• Title/Summary/Keyword: Protein kinases

Search Result 726, Processing Time 0.029 seconds

Anti-Oxidative and Anti-Inflammatory Activities of Euptelea Pleiosperma Ethanol Extract (Euptelea pleiosperma 에탄올 추출물의 항산화 및 항염증 활성)

  • Jin, Kyong-Suk;Park, Jung Ae;Lee, Ji Young;Kang, Ji Sook;Kwon, Hyun Ju;Kim, Byung Woo
    • Microbiology and Biotechnology Letters
    • /
    • v.42 no.2
    • /
    • pp.170-176
    • /
    • 2014
  • In this study, the anti-oxidative and anti-inflammatory activities of Euptelea pleiosperma ethanol extract (EPEE) were evaluated using in vitro assays and cell culture model systems. EPEE possessed a more potent scavenging activity against 1,1-diphenyl-2-picryl hydrazyl than the ascorbic acid used as a positive control. EPEE effectively suppressed lipopolysaccharide (LPS), in addition to hydrogen peroxide induced reactive oxygen species on RAW 264.7 cells. Furthermore, EPEE induced the expression of the anti-oxidative enzyme heme oxygenase 1 (HO-1) and its upstream transcription factor, nuclear factor-E2-related factor 2 (Nrf2), dose and time dependently. The modulation of HO-1 and Nrf2 expression might be regulated by mitogen-activated protein kinases and phosphatidyl inositol 3 kinase/Akt as their upstream signaling pathways. On the other hand, EPEE inhibited LPS induced nitric oxide (NO) formation without cytotoxicity. Suppression of NO formation was the result of the down regulation of inducible NO synthase (iNOS) by EPEE. Suppression of NO and iNOS by EPEE may be modulated by their upstream transcription factor, nuclear factor ${\kappa}B$, and AP-1 pathways. Taken together, these results provide important new insights into E. pleiosperma, namely that it possesses anti-oxidative and anti-inflammatory activities, indicating that it could be utilized as a promising material in the field of nutraceuticals.

Neuroprotective effects of Momordica charantia extract against hydrogen peroxide-induced cytotoxicity in human neuroblastoma SK-N-MC cells (산화적 스트레스에 대한 여주 (Momordica charantia) 추출물의 항산화 효과 및 세포사멸 억제 기전을 통한 신경세포보호효과)

  • Kim, Kkot Byeol;Lee, Seonah;Heo, Jae Hyeok;Kim, Jung hee
    • Journal of Nutrition and Health
    • /
    • v.50 no.5
    • /
    • pp.415-425
    • /
    • 2017
  • Purpose: Many studies have suggested that neuronal cells protect against oxidative stress-induced apoptotic cell death by polyphenolic compounds. We investigated the neuroprotective effects and the mechanism of action of Momordica charantia ethanol extract (MCE) against $H_2O_2-induced$ cell death of human neuroblastoma SK-N-MC cells. Methods: The antioxidant activity of MCE was measured by the quantity of total phenolic acid compounds (TPC), quantity of total flavonoid compounds (TFC), and 2,2-Diphenyl-1-pycrylhydrazyl (DPPH) radical scavenging activity. Cytotoxicity and cell viability were determined by CCK-8 assay. The formation of reactive oxygen species (ROS) was measured using 2,7-dichlorofluorescein diacetate (DCF-DA) assay. Antioxidant enzyme (SOD-1,2 and GPx-1) expression was determined by real-time PCR. Mitogen-activated protein kinases (MAPK) pathway and apoptosis signal expression was measured by Western blotting. Results: The TPC and TFC quantities of MCE were 28.51 mg gallic acid equivalents/extract g and 3.95 mg catechin equivalents/extract g, respectively. The $IC_{50}$ value for DPPH radical scavenging activity was $506.95{\mu}g/ml$ for MCE. Pre-treatment with MCE showed protective effects against $H_2O_2-induced$ cell death and inhibited ROS generation by oxidative stress. SOD-1,2 and GPx-1 mRNA expression was recovered by pre-treatment with MCE compared with the presence of $H_2O_2$. Pre-treatment with MCE inhibited phosphorylation of p38 and the JNK pathway and down-regulated cleaved caspase-3 and cleaved PARP by $H_2O_2$. Conclusion: The neuroprotective effects of MCE in terms of recovery of antioxidant enzyme gene expression, down-regulation of MAPK pathways, and inhibition apoptosis is associated with reduced oxidative stress in SK-N-MC cells.

Attenuation of Lipopolysaccharide-induced Inflammatory and Oxidative Response by 5-Aminolevulinic Acid Phosphate in RAW 264.7 Macrophages (RAW 264.7 대식세포에서 lipopolysaccharide 자극에 의한 염증성 및 산화적 스트레스에 미치는 5-aminolevulinic acid phosphate의 영향)

  • Ji, Seon Yeong;Kim, Min Yeong;Hwangbo, Hyun;Lee, Hyesook;Hong, Su Hyun;Cha, Hee-Jae;Kim, Heui-Soo;Kim, Suhkmann;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.31 no.9
    • /
    • pp.818-826
    • /
    • 2021
  • 5-Aminolevulinic acid phosphate (5-ALA-p) is a substance obtained by eluting 5-ALA (a natural delta amino acid) with aqueous ammonia, adding phosphoric acid to the eluate, and then adding acetone to confer properties suitable for use in photodynamic therapy applications. However, its pharmacological efficacy, including potential mechanisms of antioxidant and anti-inflammatory reactions, remains unclear. This study aimed to investigate the effects of 5-ALA-p on oxidative and inflammatory stresses in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. Our data showed that 5-ALA-p significantly inhibited excessive phagocytic activity via LPS and attenuated oxidative stress in LPS-treated RAW 264.7 cells. Furthermore, 5-ALA-p improved mitochondrial biogenesis reduced by LPS, suggesting that 5-ALA-p restores mitochondrial damage caused by LPS. Additionally, 5-ALA-p significantly suppressed the release of nitric oxide (NO) and pro-inflammatory cytokines, such as tumor necrosis factor α (TNF-α), interleukin (IL)-1β, and IL-6, which are associated with the inhibition of inducible NO synthase and respective cytokine expression. Furthermore, 5-ALA-p reduced the nuclear translocation of nuclear factor-kappa B (NF-κB) and inhibited phosphorylation of mitogen-activated protein kinases (MAPKs), indicating that the anti-inflammatory effect of 5-ALA-p is mediated through the suppression of NF-κB and MAPK signaling pathways. Based on these results, 5-ALA-p may serve as a potential candidate to reduce inflammation and oxidative stress.

Transcriptomic Analysis of Triticum aestivum under Salt Stress Reveals Change of Gene Expression (RNA sequencing을 이용한 염 스트레스 처리 밀(Triticum aestivum)의 유전자 발현 차이 확인 및 후보 유전자 선발)

  • Jeon, Donghyun;Lim, Yoonho;Kang, Yuna;Park, Chulsoo;Lee, Donghoon;Park, Junchan;Choi, Uchan;Kim, Kyeonghoon;Kim, Changsoo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.67 no.1
    • /
    • pp.41-52
    • /
    • 2022
  • As a cultivar of Korean wheat, 'Keumgang' wheat variety has a fast growth period and can be grown stably. Hexaploid wheat (Triticum aestivum) has moderately high salt tolerance compared to tetraploid wheat (Triticum turgidum L.). However, the molecular mechanisms related to salt tolerance of hexaploid wheat have not been elucidated yet. In this study, the candidate genes related to salt tolerance were identified by investigating the genes that are differently expressed in Keumgang variety and examining salt tolerant mutation '2020-s1340.'. A total of 85,771,537 reads were obtained after quality filtering using NextSeq 500 Illumina sequencing technology. A total of 23,634,438 reads were aligned with the NCBI Campala Lr22a pseudomolecule v5 reference genome (Triticum aestivum). A total of 282 differentially expressed genes (DEGs) were identified in the two Triticum aestivum materials. These DEGs have functions, including salt tolerance related traits such as 'wall-associated receptor kinase-like 8', 'cytochrome P450', '6-phosphofructokinase 2'. In addition, the identified DEGs were classified into three categories, including biological process, molecular function, cellular component using gene ontology analysis. These DEGs were enriched significantly for terms such as the 'copper ion transport', 'oxidation-reduction process', 'alternative oxidase activity'. These results, which were obtained using RNA-seq analysis, will improve our understanding of salt tolerance of wheat. Moreover, this study will be a useful resource for breeding wheat varieties with improved salt tolerance using molecular breeding technology.

Antioxidative Effects of Tenebrio molitor Larvae Extract Against Oxidative Stress in ARPE-19 Cells (ARPE-19 세포에서 산화적 스트레스에 대한 갈색거저리 추출물의 항산화 효과)

  • Bong Sun, Kim;Ra-Yeong, Choi;Eu-Jin, Ban;Joon Ha, Lee;In-Woo, Kim;Minchul, Seo
    • Journal of Life Science
    • /
    • v.32 no.11
    • /
    • pp.865-871
    • /
    • 2022
  • Tenebrio molitor larvae is well known as edible insect. Then, although it has been widely studied that Tenebrio molitor larvae has various bioactive functions such as antioxidant, anti-wrinkle, and anticancer. Nevertheless, antioxidant effects of Tenebrio molitor larvae water extract (TMH) has not been well described in Adult Retina Pigment Epithelial cell line (ARPE-19). In this study, we demonstrated that antioxidant effects of TMH against H2O2-induced oxidative stress in ARPE-19. Thus, we selected for our studies and performed a series of dose-response assay to determine the working concentration that lead to a consistent and high degree of cytotoxicity, which we defined as the level of H2O2 that killed 40% of the ARPE-19 cells. ARPE-19 cells were pre-treated with various concentrations of TMH (0.1 up to 2 mg/ml) before exposure to 300 µM H2O2. As we expected, TMH effectively prevented ARPE-19 cells from 300 µM H2O2-induced cell death in a dose-dependent manner. Furthermore, TMH inhibited the phosphorylation of mitogen-activated protein kinases (MAPKs) such as extracellular signal regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38. Overall, the inhibitory effects of TMH on H2O2-induced apoptosis and oxidative stress were associated with the protection cleaved caspase-3, Bax, Bcl-2, and HO-1. The TMH suppressed H2O2-induced cell membrane leakage and oxidative stress in ARPE-19 cells. Thus, these results suggest that the TMH plays an important role in antioxidant effect in ARPE-19.

Protective Effects of Trifolium pratense L. Extract against H2O2-induced Oxidative Stress in HaCaT Keratinocytes (인간 피부각질세포에서 Hydrogen peroxide로 유도된 산화적 스트레스에 대한 붉은 토끼풀 추출물의 세포 보호 효과)

  • Mi Song Shin;You Kyeong Lee;Seo Young Choi;Ji Sun Hwang;Parkyong Song;Hyeon Cheal Park;Keun Ki Kim;Hong-Joo Son;Yu-Jin Kim;Kwang Min Lee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.40 no.2
    • /
    • pp.223-232
    • /
    • 2023
  • Oxidative stress plays a significant role in the pathogenesis of various skin conditions, resulting in cellular and tissue damage that can contribute to the development of skin tone unevenness, roughness and wrinkles. In this study, we found that Trifolium pratense L. extract (TE) attenuated oxidative-induced damage in HaCaT cells and elucidated the underlying molecular mechanism. Our finding demonstrated that TE effectively protected HaCaT cells against H2O2-induced cell death by inhibiting caspase-3 activation, downregulating Bax and upregulating Bcl-2, and attenuating the activation of three mitogen-activated protein kinases (MAPKs). Our results suggest that TE has remarkable cytoprotective properties against oxidative damage in HaCaT cells and could serve as a complementary or alternative approach to prevent and treat skin damage.