• Title/Summary/Keyword: Printing characteristics

검색결과 691건 처리시간 0.03초

3D 프린팅 기술의 이해, 유해 인자 노출 평가와 제어 (Understanding Three-dimensional Printing Technology, Evaluation, and Control of Hazardous Exposure Agents)

  • 박지훈;전혜준;오영석;박경호;윤충식
    • 한국산업보건학회지
    • /
    • 제28권3호
    • /
    • pp.241-256
    • /
    • 2018
  • Objectives: This study aimed to review the characteristics of three-dimensional printing technology focusing on printing types, materials, and health hazards. We discussed the methodologies for exposure assessment on hazardous substances emitted from 3D printing through article reviews. Methods: Previous researches on 3D printing technology and exposure assessment were collected through a literature review of public reports and research articles reported up to July 2018. We mainly focused on introducing the technologies, printing materials, hazardous emissions during 3D printing, and the methodologies for evaluation. Results: 3D printing technologies can be categorized by laminating type. Fused deposition modeling(FDM) is the most widely used, and most studies have conducted exposure assessment using this type. The printing materials involved were diverse, including plastic polymer, metal, resin, and more. In the FDM types, the most commonly used material was polymers, such as acrylonitrile-butadiene-styrene(ABS) and polylactic acids(PLA). These materials are operated under high-temperature conditions, so high levels of ultrafine particles(mainly nanoparticle size) and chemical compounds such as organic compounds, aldehydes, and toxic gases were identified as being emitted during 3D printing. Conclusions: Personal desktop 3D printers are widely used and expected to be constantly distributed in the future. In particular, hazardous emissions, including nano sized particles and various thermal byproducts, can be released under operation at high temperatures, so it is important to identify the health effects by emissions from 3D printing. Furthermore, appropriate control strategies should be also considered for 3D printing technology.

모노타입과 모노프린트의 판화 매체적 특성 연구 (Printing Medium Characteristic Study of Monotype and Monoprint)

  • 송대섭
    • 조형예술학연구
    • /
    • 제11권
    • /
    • pp.79-108
    • /
    • 2007
  • "Printing is an Art of reproduction & a Technique of However printing has extended its limitation from a genre of reproduction itself and now it stands on the turning point as an art such as painting or sculpture which expresses artist's originality. Early Printing has had relations in depth with press printing in terms of information recording, preservation, and transmission. It was acknowledged value in a way of information satisfaction different from how it is valued as a pure art today. But, later printing has transferred its function from a mean of reproduction to pure art due to the development of printing skills and photography invention. It can be said that the concept of modern printing is taking over its genealogy as a creative work not as just printing. Also its expression capability is widen to dimensional printing and high-tech multimedia from original tradition techniques. As we discussed above, modern painting is very open to various changes. This modern painting aspect can be seen as an extended interpretation of 'board' concept. This dissertation raises a question why monotype and monoprint couldn't secure its position in printing history in spite of numerous artists' tryouts in its way. Monotype and monoprint fundamentally based on intaglio technique in its history. Yet, its systematic study hasn't been worked out. This is because of the lack of recognition of monotype and monoprint's originality as printing. Especially in monoprint, it has known as an early stage in copperplate printing process which is an attempt to solve the technique limitation or trial work for edition. Likewise the reason why monotype and monoprint remains at the edge of printing border ambiguously is because of conceptual, technical characteristics which are against traditional printing. In traditional printing, the concept of board is important as a method of reproduction. Different from the fact, monotype and monoprint accept the form of medium 'board' conceptually out of limited condition as mentioned. Thus monotype and monoprint hasn't stand out for several reasons until late 20th century when it started come out to public as people starts to have interests that works from famous artists are actually based on monotype and monoprint. This dissertation likes to step into the monotype and monoprint theoretically which is not well known in domestic and try to study the meaning of monotype and monoprint as a printing medium which is also hasn't been considered sincerely. For this study the process follow as below. First, look into how monotype and monoprint has a concept and history. Next, check differences through comparison with traditional printing and how printing can be understood in what aspects at the same time. After, verify how monotype and monoprint have influence on the acceptance of extended concept of 'board'. This study will show the expressional possibility of monotype and monoprint which has already known as 'tableau printing' in today's situation where adventurous experiments of printing medium are going on with the development of technology.

  • PDF

3D Printing of Materials and Printing Parameters with Animal Resources: A Review

  • Eun Young Jeon;Yuri Kim;Hyun-Jung Yun;Bum-Keun Kim;Yun-Sang Choi
    • 한국축산식품학회지
    • /
    • 제44권2호
    • /
    • pp.225-238
    • /
    • 2024
  • 3D printing technology enables the production of creative and personalized food products that meet consumer needs, such as an attractive visual appearance, fortification of specific nutrients, and modified textures. To popularize and diversify 3D-printed foods, an evaluation of the printing feasibility of various food pastes, including materials that cannot be printed natively, is necessary. Most animal resources, such as meat, milk, and eggs, are not inherently printable; therefore, the rheological properties governing printability should be improved through pre-/post-processing or adding appropriate additives. This review provides the latest progress in extrusion-based 3D printing of animal resource-based inks. In addition, this review discusses the effects of ink composition, printing conditions, and post-processing on the printing performance and characteristics of printed constructs. Further research is required to enhance the sensory quality and nutritional and textural properties of animal resource-based printed foods.

DLP, FDM 3D 프린팅 출력 방식에 따른 치수 특성에 관한 연구 (Dimensional Characteristics of 3D Printing by FDM and DLP Output Methods)

  • 정명휘;공정리;김해지
    • 한국기계가공학회지
    • /
    • 제20권1호
    • /
    • pp.66-73
    • /
    • 2021
  • In this paper, we analyzed and considered the precision of parts produced by 3D printing methods. For the latch systems applied to the Wingline folding doors, the 3D shape of the door hinge part was printed using FDM and DLP methods. Then, the 3D printed shape was scanned to measure the dimensions and dimensional changes of the actual model. In the comparison and analysis of the 3D printed door hinge parts, because the output filling density is 100% owing to the characteristics of DLP 3D printing, the filling density in FDM 3D printing was also set to 100%.

잉크젯 프린팅을 이용한 CNT-FED의 전계 방출 특성 (Field emission characteristics of CNT-FED using ink-jet printing)

  • 송진원;윤여환;한창수
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.426-426
    • /
    • 2007
  • We report the field emission characteristics of transparent single-walled carbon nanotube (SWNT) film printed using an inkjet. Pure SWNTs dispersed in dimethylformamide were printed in a transparent layer on indium-tin oxide-coated glass and annealed at $350^{\circ}C$. After taping treatment, SWNTs were oriented vertically on the substrate. The front and the back of the fabricated device produced simultaneous emissions of identical quality. In addition, inkjet printing directly achieved a patterned emission, without a secondary pattern process. This method allows simple fabrication using only SWNTs, without the use of other additives.

  • PDF

3D 가상착의를 활용한 미래주의 패션 디자인 (Development of futurism fashion design based on 3D digital clothing technology)

  • 최설맹;이윤미;이연희
    • 복식문화연구
    • /
    • 제30권5호
    • /
    • pp.732-751
    • /
    • 2022
  • In this study, we aimed to apply 3D digital printing to basic clothing production and to propose futuristic fashion design and production methods that correspond to contemporary trends. Literature on future trends, dynamism, mechanical aesthetics, and experimentalism were used to define the characteristics of "futurism." Based on theoretical considerations about futurism, we created fashion designs using 3D digital printing methods. These designs were produced using the aesthetic characteristics of futurism; the 3D digital clothing program; and application of digital printing technologies to futuristic silhouettes, colors, and materials. The results were as follows: First, with the application of futurism as a fashion motif, we pursued collaboration between artistic work and fashion, and we then explored the possibility of creative expression. Second, harmony between achromatic and chromatic colors revealed even better dynamism and activeness, and the potential to express dynamism was observed. Third, with the development of fashion design processes based on 3D digital printing methodologies, it was found to be possible to eliminate the limitations of time and space, solve problems related to limited budget or communication, and positively influence the fashion industry by enhancing convenience and diversity. Fourth, with the development of fashion design that utilizes digital printing, it was found that problems related to time, space, or limited budget were able to be solved, as compared to the use of traditional printing and image reproduction.

자외선 경화형 디지털 프린팅을 이용한 3D 프린팅 TPU 소재의 색채 특성 (Color Characteristics of 3D-Printed TPU Material Applied with Ultra-Violet Curable Digital Printing Process)

  • 이선희;박소연;정임주;이정순
    • 한국의류학회지
    • /
    • 제45권6호
    • /
    • pp.1052-1062
    • /
    • 2021
  • This study aims to confirm the possibility of Ultra-Violet (UV)-printed 3D printing materials using thermal polyurethane (TPU) with CMYK colors by applying an eco-friendly UV digital printing process. A UV-printed 3D printing TPU material was prepared with cycles of UV printing and CMYK colors. Dyeability of the 3D TPU samples with cycles of UV printing and CMYK were analyzed for thickness, weight, surface roughness, reflectance, colorimetry, and K/S values. The thickness and weight of 3D-printed TPU samples with cycles of UV printing are increased with overprints from 1 to 5. The surface roughness of 3D-printed TPU samples with increasing UV prints were decreased, meaning that the surface of TPU samples becomes gradually smoother. The reflectance spectra of CMYK UV-printed TPU samples showed the surface reflectance within each characteristic wavelength of CMYK. The 3D-printed TPU samples, subjected to UV printing twice or more, showed low surface reflectance. After examining the L*a*b* of the 3D-printed TPU samples by the cycles of UV printing, the study found that the more UV got printed more than 2 times, the closer the color to each CMYK.

디지털 프린팅을 활용한 고부가 가치 티셔츠 디자인 (A Study on High Value Added T-Shirts Design Using Digital Printing)

  • 김세은;유영선
    • 복식문화연구
    • /
    • 제15권3호
    • /
    • pp.383-393
    • /
    • 2007
  • The purpose of this study is to examine the expressional characteristics of T-shirts design using digital printing. Through digital printing system, a variety of patterns and pictures can be printed on T-shirts in a relatively short time. At this backdrop, the result of this research can aid to develop design of T-shirts with a high value added on it. The result was that the printing methods were categorized into borrowing the pictures of masterpieces, applying photography or caricatures, introducing graffiti or lettering, and representing industrial arts. In conclusion, digital printing system unlike the established printing method can have almost an unlimited range of expressing various kinds of pictures and patterns, so that designers may develop high value-added differentiated T-shirts. In other words, by creating a variety of designs with no limit of its quantity, its expressive range can be more widened and with an increased development of plotting machines, we may manufacture more varied kinds of products in a small quantity at a faster rate.

  • PDF

스크린 인쇄용 미세 범프 금속마스크의 변형특성 해석 (Deformation Analysis of a Metal Mask for the Screen Printing of Micro Bumps)

  • 이기연;이혜진;김종봉;박근
    • 한국생산제조학회지
    • /
    • 제21권3호
    • /
    • pp.408-414
    • /
    • 2012
  • Screen printing is a printing method that uses a woven mesh to support an ink-blocking stencil by transferring ink or other printable materials in order to form an image onto a substrate. Recently, the screen printing method has applied to micro-electronic packaging by using solder paste as a printable material. For the screen printing of solder paste, metal masks containing a number of micro-holes are used as a stencil material. The metal mask undergoes deformation when it is installed in the screen printing machine, which results in the deformation of micro-holes. In the present study, finite element (FE) analysis was performed to predict the amount of deformation of a metal mask. For an efficient calculation of the micro-holes of the metal mask, the sub-domain analysis method was applied to perform FE analyses connecting the global domain (the metal mask) and the local domain (micro-holes). The FE analyses were then performed to evaluate the effects of slot designs on the deformation characteristics, from which more uniform and adjustable deformation of the metal mask can be obtained.

스텐실 프린팅 공정에서 미세범프의 성형성 향상을 위한 연구 (Improvement of Filling Characteristics of Micro-Bumps in the Stencil Printing Process)

  • 서원상;민병욱;박근;이혜진;김종봉
    • 한국생산제조학회지
    • /
    • 제21권1호
    • /
    • pp.26-32
    • /
    • 2012
  • In the present study, the stencil printing process using solder paste are numerically analyzed. The key design parameters in the stencil printing process are the printing conditions, stencil design, and solder paste properties. Among these parameters, the effects of printing conditions including the squeegee angle and squeegee pressure are investigated through finite element (FE) analysis. However, the FE analysis for the stencil printing process requires tremendous computational loads and time because this process carries micro-filling through thousands of micro-apertures in stencil. To overcome this difficulty in simulation, the present study proposes a two-step approach to sequentially perform the global domain analysis and the local domain analysis. That is, the pressure development under the squeegee are firstly calculated in the full analysis domain through the global analysis. The filling stage of the solder paste into a micro-aperture is then analyzed in the local analysis domain based on the results of the preceding global analysis.