• Title/Summary/Keyword: Protein kinases

Search Result 730, Processing Time 0.03 seconds

Bioconversion enhances anti-oxidant and anti-inflammation activities of different parts of the Mulberry Tree (Morus alba L.), especially the leaf (Mori Folium)

  • Chon, So-Hyun;Kim, Min-A;Lee, Han-Saem;Park, Jeong-Eun;Lim, Yu-Mi;Kim, Eun-Jeong;Son, Eun-Kyung;Kim, Sang-Jun;So, Jai-Hyun
    • Journal of Applied Biological Chemistry
    • /
    • v.62 no.2
    • /
    • pp.111-122
    • /
    • 2019
  • The mulberry tree (Morus alba L.) has been traditionally used in Chinese medicine to treat inflammatory diseases. We investigated the effects of bioconversion on different components of the mulberry tree, and determined changes in the physiological activities. Ethyl acetate-soluble fractions of five different segments (fruit, Mori Fructus; leaf, Mori Folium; twig, Mori Ramulus; root, Mori Cortex; and mistletoe, Loranthi Ramulus) of the mulberry tree show enhanced anti-oxidant effects in the 2,2-diphenyl-1-picrylhydrazyl, and 2,2'-azinobis-(3-ethylvenzothiazoline-6-sulfonic acid) assays, and enhanced anti-inflammatory effects of lipopolysaccharide (LPS)-stimulated nitric oxide (NO) production in RAW 264.7 macrophages, after being treated with a crude enzyme extract from Aspergillus kawachii, in the following order of activity: Mori Folium>Mori Cortex>Mori Ramulus>Mori Fructus>Loranthi Ramulus. Ethyl acetate- soluble fraction of mulberry leaves (Mori Folium) that underwent bioconversion was most effective, and was devoid of any cytotoxicity. The fraction was also effective against mRNA expression of LPS-induced pro-inflammatory cytokines, such as inducible nitric oxide synthase, cyclooxygenase-2, tumor necrosis $factor-{\alpha}$, $interleukin-1{\beta}$, and interleukin-6. In addition, the fraction was effective in LPS-induced phosphorylation of mitogen-activated protein kinases and IKK, and $I{\kappa}B$ degradation, followed by translocation of the nuclear $factor-{\kappa}B$ from the cytoplasm to the nucleus. Thus, bioconversion increased the anti-oxidative and anti-inflammatory activities of the mulberry leaf.

Fermentation enhances the antioxidant and anti-inflammatory effects of Bat Faeces (Ye Ming Sha) via the ERK, p38 MAPK and NF-κB signaling pathways in RAW 264.7 cells

  • Lee, Han-Saem;Chon, So-Hyun;Kim, Min-A;Park, Jeong-Eun;Lim, Yu-Mi;Kim, Eun-Jeong;Son, Eun-Kyung;Kim, Sang-Jun;So, Jai-Hyun
    • Journal of Applied Biological Chemistry
    • /
    • v.62 no.1
    • /
    • pp.57-66
    • /
    • 2019
  • The ethyl acetate fraction of Bat Faeces (Ye Ming Sha: natural products used in Chinese Medicine) after fermentation (EFBF-AF) showed enhanced anti-oxidative effects in 2,2-diphenyl-1-picrylhydrazyl and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt assays. Fermentation of the Bat Faeces by using the crude enzyme extract from Aspergillus kawachii, significantly increased the anti-inflammatory effects. Fermented Bat Faeces markedly inhibited nitric oxide production, inducible nitric oxide synthase, and cyclooxygenase-2 expression in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells. The EFBF-AF reduced the nuclear translocation of nuclear factor kappa B ($NF-{\kappa}B$) via $IKK{\alpha}$ and $I{\kappa}B{\alpha}$ phosphorylation, and decreased the phosphorylated the extracellular signal-regulated kinases (ERK) and p38 expression in LPS-treated RAW 264.7 macrophages. In addition, the EFBF-AF suppressed the expression of pro-inflammatory genes, such as interleukin-$1{\beta}$, interleukin-6, and tumor necrosis $factor-{\alpha}$. These results suggest that fermented Bat Faeces may suppress pro-inflammatory responses in LPS-stimulated RAW 264.7 macrophages cells via ERK, p38 mitogen-activated protein kinase and $NF-{\kappa}B$ signaling pathways.

Anti-Inflammatory Effects of Grasshopper Ketone from Sargassum fulvellum Ethanol Extract on Lipopolysaccharide-Induced Inflammatory Responses in RAW 264.7 Cells

  • Kim, Min-Ji;Jeong, So-Mi;Kang, Bo-Kyeong;Kim, Koth-Bong-Woo-Ri;Ahn, Dong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.5
    • /
    • pp.820-826
    • /
    • 2019
  • This study evaluated the anti-inflammatory potential of a grasshopper ketone (GK) isolated from the brown alga Sargassum fulvellum on lipopolysaccharide (LPS)-induced RAW 264.7 murine macrophage cell line. GK was isolated and purified from the n-hexane fraction and its structure was verified on the basis of NMR spectroscopic data. GK up to $100{\mu}g/ml$ is not cytotoxic to RAW 264.7, and is an effective inhibitor of LPS-induced NO production in RAW 264.7 cells. The production of pro-inflammatory cytokines, including IL-6, $IL-1{\beta}$, and $TNF-{\alpha}$ was found significantly reduced in $0.1-100{\mu}g/ml$ dose ranges of GK treatment (p < 0.05). We confirmed the dose-dependent and significant inhibition of iNOS and COX-2 proteins expression. In addition, it has been shown that GK induces anti-inflammatory effects by inhibiting MAPKs (ERK, JNK, and p38) and $NF-{\kappa}B$ p65 phosphorylation. Our results show that the anti-inflammatory properties of GK may be due to the inhibition of the $NF-{\kappa}B$ and MAPKs pathways, which are associated with the attenuation of cytokine secretion.

Atopic Dermatitis-Related Inflammation in Macrophages and Keratinocytes: The Inhibitory Effects of Bee Venom

  • Kim, Deok-Hyun;Song, Ho-Sueb
    • Journal of Acupuncture Research
    • /
    • v.36 no.2
    • /
    • pp.80-87
    • /
    • 2019
  • Background: This study investigated the anti-inflammatory effects of bee venom (BV) through the inhibition of nuclear factor kappa beta ($NF-{\kappa}B$) expression in macrophages and keratinocytes. Methods: Cell viability assays were performed to investigate the cytotoxicity of BV in activated macrophages [lipopolysaccharide (LPS)] and keratinocytes [interferon-gamma/tumor necrosis factor-alpha ($IFN-{\gamma}/TNF-{\alpha}$)]. A luciferase assay was performed to investigate the cellular expression of $NF-{\kappa}B$ in relation to BV dose. The expression of $NF-{\kappa}B$ inhibitors ($p-I{\kappa}B{\alpha}$, $I{\kappa}B{\alpha}$, and p50 and p65) were determined by Western Blot analysis, and the electromobility shift assay. A nitrite quantification assay was performed to investigate the effect of BV, and $NF-{\kappa}B$ inhibitor on nitric oxide (NO) production in macrophages. In addition, Western Blot analysis was performed to investigate the effect of BV on the expression of mitogen-activated protein kinases (MAPK) in activated macrophages and keratinocytes. Results: BV was not cytotoxic to activated macrophages and keratinocytes. Transcriptional activity of $NF-{\kappa}B$, and p50, p65, and $p-I{\kappa}B{\alpha}$ expression was reduced by treatment with BV in activated macrophages and keratinocytes. Treatment with BV and an $NF-{\kappa}B$ inhibitor, reduced the production of NO by activated macrophages, and also reduced $NF-{\kappa}B$ transcriptional activity in activated keratinocytes (compared with either BV, or $NF-{\kappa}B$ inhibitor treatment). Furthermore, BV decreased p38, p-p38, JNK, and p-JNK expression in LPS-activated macrophages and $IFN-{\gamma}/TNF-{\alpha}$-activated keratinocytes. Conclusion: BV blocked the signaling pathway of $NF-{\kappa}B$, which plays an important role in the inflammatory response in macrophages and keratinocytes. These findings provided the possibility of BV in the treatment of atopic dermatitis.

7,8,4'-Trihydroxyisoflavone, a Metabolized Product of Daidzein, Attenuates 6-Hydroxydopamine-Induced Neurotoxicity in SH-SY5Y Cells

  • Ko, Yong-Hyun;Kim, Seon-Kyung;Kwon, Seung-Hwan;Seo, Jee-Yeon;Lee, Bo-Ram;Kim, Young-Jung;Hur, Kwang-Hyun;Kim, Sun Yeou;Lee, Seok-Yong;Jang, Choon-Gon
    • Biomolecules & Therapeutics
    • /
    • v.27 no.4
    • /
    • pp.363-372
    • /
    • 2019
  • Daidzein isolated from soybean (Glycine max) has been widely studied for its antioxidant and anti-inflammatory activities. However, the protective effects of 7,8,4'-trihydroxyisoflavone (THIF), a major metabolite of daidzein, on 6-hydroxydopamine (OHDA)-induced neurotoxicity are not well understood. In the current study, 7,8,4'-THIF significantly inhibited neuronal cell death and lactate dehydrogenase (LDH) release induced by 6-OHDA in SH-SY5Y cells, which were used as an in vitro model of Parkinson's disease (PD). Moreover, pretreatment with 7,8,4'-THIF significantly increased the levels of superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) and decreased malondialdehyde (MDA) activity in 6-OHDA-induced SH-SY5Y cells. In addition, 7,8,4'-THIF significantly recovered 6-OHDA-induced cleaved caspase-3, cleaved caspase-9, cleaved poly-ADP-ribose polymerase (PARP), increased Bax, and decreased Bcl-2 levels. Additionally, 7,8,4'-THIF significantly restored the expression levels of phosphorylated c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase 1/2 (ERK 1/2), phosphatidylinositol 3-kinases (PI3K)/Akt, and glycogen synthase kinase-3 beta ($GSK-3{\beta}$) in 6-OHDA-induced SH-SY5Y cells. Further, 7,8,4'-THIF significantly increased the reduced tyrosine hydroxylase (TH) level induced by 6-OHDA in SH-SY5Y cells. Collectively, these results suggest that 7,8,4'-THIF protects against 6-OHDA-induced neuronal cell death in cellular PD models. Also, these effects are mediated partly by inhibiting activation of the MAPK and PI3K/Akt/$GSK-3{\beta}$ pathways.

Anti-Inflammatory Effect of Hexane Fraction from Eisenia bicyclis on Lipopolysaccharides-Treated RAW 264.7 Cells (LPS로 유도된 RAW 264.7 대식세포에 대한 대황(Eisenia bicyclis) 헥산 분획물의 항염증 효과)

  • Kim, Bowoon;Choi, Chang-Geun;Kim, Jae-Il;Kim, Hyeung-Rak
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.54 no.2
    • /
    • pp.152-161
    • /
    • 2021
  • Eisenia bicyclis is known to have secondary metabolites exhibiting various biological activities. In a preliminary study, the n-hexane fraction obtained from the ethanolic extract of E. bicyclis showed higher anti-inflammatory activity than the ethyl acetate and butyl alcohol fractions based on the inhibition of lipopolysaccharide (LPS)-stimulated nitric oxide (NO) production in RAW 264.7 cells. Using this fraction (E. bicyclis hexane fraction, EHF), we investigated the molecular mechanisms underlying its anti-inflammatory effect in LPS-stimulated RAW 264.7 cells. Pretreatment of the cells with up to 50 ㎍/mL EHF significantly inhibited NO and prostaglandin E2 production as well as their responsible enzyme proteins and mRNAs, in a dose-dependent manner (P<0.05). Similarly, EHF markedly reduced the production of pro-inflammatory cytokines, such as interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α as well as their mRNA levels. Nuclear translocation of nuclear factor-kappa B (NF-κB) was strongly suppressed by EHF treatment. EHF significantly reduced the phosphorylation of mitogen-activated protein kinases and phosphatidylinositol 3-kinase/Akt in LPS-stimulated cells. Moreover, EHF reduced ear edema in phorbol myristate acetate (PMA)-induced mice. These results indicate that EHF contains potent anti-inflammatory compounds, which may be used as a dietary supplement for the prevention of inflammatory diseases.

Inhibitory Effects of Cheongpochukeo-tang on LPS-induced Inflammation Model (LPS로 유도된 염증모델에 대한 청포축어탕의 억제 효과)

  • Hong, Ka-Kyung;Lee, Soo-Hyung;Jung, Hyun-Tae;Kim, Song-Baek
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.34 no.4
    • /
    • pp.12-29
    • /
    • 2021
  • Objective: This study was performed to investigate the inhibitory effect of Cheongpochukeo-tang (CCT) on lipopolysaccharide (LPS)-induced inflammation model. Methods: RAW 264.7 cells were pre-treated with CCT and incubated with LPS (500 ng/ml) after 1 hour. Cell viability was measured by MTT assay to figure out cytotoxicity of CCT. The production of nitric oxide and mRNA expression of pro-inflammatory cytokine were measured. And the activation of mitogen-activated protein kinases (MAPKs) and nuclear factor kappa B (NF-κB) were examined to figure out molecular mechanisms of CCT's anti-inflammatory effects. In addition, mice survival rate and cytokine levels of serum were observed after treated with CCT. And mice liver tissues were observed and their cytokines levels in liver tissue were measured. Results: CCT did not have cytotoxic effect in RAW 264.7 cells. It inhibited LPS-induced nitric oxide (NO) production, but showed an increase in NO by itself at 2 mg/ml concentration. CCT inhibited mRNA expression of IL-1β, IL-6, TNF-α in a dose dependant and the activaton of MAPKs and NF-κB. In addition, CCT reduced mortality in the LPS-induced mouse model and inhibited production of cytokines in mouse serum and liver tissue. Conclusion: The results suggest that CCT could reduce LPS-induced inflammation by inhibiting MAPKs and NF-κB activaton, NO production, and pro-inflammatory cytokines secretion. Thereby, CCT could be effective medicine for the inflammatory disease.

KMS99220 Exerts Anti-Inflammatory Effects, Activates the Nrf2 Signaling and Interferes with IKK, JNK and p38 MAPK via HO-1

  • Lee, Ji Ae;Kim, Dong Jin;Hwang, Onyou
    • Molecules and Cells
    • /
    • v.42 no.10
    • /
    • pp.702-710
    • /
    • 2019
  • Neuroinflammation is an important contributor to the pathogenesis of neurodegenerative disorders including Parkinson's disease (PD). We previously reported that our novel synthetic compound KMS99220 has a good pharmacokinetic profile, enters the brain, exerts neuroprotective effect, and inhibits $NF{\kappa}B$ activation. To further assess the utility of KMS99220 as a potential therapeutic agent for PD, we tested whether KMS99220 exerts an anti-inflammatory effect in vivo and examined the molecular mechanism mediating this phenomenon. In 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mice, oral administration of KMS99220 attenuated microglial activation and decreased the levels of inducible nitric oxide synthase and interleukin 1 beta ($IL-1{\beta}$) in the nigrostriatal system. In lipopolysaccharide (LPS)-challenged BV-2 microglial cells, KMS99220 suppressed the production and expression of $IL-1{\beta}$. In the activated microglia, KMS99220 reduced the phosphorylation of $I{\kappa}B$ kinase, c-Jun N-terminal kinase, and p38 MAP kinase; this effect was mediated by heme oxygenase-1 (HO-1), as both gene silencing and pharmacological inhibition of HO-1 abolished the effect of KMS99220. KMS99220 induced nuclear translocation of the transcription factor Nrf2 and expression of the Nrf2 target genes including HO-1. Together with our earlier findings, our current results show that KMS99220 may be a potential therapeutic agent for neuroinflammation-related neurodegenerative diseases such as PD.

The proper concentrations of dextrose and lidocaine in regenerative injection therapy: in vitro study

  • Woo, Min Seok;Park, Jiyoung;Ok, Seong-Ho;Park, Miyeong;Sohn, Ju-Tae;Cho, Man Seok;Shin, Il-Woo;Kim, Yeon A
    • The Korean Journal of Pain
    • /
    • v.34 no.1
    • /
    • pp.19-26
    • /
    • 2021
  • Background: Prolotherapy is a proliferation therapy as an alternative medicine. A combination of dextrose solution and lidocaine is usually used in prolotherapy. The concentrations of dextrose and lidocaine used in the clinical field are very high (dextrose 10%-25%, lidocaine 0.075%-1%). Several studies show about 1% dextrose and more than 0.2% lidocaine induced cell death in various cell types. We investigated the effects of low concentrations of dextrose and lidocaine in fibroblasts and suggest the optimal range of concentrations of dextrose and lidocaine in prolotherapy. Methods: Various concentrations of dextrose and lidocaine were treated in NIH-3T3. Viability was examined with trypan blue exclusion assay and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Migration assay was performed for measuring the motile activity. Extracellular signal-regulated kinase (Erk) activation and protein expression of collagen I and α-smooth muscle actin (α-SMA) were determined with western blot analysis. Results: The cell viability was decreased in concentrations of more than 5% dextrose and 0.1% lidocaine. However, in the concentrations 1% dextrose (D1) and 0.01% lidocaine (L0.01), fibroblasts proliferated mildly. The ability of migration in fibroblast was increased in the D1, L0.01, and D1 + L0.01 groups sequentially. D1 and L0.01 increased Erk activation and the expression of collagen I and α-SMA and D1 + L0.01 further increased. The inhibition of Erk activation suppressed fibroblast proliferation and the synthesis of collagen I. Conclusions: D1, L0.01, and the combination of D1 and L0.01 induced fibroblast proliferation and increased collagen I synthesis via Erk activation.

Korean Red Ginseng water extract inhibits cadmium-induced lung injury via suppressing MAPK/ERK1/2/AP-1 pathway

  • Mitra, Ankita;Rahmawati, Laily;Lee, Hwa Pyoung;Kim, Seung A.;Han, Chang-Kyun;Hyun, Sun Hee;Cho, Jae Youl
    • Journal of Ginseng Research
    • /
    • v.46 no.5
    • /
    • pp.690-699
    • /
    • 2022
  • Background: Few studies reported the therapeutic effect of Korean Red Ginseng (KRG) in lung inflammatory diseases. However, the anti-inflammatory role and underlying molecular in cadmium-induced lung injury have been poorly understood, directly linked to chronic lung diseases (CLDs): chronic obstructive pulmonary disease (COPD), cancer etc. Therefore, in this study we aim to investigate the therapeutic activities of water extract of KRG (KRG-WE) in mouse cadmium-induced lung injury model. Method: The anti-inflammatory roles and underlying mechanisms of KRG-WE were evaluated in vitro under cadmium-stimulated lung epithelial cells (A549) and HEK293T cell line and in vivo in cadmium-induced lung injury mouse model using semi-quantitative polymerase chain reaction (RT-PCR), quantitative real-time PCR (qPCR), luciferase assay, immunoblotting, and FACS. Results: KRG-WE strongly ameliorated the symptoms of CdSO4-induced lung injury in mice according to total cell number in bronchoalveolar lavage fluid (BALF) and severity scores as well as cytokine levels. KRG-WE significantly suppressed the upregulation of inflammatory signaling comprising mitogen-activated protein kinases (MAPK) and their upstream enzymes. In in vitro study, KRG-WE suppressed expression of interleukin (IL)-6, matrix metalloproteinase (MMP)-2, and IL-8 while promoting recovery in CdSO4-treated A549 cells. Similarly, KRG-WE reduced phosphorylation of MAPK and c-Jun/c-Fos in cadmium-exposed A549 cells. Conclusion: KRG-WE was found to attenuate symptoms of cadmium-induced lung injury and reduce the expression of inflammatory genes by suppression of MAPK/AP-1-mediated pathway.