Put H≥n
X [α] = HX [α]/H<n

X [α]. This is a finite dimensional space. We put

ĤX [α] = Lim
−→

H≥n
X [α], ĤX =

⊕
α

ĤX [α].

Note that ĤX [α] = {f : Iα → C} =
∏

F∈Iα
C1F as a vector space, where we

have denoted by Iα ⊂ IX the set of all coherent sheaves of class α. It is shown
in [4, Section 2] that the product and coproduct are well-defined in the limit

and endow ĤX with the structure of a (twisted) bialgebra.

Consider the elements

1α =
∑
F∈Iα

1F , 1vec
α =

∑
V∈Ivec

α

1V ,

where the second sum ranges over all (isomorphism classes of) vector bundles of

class α. These are both elements of ĤX . As a direct corollary of Proposition 2.3
we have the following identities:
(2.2)

1α =
∑

α∈Xα

v
∑

i<j⟨αi,αj⟩1ss
α1

· · ·1ss
αl
, 1vec

α =
∑
α∈Yα

v
∑

i<j⟨αi,αj⟩1ss
α1

· · ·1ss
αl
,

where Xα is the set of all HN types of weight α and Yα is the set of all HN
types α = (α1, . . . , αl) of weight α for which µ(αl) < ∞.

3. Characteristic functions of semistables

3.1. Our aim in this section is to prove the following theorem:

Theorem 3.1. For any α ∈ (Z2)+ we have 1ss
α ∈ UX .

Our proof of Theorem 3.1 hinges on the following preliminary result. Let us

denote by ÛX the completion of UX in ĤX (i.e., ÛX [α] = Lim
−→

UX [α]/(UX [α]

∩H<n
X [α])).

Proposition 3.2. For any α ∈ (Z2)+ we have 1ss
α ∈ ÛX .
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Proof. We may use Reineke’s inversion formula (see [12, Section 5]) to write

1ss
α =

∑
β

(−1)s−1v
∑

i<j⟨βi,βj⟩1β1 · · ·1βs ,

where the sum ranges over all tuples β = (β1, . . . , βs) of elements of (Z2)+ satis-

fying µ(
∑s

l=k βl) > µ(α) for all k = 1, . . . , s. The above sum converges in ĤX .

Since ÛX is a subalgebra of ĤX , the proposition will be proved if we can show

that 1α ∈ ÛX for all α. Furthermore, because 1α =
∑

l≥0 v
lrank(α)1vec

α−(0,l)1(0,l)

and 1(0,l) ∈ UX for all l, it suffices in fact to prove that 1vec
α ∈ ÛX for all α.

Let us write α = (r, d) and argue by induction on the rank r. The cases
r = 0, 1 are obvious so let r > 1 and let us assume that

(3.1) 1(r′,d) ∈ ÛX , 1vec
(r′,d) ∈ ÛX

for all r′ < r. We have to show that for any d ∈ Z and any n ∈ Z it holds

(3.2) 1vec
r,d ∈ UX +H<n

X .

Let us fix n and argue by induction on d. If d < nr, then no vector bundle of
rank r and degree d may belong to C≥n and hence have an HN type α ≥ n.
Therefore 1vec

r,d ∈ H<n
X . Now let us fix some d and assume that (3.2) holds for

all d′ < d.
Choose N < n − 2(g − 1) and let us consider the product 1r−1,d−N · 1vec

1,N .
By definition, we have

1r−1,d−N · 1vec
1,N =

∑
F

cF [F ],

where

cF = v−⟨(r−1,d−N),(1,N)⟩
∑

L∈PicN (X)

#{L ↪→ F}
#Aut(L)

= v−⟨(r−1,d−N),(1,N)⟩
∑

L∈PicN (X)

#{L ↪→ F}
v−2 − 1

.

Let us decompose F = VF ⊕TF into a direct sum of a vector bundle and a tor-
sion sheaf, and let us assume that F ∈ C≥n. Then F ∈ C≥2(g−1)+N and thus
Ext(L,F) = 0 by Serre duality. This in turn implies that dim Hom(L,F) =
⟨(1, N), (r, d)⟩. Any nonzero map from a line bundle to a vector bundle is an
embedding. From this we deduce that

#{L ↪→ F}= v−2dim Hom(L,F)−v−2dim Hom(L,TF )= v−2⟨(1,N),(r,d)⟩−v−2 deg(TF ).

The important point is that this only depends on deg(TF ). From this discussion
we deduce that there exists nonzero constants cl for l ≥ 0 such that

1r−1,d−N · 1vec
1,N ∈ c01

vec
r,d +

d−rn∑
l=1

cl1
vec
r,d−l · 10,l +H<n

X .
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We may rewrite this last equation as

c01
vec
r,d ∈ 1r−1,d−N · 1vec

1,N −
d−rn∑
l=1

cl1
vec
r,d−l · 10,l +H<n

X .

Now, by our two induction hypotheses we have 1r−1,d−N ∈ ÛX and 1vec
r,d−l ∈

ÛX for all l ≥ 1. But then (3.2) holds as well. We are done. ⊓⊔

Proof of Theorem 3.1. We have to show that 1ss
α belongs to UX , and not

only to ÛX . By Proposition 3.2, there exists for all n an element vn ∈ H<n
X

such that un := 1ss
α + vn ∈ UX . We may further decompose vn =

∑
α vn,α

according to the HN type α. The set of α for which vn,α is nonzero is finite
since vn ∈ HX . Our proof is based on the following two lemmas.

Lemma 3.3. There exists n ≪ 0 such that for any HN type α = (α1, . . . , αl)
of weight α satisfying µ(a1) < n, we have µ(αi+1)− µ(αi) > 2(g− 1) for some
1 ≤ i ≤ l.

Proof. Let α = (α1, . . . , αl) be as above. We have deg(α) = rank(α1)µ(α1) +
· · ·+rank(αl)µ(αl). If µ(α1) < n and µ(αi+1)−µ(αi) ≤ 2(g− 1) for all i, then

deg(α) < rank(α1)n+ rk(α2)(n+ 2(g − 1))

+ · · ·+ rank(αl)(n+ 2(g − 1)(l − 1)

= rank(α)n+
l∑

i=2

2(g − 1)(l − 1)rank(αi)

< rank(α)

(
n+ 2(g − 1)

rank(α)∑
l=1

l

)
.

This is impossible for n sufficiently negative. ⊓⊔

Lemma 3.4. Let F ∈ Coh(X) be a coherent sheaf of class α and of HN
type (α1, . . . , αl). Assume that µ(αi+1) − µ(αi) > 2(g − 1) for some i. Then
1F = m ◦∆β,γ(1F ) for β = α1 + · · ·+ αi, γ = αi+1 + · · ·+ αl.

Proof. Let Fl ⊂ · · · ⊂ F1 = F be the HN filtration of F . Since Fi+1 ∈
C≥µ(αi+1) and F/Fi+1 ∈ C≤µ(ai) while µ(αi+1) − µ(αi) > 2(g − 1) we have
Ext(Fi+1,F/Fi+1) = 0 (see Proposition 2.1). It follows that F ≃ Fi+1 ⊕
F/Fi+1. Moreover, 1F/Fi+1

1Fi+1 = v−⟨F/Fi+1,Fi+1⟩1F since there is a unique
subsheaf of F isomorphic to Fi. Hence Lemma 3.4 will be proved once we
show that ∆β,γ(1F ) = v⟨F/Fi+1,Fi+1⟩1F/Fi+1

⊗ 1Fi+1 . But this last equation is
a consequence of the fact that there exists a unique subsheaf of F of class γ,
namely Fi+1 (see Proposition 2.2). ⊓⊔

We are now ready to finish the proof of Theorem 3.1. Let us choose some
n ≪ 0 as in Lemma 3.3. Let A be the (finite) set of all α for which vn,α is
nonzero and let α0 be the lower boundary of the convex hull of elements of A.
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Figure 2. The convex hull of a set of HN polygons.

Thus α0 = (α0
1, . . . , α

0
m) is also a convex path in Z2 of weight α. Moreover

µ(α0
1) < n so that the conclusion of Lemma 3.3 applies. Choose i such that

µ(α0
i+1) − µ(α0

i ) > 2(g − 1) and set β = α0
1 + · · · + α0

i , γ = α0
i+1 + · · · + α0

m.
By Lemma 3.4, ∆β,γ(1F ) = 0 for all sheaves F whose HN polygon doesn’t lie
below the segment β.
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Figure 3. Choice of the vertex β.

This implies that ∆β,γ(vn,α) = 0 for all HN types α whose associated poly-
gon doesn’t pass through the point β. Furthermore, by Lemma 3.4 again,
m ◦∆β,γ(vn,α) = vn,α for any HN type α whose polygon does pass through β.
Hence

m ◦∆β,γ(un) = m ◦∆β,γ

(
1ss
α +

∑
α

vn,α

)
=

∑
α∈Zβ

vn,α,

where Zβ is the set of all HN types passing through β. Because un belongs to
UX , which is stable under the coproduct, we deduce that

∑
α∈Zβ

vn,α belongs

to UX as well. Hence the same holds for u′
n = 1ss

α +
∑

α/∈Zβ
vn,α. Notice

that u′
n contains strictly fewer terms than un. Arguing as above repeatedly

we obtain better and better approximations of 1ss
α by elements of UX until we

arrive at 1ss
α ∈ UX . Theorem 3.1 is proved. ⊓⊔
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The combination of Theorem 3.1 and Proposition 2.3 yields the following
result:

Corollary 3.5. For any HN type α we have 1Sα ∈ UX .

Remark 3.6. The above proof actually shows that ÛX ∩HX = UX .

4. Spherical Eisenstein sheaves

4.1. Let us set X = X ⊗ Fq. For α ∈ K ′
0(X) = Z2, let Cohα

X stand for

the moduli stack parametrizing coherent sheaves of class α over X. This is a
smooth irreducible stack, which is locally of finite type (see e.g. [9]). It carries
a Harder-Narasimhan stratification Cohα

X =
⊔

α Sα similar to the one existing

for IX , and each locally closed substack Sα is smooth and of finite type.

We will now define, following [16], a certain category of simple perverse
sheaves over the stacks Cohα

X . For this we consider the following induction
diagrams, for α, β ∈ K ′

0(X):

(4.1) Eα,β

p1

xxrrr
rrr

rrr
r

p2

##H
HH

HH
HH

H

Cohα
X × Cohβ

X Cohα+β
X

where Eα,β is the stack classifying inclusions G ⊂ F of a coherent sheaf G over

X of class β into a coherent sheaf F over X of class α+β; and where the maps
p1, p2 are given by the functors G ⊂ F 7→ (F/G,G) and G ⊂ F 7→ F . The
morphism p1 is smooth while p2 is proper and representable (see [9]).

Let Db(Cohα
X) be the bounded derived category of constructible Ql-sheaves

over Cohα
X . We define induction and restriction functors as

m : Db(Cohα
X × Cohβ

X) → Db(Cohα+β
X )

P 7→ p2!p
∗
1(P)[dim p1],

(4.2)

and

∆ : Db(Cohα+β
X ) → Db(Cohα

X × Cohβ
X)

P 7→ p1!p
∗
2(P)[dim p2].

(4.3)

By the Decomposition Theorem of [3], m preserves the subcategory of semisim-
ple complexes of geometric origin. Both of the above functors are associative
in the appropriate sense. We will sometimes write P ⋆ Q for m(P ⊠ Q). For
α ∈ K ′

0(X), let 1α = QlCohα
X
[dim Cohα

X ] be the constant complex over Cohα
X .

We will call a product of the form

Lα1,...,αr = 1α1 ⋆ · · · ⋆ 1αr

a Lusztig sheaf. It is a semisimple complex. We let PX =
⊔

α Pα stand for
the set of all simple perverse sheaves appearing in some Lusztig sheaf Lα1,...,αr
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where for all αi = (ri, di) we have ri ≤ 1. We denote by QX =
⊔

α Qα the
additive category generated by the objects of PX and their shifts.

5. IC sheaves of Harder-Narasimhan strata

The purpose of this section is to prove the following result:

Theorem 5.1. For any Harder-Narasimhan type α we have IC(Sα) ∈ PX .

This can be viewed as a direct geometric analog of Theorem 3.1. We will
first establish the following special case:

Proposition 5.2. For any α ∈ K ′
0(X) we have 1α ∈ PX .

Proof. We argue by induction on the rank r of α. If r = 1, then α = (1, d) for
some d and by definition we have 1

Coh
(1,d)
X

∈ PX . Let us fix some α of rank

r > 1 and let us assume that 1β belongs to PX for all β of rank strictly less
than r. Let us choose some d ≪ µ(α) and set β = α − (1, d). Consider the
convolution diagram

(5.1) Eβ,(1,d)

p1

wwppp
ppp

ppp
p

p2

$$H
HH

HH
HH

HH

Cohβ
X × Coh1,d

X Cohα
X

and the corresponding product 1β ⋆ 1(1,d) = p2!(1Eβ,(1,d)
). By the induction

hypothesis, both 1β and 1(1,d) belong to PX . Hence it is enough to show that
Hom(1α,1β ⋆ 1(1,d)) ̸= {0}. The strata Sα ⊂ Cohα

X is open and we have
1α = IC(Sα). Because the complex 1β ⋆ 1(1,d) is semisimple, it is sufficient to
prove that

(5.2) Hom
(
1Sα

, (1β ⋆ 1(1,d))|Sα

)
= Hom

(
1Sα

, p2!(1Eβ,(1,d)
)|Sα

)
̸= {0}.

Consider the cartesian diagram obtained by restricting (5.1) to the open strata
Sα:

(5.3) p−1
2 (Sα)

j //

p′
2

��

Eβ,(1,d)

p2

��
Sα

j′ // Cohα
X

Here j, j′ are the open embeddings. We now describe the map p′2 : p−1
2 (Sα) →

Sα explicitly. Observe that any semistable sheaf F of class α is a vector bundle,
and hence any subsheaf G ⊂ F of class (1, d) is a line bundle. Let H be the

Hom-stack over PicdX×Sα, i.e., the stack parametrizing triples (F ,G, f) where
F ∈ SαX, G ∈ PicdX and f ∈ Hom(G,F). Let a : H → PicdX × Sα be the
projection. Observe that since d ≪ α and since F is semistable, we have
dim Hom(G,F) = dim Hom(G,F) − dim Ext(G,F) = ⟨(1, d), α⟩ for any F ,G
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as above. It follows that a is a vector bundle of rank ⟨(1, d), α⟩. Denote by

a′ : H′ → PicdX × Sα the associated projective bundle. It is easy to see that
p′2 : p−1

2 (Sα) → Sα is canonically isomorphic to the composition of a′ with the

projection π : PicdX × Sα → Sα.
We may now compute

(1β ⋆ 1(1,d))|Sα
= (j′)∗p2!(1Eβ,(1,d)

) = p′2!(1p−1
2 (Sα)) = π!a

′
!(1H′).

Because a′ is a projective bundle, the constant sheaf 1PicdX×Sα
appears as a

direct summand of a′!(1H′). Therefore 1Sα
appears as a direct summand of

π!a
′
!(1H′). This shows (5.2) and finishes the proof of Proposition 5.2. ⊓⊔

We are now in position to prove Theorem 5.1. Let α = (α1, . . . , αl) be some
HN type of weight α =

∑
αi. By Proposition 5.2, all the perverse sheaves

IC(Sαi
) = 1αi belong to PX . We will show that IC(Sα) belongs to PX as well

by proving that

(5.4) Hom
(
IC(Sα),1α1 ⋆ · · · ⋆ 1αl

)
̸= {0}.

For this, consider the (iterated) induction diagram:

(5.5) E(l)
α1,...,αl

p1

vvmmm
mmm

mmm
mmm p2

$$I
II

II
II

II

Cohα1

X × · · · × Cohαl

X Cohα
X

We claim that Sα is open and dense in Im(p2). Indeed, set E(l),0
α1,...,αl

=

p−1
1 (Sα1

× · · ·Sαl
). It is an open dense subset of E(l)

α1,...,αl
and by construc-

tion p2(E(l),0
α1,...,αl

) = Sα. Since p2 is continuous, p−1
2 (Cohα

X\Sα) is an open

substack of E(l)
α1,...,αl

which does not intersect E(l),0
α1,...,αl

. But this means that

p−1
2 (Cohα

X\Sα) is empty, i.e., that Im(p2) ⊂ Sα as wanted.

By definition, 1α1
⋆ · · · ⋆ 1αl

= p2!(1E(l)
α1,...,αl

). This is a semisimple complex

and, by the above, Sα is open in its support. Therefore

Hom
(
IC(Sα),1α1 ⋆ · · · ⋆ 1αl

)
= Hom

(
1Sα

, j∗α(1α1 ⋆ · · ·1αl
)
)

= Hom
(
1Sα

, j∗αp2!(1E(l)
α1,...,αl

)
)
,

where jα : Sα → Cohα
X denote the inclusion. Observe that by the uniqueness

of the Harder-Narasimhan filtration Fl ⊂ · · · ⊂ F1 = F of a coherent sheaf
F ∈ Sα, the projective map p2 restricts to an isomorphism p−1

2 (Sα)
∼→ Sα. By

base change, j∗αp2!(1E(l)
α1,...,αl

) = 1Sα
. But then Hom

(
IC(Sα),1α1 ⋆ · · · ⋆1αl

)
=

Ql, and (5.4) follows. Theorem 5.1 is proved. ⊓⊔
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Remark 5.3. The collection of simple perverse sheaves {IC(Sα}α by no means
exhausts of all QX . We illustrate this by a very simple example showing that
one has at least to consider the various Brill-Noether stratas W k

r,d of the stacks

Cohr,d
X (see e.g. [1] or [8]; note that we use slightly different notation). Let

(r, d) = (2, 0), and let us consider the direct summands of 1(1,0) ⋆ 1(1,0). The

stack S2,0 ⊂ Coh2,0
X of semistable bundles may be stratified as follows: S2,0 =

W 0
2,0 ∪W 1

(2,0) ∪W 2
2,0 ∪ U where

W 0
2,0 = {V ∈ S2,0 | Hom(L,V) = {0}, ∀ L ∈ Pic0X},

W 1
2,0 = {V ∈ S2,0 | ∃ ! L ∈ Pic0X, Hom(L,V) = Fq},

U = {V ∈ S2,0 | ∃ L,L′ ∈ Pic0X, L ≠ L′, V ≃ L ⊕ L′},

W 2
2,0 = {V ∈ S2,0 | ∃ ! L ∈ Pic0X, Hom(L,V) = Fq

2}.

The strata W 1
2,0 consists of semistable vector bundles which are nontrivial

extensions

0 // L // V // L′ // 0

of two degree zero line bundles L,L′; the strata W 2
2,0 consists of semistable

bundles of the form V ≃ L⊕2 for some degree zero line bundle L. Moreover,
W 0

2,0 is open dense, W 2
2,0 is closed and we have inclusions of strata closures

W 1
2,0 ⊃ U ⊃ W 2

2,0.

The restriction

p′2 : p−1
2 (S2,0) → S2,0

of the proper map p2 in the induction diagram (4.1) corresponding to 1(1,0) ⋆
1(1,0) respects the above stratification. The following table lists the dimension
of each strata as well as the type of fiber:

Strata Dimension Fiber

W 0
2,0 4g − 4 ∅

W 1
2,0 3g − 3 {pt}
U 2g − 2 {pt} ∪ {pt}

W 2
2,0 g − 4 P1

It follows from the above table that p′2 is a small resolution of the closure

W 1
2,0 of W 1

2,0, and hence that p′2!(1p−1
2 (S2,0)

) = IC(W 1
2,0). Considering induc-

tion products of the form 11,d ⋆ 11,−d for d = 1, . . . , 2g − 2 we obtain elements
of PX supported on other nontrivial Brill-Noether type stratas of S2,0.
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Remark 5.4. The method of proof of Theorem 5.1 is readily transposable to

the context of quivers. Let Q⃗ be a quiver and let us assume that it contains
no oriented cycles. Lusztig defined in [10] a set QQ⃗ of simple perverse sheaves

over the moduli stacks Mα
Q⃗
, α ∈ K0(Q⃗). To any linear form Θ : K0(Q⃗) → C

(the ‘stability parameter’) one may attach a slope function µΘ on K0(Q⃗) and
a Harder-Narasimhan stratification Mα

Q⃗
=

⊔
α Sα (see [12]). Then

Theorem 5.5. For any stability parameter Θ and any Harder-Narasimhan
strata Sα we have IC(Sα) ∈ PQ⃗.

Note that the analog of Proposition 5.2 holds since Q⃗ has no oriented cy-
cles. Theorem 3.1 also holds in the context of quivers, where it is a simple
consequence of Reineke’s inversion formula ([12]).
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