Browse > Article
http://dx.doi.org/10.5352/JLS.2016.26.1.50

Immunomodulatory Activity of Water Extract of Ulmus macrocarpa in Macrophages  

Kwon, Da Hye (Department of Food & Nutrition, Dong-Eui University)
Kang, Hye-Joo (Anti-aging Research Center, Dong-Eui University)
Choi, Yung Hyun (Anti-aging Research Center, Dong-Eui University)
Chung, Kyung Tae (Blue-Bio Industry Regional Innovation center, Dong-Eui University)
Lee, Jong Hwan (Department of Biotechnology & Bioengineering, Dong-Eui University)
Kang, Kyung Hwa (Department of Oriental Medicine, Dong-Eui University)
Hyun, Sook Kyung (Department of Food & Nutrition, Dong-Eui University)
Kim, Byung Woo (Blue-Bio Industry Regional Innovation center, Dong-Eui University)
Hwang, Hye Jin (Department of Food & Nutrition, Dong-Eui University)
Publication Information
Journal of Life Science / v.26, no.1, 2016 , pp. 50-58 More about this Journal
Abstract
The root bark of Ulmus macrocarpa has been used in traditional medicine for the treatment of various diseases such as edema, infection and inflammation. Nevertheless, the biological activities and underlying mechanisms of the immunomodulatory effects remain unclear. In this study, as part of our ongoing screening program to evaluate the immunomodulatory potential of new compounds from traditional medicinal resources, we investigated the effects of U. macrocarpa water extract (UME) on immune modulation in a murine RAW 264.7 macrophage model. As immune response parameters, the productions of as nitric oxide (NO) and cytokines such tumor necrotic factor (TNF)-α, interleukin (IL)-1β and IL-10 were evaluated. Although the release of IL-1β remained unchanged in UME-treated RAW 264.7 macrophages, the productions of NO, TNF-α and IL-10 were significantly increased, along with the increased expression of inducible NO synthase, TNF-α and IL-10 expression at concentrations with no cytotoxicity. UME treatment also induced the nuclear translocation of nuclear factor κB (NF-κB), and phosphorylation of Akt and mitogen-activated protein kinases (MAPKs) indicating that UME activated macrophages through the activation of NF-κB, phosphoinositide-3-kinase (PI3K)/Akt and MAPKs signaling pathways in RAW 264.7 macrophages. Furthermore, pre-treatment with UME significantly attenuated the production of NO, but not TNF-α, IL-1β and IL-10, in lipopolysaccharide-stimulated RAW 264.7 cells suggesting that UME may be useful in preventing inflammatory diseases mediated by excessive production of NO. These findings suggest that the beneficial therapeutic effects of UME may be attributed partly to its ability to modulate immune functions in macrophages.
Keywords
Cytokine; Immunomodulation; macrophages; NO; RAW 264.7; Ulmus macrocarpa;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Liles, W. C. 2001. Immunomodulatory approaches to augment phagocyte-mediated host defense for treatment of infectious diseases. Semin. Respir. Infect. 16, 11-17.   DOI
2 Hibbs, J. B., Taintor, R. R. and Vavrin, Z. 1987. Macrophage cytotoxicity: role for L-arginine deiminase and imino nitrogen oxidation to nitrite. Science 235, 473-479.   DOI
3 Ivashkiv, L. B. 2011. Inflammatory signaling in macrophages: transitions from acute to tolerant and alternative activation states. Eur. J. Immunol. 41, 2477-2481.   DOI
4 Arthur, J. S. and Ley, S. C. 2013. Mitogen-activated protein kinases in innate immunity. Nat. Rev. Immunol. 13, 679-692.   DOI
5 Kayser, O., Masihi, K. N. and Kiderlen, A. F. 2003. Natural products and synthetic compounds as immunomodulators. Expert. Rev. Anti-Infect. Ther. 1, 319-335.   DOI
6 Lee, J. S. and Hong, E. K. 2011. Immunostimulating activity of the polysaccharides isolated from Cordyceps militaris. Int. Immunopharmacol. 11, 1226-1233.   DOI
7 Liew, F. Y., Wei, X. Q. and Proudfoot, L. 1997. Cytokines and nitric oxide as effector molecules against parasitic infections. Philos. Trans. R. Soc. Lond. B Biol. Sci. 352, 1311-1315.   DOI
8 Locksley, R. M., Killeen, N. and Lenardo, M. J. 2001. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 104, 487-501.   DOI
9 Lorsbach, R. B., Murphy, W. J., Lowenstein, C. J., Snyder, S. H. and Russell, S. W. 1993. Expression of the nitric oxide synthase gene in mouse macrophages activated for tumor cell killing.molecular basis for the synergy between interferon-gamma and lipopolysaccharide. J. Biol. Chem. 268,1908-1913.
10 Beutler, B. 2004. Innate immunity: an overview. Mol. Immunol. 40, 845-859.   DOI
11 Choi, H. S., Kim, S. R., Hong, S. H., Ku, J. M., Kim, M. K., Seo, H. S., Cho, S. G., Shin, S., Shin, Y. C. and Ko, S. G. 2013. Water extract of deer bones activates macrophages and alleviates neutropenia. Evid. Based Complement. Alternat. Med. 2013, 617302.
12 Gasparini, C. and Feldmann, M. 2012. NF-κB as a target for modulating inflammatory responses. Curr. Pharm. Des. 18, 5735-5745.   DOI
13 Patel, T. N., Shishehbor, M. H. and Bhatt, D. L. 2007. A review of high-dose statin therapy: targeting cholesterol and inflammation in atherosclerosis. Eur. Heart J. 28, 664-672.   DOI
14 Guzik, T. J., Korbut, R. and Adamek-Guzik, T. 2003. Nitric oxide and superoxide in inflammation and immune regulation. J. Physiol. Pharmacol. 54, 469-487.
15 Hayden, M. S. and Ghosh, S. 2014. Regulation of NF-κB by TNF family cytokines. Semin. Immunol. 26, 253-266.   DOI
16 Saponaro, C., Cianciulli, A., Calvello, R., Dragone, T., Iacobazzi, F. and Panaro, M. A. 2012. The PI3K/Akt pathway is required for LPS activation of microglial cells. Immunopharmacol. Immunotoxicol. 34, 858-865.   DOI
17 Pinto, M. R., Melillo, D., Giacomelli, S., Sfyroera, G. and Lambris, J. D. 2007. Ancient origin of the complement system: emerging invertebrate models. Adv. Exp. Med. Biol. 598, 372-388.   DOI
18 Ritchlin, C. T., Haas-Smith, S. A., Li, P., Hicks, D. G. and Schwarz, E. M. 2003. Mechanisms of TNF-alpha- and RANKL-mediated osteoclastogenesis and bone resorption in psoriatic arthritis. J. Clin. Invest. 111, 821-831.   DOI
19 Schreiber, S., Heinig, T., Thiele, H. G. and Raedler, A. 1995. Immunoregulatory role of interleukin 10 in patients with inflammatory bowel disease. Gastroenterology 108, 1434-1444.   DOI
20 Klimp, A. H., de Vries, E. G., Scherphof, G. L. and Daemen, T. 2002. A potential role of macrophage activation in the treatment of cancer. Crit. Rev. Oncol. Hematol. 44, 143-161.   DOI
21 Kwon, J. H., Kim, S. B., Park, K. H. and Lee M. W. 2011. Antioxidative and anti-inflammatory effects of phenolic compounds from the roots of Ulmus macrocarpa. Arch. Pharm. Res. 34, 1459-1466.   DOI
22 Yang, W. K., Lee, J. J., Sung, Y. Y., Kim, D. S., Myung, C. S. and Kim, H. K. 2013. Extract of Ulmus macrocarpa Hance prevents thrombus formation through antiplatelet activity. Mol. Med. Rep. 8, 726-730.   DOI
23 Kwon, Y. M., Lee, J. H. and Lee, M. W. 2002. Phenolic compounds from barks of Ulmus macrocarpa and its antioxidative activities. Kor. J. Pharmacogn. 33, 404-410.
24 Lane, T. and Lachmann, H. J. 2011. The emerging role of interleukin-1β in autoinflammatory diseases. Curr. Allergy Asthma Rep. 11, 361-368.   DOI
25 MacMicking, J., Xie, Q. W. and Nathan, C. 1997. Nitric oxide and macrophage function. Annu. Rev. Immunol. 15, 323-550.   DOI
26 Zhou, D., Huang, C., Lin, Z., Zhan, S., Kong, L., Fang, C. and Li, J. 2014. Macrophage polarization and function with emphasis on the evolving roles of coordinated regulation of cellular signaling pathways. Cell Signal. 26, 192-197.   DOI
27 Singh, V. K., Mehrotra, S., Narayan, P., Pandey, C. M. and Agarwal, S. S. 2000. Modulation of autoimmune diseases by nitric oxide. Immunol. Res. 22, 1-19.   DOI
28 Madrid, L. V., Wang, C. Y., Guttridge, D. C., Schottelius, A. J., Baldwin, A. S. Jr. and Mayo, M. W. 2000. Akt suppresses apoptosis by stimulating the transactivation potential of the RelA/p65 subunit of NF-kappaB. Mol. Cell. Biol. 20, 1626-1638.   DOI
29 Medzhitov, R. and Janeway, C. 2000. Innate immune recognition: mechanisms and pathways. Immunol. Rev. 173, 89-97.   DOI
30 Murray, P. J. and Wynn, T. A. 2011. Protective and pathogenic functions of macrophage subsets. Nat. Rev. Immunol. 11, 723-737.   DOI
31 Wolf, S. F., Sieburth., D. and Sypek, J. 1994. Interleukin 12: a key modulator of immune function. Stem Cell 12, 154-168.   DOI
32 Wang, D., Zhang, S., Li, L., Liu, X., Mei, K. and Wang, X. 2010. Structural insights into the assembly and activation of IL-1β with its receptors. Nat. Immunol. 11, 905-911.   DOI
33 Storck, M., Schilling, M., Burkhardt, K., Prestel, R., Abendroth, D. and Hammer, C. 1994. Production of proinflammatory cytokines and adhesion molecules in ex-vivo xenogeneic kidney perfusion. Transpl. Int. 7, 647-649.   DOI
34 Tripathi, P. 2007. Nitric oxide and immune response. Indian J. Biochem. Biophys. 44, 310-319.