DOI QR코드

DOI QR Code

Color Characteristics of 3D-Printed TPU Material Applied with Ultra-Violet Curable Digital Printing Process

자외선 경화형 디지털 프린팅을 이용한 3D 프린팅 TPU 소재의 색채 특성

  • Lee, Sunhee (Dept. of Fashion Design, Dong-A University) ;
  • Park, Soyeon (Dept. of Fashion Design, Dong-A University) ;
  • Jung, Imjoo (Dept. of Fashion and Textiles, Dong-A University) ;
  • Lee, Jungsoon (Dept. of Clothing & Textiles, Chungnam National University)
  • 이선희 (동아대학교 패션디자인학과) ;
  • 박소연 (동아대학교 패션디자인학과) ;
  • 정임주 (동아대학교 의상섬유학과) ;
  • 이정순 (충남대학교 의류학과)
  • Received : 2021.09.01
  • Accepted : 2021.10.14
  • Published : 2021.12.31

Abstract

This study aims to confirm the possibility of Ultra-Violet (UV)-printed 3D printing materials using thermal polyurethane (TPU) with CMYK colors by applying an eco-friendly UV digital printing process. A UV-printed 3D printing TPU material was prepared with cycles of UV printing and CMYK colors. Dyeability of the 3D TPU samples with cycles of UV printing and CMYK were analyzed for thickness, weight, surface roughness, reflectance, colorimetry, and K/S values. The thickness and weight of 3D-printed TPU samples with cycles of UV printing are increased with overprints from 1 to 5. The surface roughness of 3D-printed TPU samples with increasing UV prints were decreased, meaning that the surface of TPU samples becomes gradually smoother. The reflectance spectra of CMYK UV-printed TPU samples showed the surface reflectance within each characteristic wavelength of CMYK. The 3D-printed TPU samples, subjected to UV printing twice or more, showed low surface reflectance. After examining the L*a*b* of the 3D-printed TPU samples by the cycles of UV printing, the study found that the more UV got printed more than 2 times, the closer the color to each CMYK.

Keywords

Acknowledgement

본 연구는 2021년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임(No.NRF-2019R1A2C2084041).

References

  1. Baysal, G., Kalav, B., & Kayaoglu, B. K. (2019). Colour and gloss properties of pigment-printed synthetic leather using an ultraviolet-curable water-borne polyurethane acrylate binder and two photoinitiators at different ratios. Coloration Technology, 135(2), 133-142. doi:10.1111/cote.12386
  2. Berns, R. S., Billmeyer, F. W., & Saltzman, M. (2000). Billmeyer and Saltzman's principles of color technology (3rd ed). New York, NY: Wiley.
  3. Inkjet printing. (2021, August 30). Wikipidia. Retrieved from https://en.wikipedia.org/wiki/Inkjet_printing
  4. Jeong, Y.-K., & Jang, J. (2008). Effect of disperse dyeing on UV-curable flame-retardant finish of PET fabrics. Journal of the Korean Society of Dyers and Finishers, 20(2), 66-74. doi:10.5764/TCF.2008.20.2.066
  5. Jang, J., & Koo, G.-H. (2008). 자외선 경화형 섬유 가공 [UV curable fiber finishing]. Fiber Technology and Industry, 12 (3), 180-185.
  6. Kabir, S., Kim, H., & Lee, S. (2020a). Characterization of 3D printed auxetic sinusoidal patterns/nylon composite fabrics. Fibers and Polymers, 21(6), 1372-1381. doi:10.1007/s12221-020-9507-6
  7. Kabir, S., Kim, H., & Lee, S. (2020b). Physical property of 3Dprinted sinusoidal pattern using shape memory TPU filament. Textile Research Journal, 90(21-22), 2399-2410. doi:10.1177/0040517520919750
  8. Karim, M. N., Afroj, S., Rigout, M., Yeates, S. G., & Carr, C. (2015). Towards UV-curable inkjet printing of biodegradable poly (lactic acid) fabrics. Journal of Materials Science, 50(13), 4576-4585. doi:10.1007/s10853-015-9006-0
  9. Kim, H., Kabir, S., & Lee, S. (2021). Mechanical properties of 3D printed re-entrant pattern/neoprene composite textile by pattern tilting angle of pattern. Journal of the Korean Society of Clothing and Textiles, 45(1), 106-122. doi:10.5850/JKSCT.2021.45.1.106
  10. Kim, H., & Lee, S. (2020). Mechanical properties of 3D printed re-entrant pattern with various hardness types of TPU filament manufactured through FDM 3D printing. Textile Science and Engineering, 57(3), 166-176. doi:10.12772/TSE.2020.57.166
  11. Lee, H. J., Lee, H. Y., Park, E. J., Choi, Y. J., & Kim, S. D. (2010). Alkaline dissolution and dyeing properties of seaisland type ultrafine nylon fiber. Textile Coloration and Finishing, 22(4), 325-331. doi:10.5764/TCF.2010.22.4.325
  12. Lee, S. (2018). Evaluation of mechanical properties and was hability of 3D printed lace/voil composite fabrics manufactured by FDM 3D printing technology. Fashion & Textile Research Journal, 20(3), 353-359. doi:10.5805/SFTI.2018.20.3.353
  13. Li, N.-w., Ho, C.-p., Yick, K.-l., & Zhou, J.-y. (2020). Effect of UV-curable inkjet printing parameters on physical, lowstress mechanical, and aesthetic properties of polypropylene knitted fabrics. Fibers and Polymers, 21(12), 2788-2798. doi:10.1007/s12221-020-1295-5
  14. Martin, G. D., Hoath, S. D., & Hutchings, I. M. (2008). Inkjet printing - the physics of manipulating liquid jets and drops. Journal of Physics: Conference Series, 105:012001. doi:10.1088/1742-6596/105/1/012001
  15. Seipel, S., Yu, J., Periyasamy, A. P., Vikova, M., Vik, M., & Nierstrasz, V. A. (2018). Inkjet printing and UV-LED curing of photochromic dyes for functional and smart textile applications. RSC Advances, 8(50), 28395-28404. doi:10.1039/c8ra05856c
  16. Soars, J. B., Finamor, J., Silva, F. P., Roldo, L., & Candido, L. H. (2018). Analysis of the influence of polylactic acid (PLA) colour on FDM 3D printing temperature and part finishing. Rapid Prototype Journal, 24(8), 1305-1316. doi:10.1108/RPJ-09-2017-0177
  17. Takatani, T., Fujita, K., Tanaka, K., Funatomi, T., & Mukaigawa, Y. (2018). Controlling translucency by UV printing on a translucent object. IPSJ Transactions on Computer Vision and Applications, 10(1):7. doi:10.1186/s41074-018-0043-x
  18. Yuan, J., Zhu, M., Xu, B., & Chen, G. (2018). Review on processes and color quality evaluation of color 3D printing. Rapid Prototype Journal, 24(2), 409-415. doi : 10.1108/RPJ11-2016-0182