Browse > Article
http://dx.doi.org/10.7740/kjcs.2022.67.1.041

Transcriptomic Analysis of Triticum aestivum under Salt Stress Reveals Change of Gene Expression  

Jeon, Donghyun (Department of Science in Smart Agricultural Systems, Chungnam National University)
Lim, Yoonho (Department of Crop Science, Chungnam National University)
Kang, Yuna (Department of Crop Science, Chungnam National University)
Park, Chulsoo (Department of Crop Science and Biotechnology, Jeonju National University)
Lee, Donghoon (Daejeon Science High School for The Gifted)
Park, Junchan (Daejeon Science High School for The Gifted)
Choi, Uchan (Daejeon Science High School for The Gifted)
Kim, Kyeonghoon (National Institute of Crop Science)
Kim, Changsoo (Department of Crop Science, Chungnam National University)
Publication Information
KOREAN JOURNAL OF CROP SCIENCE / v.67, no.1, 2022 , pp. 41-52 More about this Journal
Abstract
As a cultivar of Korean wheat, 'Keumgang' wheat variety has a fast growth period and can be grown stably. Hexaploid wheat (Triticum aestivum) has moderately high salt tolerance compared to tetraploid wheat (Triticum turgidum L.). However, the molecular mechanisms related to salt tolerance of hexaploid wheat have not been elucidated yet. In this study, the candidate genes related to salt tolerance were identified by investigating the genes that are differently expressed in Keumgang variety and examining salt tolerant mutation '2020-s1340.'. A total of 85,771,537 reads were obtained after quality filtering using NextSeq 500 Illumina sequencing technology. A total of 23,634,438 reads were aligned with the NCBI Campala Lr22a pseudomolecule v5 reference genome (Triticum aestivum). A total of 282 differentially expressed genes (DEGs) were identified in the two Triticum aestivum materials. These DEGs have functions, including salt tolerance related traits such as 'wall-associated receptor kinase-like 8', 'cytochrome P450', '6-phosphofructokinase 2'. In addition, the identified DEGs were classified into three categories, including biological process, molecular function, cellular component using gene ontology analysis. These DEGs were enriched significantly for terms such as the 'copper ion transport', 'oxidation-reduction process', 'alternative oxidase activity'. These results, which were obtained using RNA-seq analysis, will improve our understanding of salt tolerance of wheat. Moreover, this study will be a useful resource for breeding wheat varieties with improved salt tolerance using molecular breeding technology.
Keywords
candidate gene; differentially expressed gene; gene ontology; salt tolerance; wheat;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
연도 인용수 순위
1 Xiong, L. and J. K. Zhu. 2002. Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell and Environment 25 : 131-139.   DOI
2 Pandian, B. A., R. Sathishraj, M. Djanaguiraman, P. V. V. Prasad, and M. Jugulam. 2020. Role of Cytochrome P450 Enzymes in Plant Stress Response. Antioxidants 9.
3 Ludwig, A. A., T. Romeis, and J. D. G. Jones. 2004. CDPK-mediated signalling pathways: specificity and cross-talk. Journal of Experimental Botany 55 : 181-188.   DOI
4 Mustroph, A., J. Stock, N. Hess, S. Aldous, A. Dreilich, and B. Grimm. 2013. Characterization of the phosphofructokinase gene family in rice and its expression under oxygen deficiency stress. Frontiers in Plant Science 4.
5 Nakagami, H., A. Pitzschke, and H. Hirt. 2005. Emerging MAP kinase pathways in plant stress signalling. Trends in Plant Science 10 : 339-346.   DOI
6 Wilhelm, B. T., S. Marguerat, S. Watt, F. Schubert, V. Wood, I. Goodhead, C. J. Penkett, J. Rogers, and J. Bahler. 2008. Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution. Nature 453 : 1239-U39.   DOI
7 Asseng, S., F. Ewert, P. Martre, R. P. Rotter, D. B. Lobell, D. Cammarano, B. A. Kimball, M. J. Ottman, G. W. Wall, J. W. White, M. P. Reynolds, P. D. Alderman, P. V. V. Prasad, P. K. Aggarwal, J. Anothai, B. Basso, C. Biernath, A. J. Challinor, G. De Sanctis, J. Doltra, E. Fereres, M. Garcia-Vile, S. Gayler, G. Hoogenboom, L. A. Hunt, R. C. Izaurralde, M. Jabloun, C. D. Jones, K. C. Kersebaum, A. K. Koehler, C. Muller, S. N. Kumar, C. Nendel, G. O'Leary, J. E. Olesen, T. Palosuo, E. Priesack, E. E. Rezaei, A. C. Ruane, M. A. Semenov, I. Shcherbak, C. Stockle, P. Stratonovitch, T. Streck, I. Supit, F. Tao, P. J. Thorburn, K. Waha, E. Wang, D. Wallach, I. Wolf, Z. Zhao, and Y. Zhu. 2015. Rising temperatures reduce global wheat production. Nature Climate Change 5 : 143-147.   DOI
8 Fujita, M., Y. Fujita, Y. Noutoshi, F. Takahashi, Y. Narusaka, K. Yamaguchi-Shinozaki, and K. Shinozaki. 2006. Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Current Opinion in Plant Biology 9 : 436-442.   DOI
9 Turkan, I. and T. Demiral. 2009. Recent developments in understanding salinity tolerance. Environmental and Experimental Botany 67 : 2-9.   DOI
10 Guo, H. J., Z. J. Huang, M. Q. Li, and Z. N. Hou. 2020. Growth, ionic homeostasis, and physiological responses of cotton under different salt and alkali stresses. Scientific Reports 10.
11 Han, Y., S. Gao, K. Muegge, W. Zhang, and B. Zhou. 2015. Advanced Applications of RNA Sequencing and Challenges. Bioinform Biol Insights 9 : 29-46.
12 Shen, X. Y., Z. L. Wang, X. F. Song, J. J. Xu, C. Y. Jiang, Y. X. Zhao, C. L. Ma, and H. Zhang. 2014. Transcriptomic profiling revealed an important role of cell wall remodeling and ethylene signaling pathway during salt acclimation in Arabidopsis. Plant Molecular Biology 86 : 303-317.   DOI
13 Sun, Y. L., Z. Z. Qiao, W. Muchero, and J. G. Chen. 2020. Lectin Receptor-Like Kinases: The Sensor and Mediator at the Plant Cell Surface. Frontiers in Plant Science 11.
14 Zhao, J., Y. L. Gao, Z. Y. Zhang, T. Z. Chen, W. Z. Guo, and T. Z. Zhang. 2013. A receptor-like kinase gene (GbRLK) from Gossypium barbadense enhances salinity and drought-stress tolerance in Arabidopsis. Bmc Plant Biology 13.
15 Turan, M. A., A. H. A. Elkarim, N. Taban, and S. Taban. 2009. Effect of salt stress on growth, stomatal resistance, proline and chlorophyll concentrations on maize plant. African Journal of Agricultural Research 4 : 893-897.
16 Yong, H. Y., Z. W. Zou, E. P. Kok, B. H. Kwan, K. Chow, S. Nasu, M. Nanzyo, H. Kitashiba, and T. Nishio. 2014. Comparative Transcriptome Analysis of Leaves and Roots in Response to Sudden Increase in Salinity in Brassica napus by RNA-seq. Biomed Research International 2014.
17 Yousefirad, S., H. Soltanloo, S. S. Ramezanpour, K. Z. Nezhad, and V. Shariati. 2020. The RNA-seq transcriptomic analysis reveals genes mediating salt tolerance through rapid triggering of ion transporters in a mutant barley. Plos One 15.
18 Zhu, J. K. 2003. Regulation of ion homeostasis under salt stress. Current Opinion in Plant Biology 6 : 441-445.   DOI
19 Li, P., Y. J. Li, F. J. Zhang, G. Z. Zhang, X. Y. Jiang, H. M. Yu, and B. K. Hou. 2017. The Arabidopsis UDP-glycosyltransferases UGT79B2 and UGT79B3, contribute to cold, salt and drought stress tolerance via modulating anthocyanin accumulation. Plant Journal 89 : 85-103.   DOI
20 Hasanuzzaman, M., M. M. Alam, A. Rahman, M. Hasanuzzaman, K. Nahar, and M. Fujita. 2014. Exogenous Proline and Glycine Betaine Mediated Upregulation of Antioxidant Defense and Glyoxalase Systems Provides Better Protection against Salt-Induced Oxidative Stress in Two Rice (Oryza sativa L.) Varieties. Biomed Research International 2014.
21 Smith, C. A., V. J. Melino, C. Sweetman, and K. L. Soole. 2009. Manipulation of alternative oxidase can influence salt tolerance in Arabidopsis thaliana. Physiologia Plantarum 137 : 459-472.   DOI
22 Karimi, R. and J. Farshadfar. 2004. Multivariate Analysis of Salt Tolerance in Wheat Cultivars (Bread Wheat and Durum Wheat). Acta Physiologiae Plantarum 26 : 142-142.
23 Luo, Y., R. Reid, D. Freese, C. B. Li, J. Watkins, H. Z. Shi, H. Y. Zhang, A. Loraine, and B. H. Song. 2017. Salt tolerance response revealed by RNA-Seq in a diploid halophytic wild relative of sweet potato. Scientific Reports 7.
24 Arif, Y., P. Singh, H. Siddiqui, A. Bajguz, and S. Hayat. 2020. Salinity induced physiological and biochemical changes in plants: An omic approach towards salt stress tolerance. Plant Physiology and Biochemistry 156 : 64-77.   DOI
25 Giraldo, P., E. Benavente, F. Manzano-Agugliaro, and E. Gimenez. 2019. Worldwide Research Trends on Wheat and Barley: A Bibliometric Comparative Analysis. Agronomy-Basel 9.
26 Kizilgeci, F., M. Yildirim, M. S. Islam, D. Ratnasekera, M. A. Iqbal, and A. E. L. Sabagh. 2021. Normalized Difference Vegetation Index and Chlorophyll Content for Precision Nitrogen Management in Durum Wheat Cultivars under Semi-Arid Conditions. Sustainability 13.
27 Ma, S. S., Q. Q. Gong, and H. J. Bohnert. 2006. Dissecting salt stress pathways. Journal of Experimental Botany 57 : 1097-1107.   DOI
28 Pan, J. W., Z. Li, Q. G. Wang, Y. A. Guan, X. B. Li, Y. G. Huangfu, F. H. Meng, J. L. Li, S. J. Dai, and W. Liu. 2021. Phosphoproteomic Profiling Reveals Early Salt-Responsive Mechanisms in Two Foxtail Millet Cultivars. Frontiers in Plant Science 12.