• Title/Summary/Keyword: Principle of maximum

Search Result 480, Processing Time 0.027 seconds

A LIOUVILLE-TYPE THEOREM FOR COMPLETE RIEMANNIAN MANIFOLDS

  • Choi, Soon-Meen;Kwon, Jung-Hwan;Suh, Young-Jin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.35 no.2
    • /
    • pp.301-309
    • /
    • 1998
  • The purpose of this paper is to give a theorem of Liouvilletype for complete Riemannian manifolds as an extension of the Theorem of Nishikawa [6].

  • PDF

Necessary and sufficient conditions for an optimal control problem involving discontinuous cost integrand (비연속 코스트를 갖는 최적 제어 문제의 필요충분조건)

  • 변증남
    • 전기의세계
    • /
    • v.28 no.6
    • /
    • pp.47-51
    • /
    • 1979
  • An optimal problem in which the dynamics is nonlinear and the cost functional includes a discontinuous integrand is investigated. By using Neustadt's abstract maximum principle, a necessary conditions in the form of Pontryagin's maximum principle is derived and it is further shown that this necessary condition is also a sufficient condition for normal problems with linear-in-the-state systems.

  • PDF

A MAXIMUM PRINCIPLE FOR COMPLETE HYPERSURFACES IN LOCALLY SYMMETRIC RIEMANNIAN MANIFOLD

  • Zhang, Shicheng
    • Communications of the Korean Mathematical Society
    • /
    • v.29 no.1
    • /
    • pp.141-153
    • /
    • 2014
  • In this article, we apply the weak maximum principle in order to obtain a suitable characterization of the complete linearWeingarten hypersurfaces immersed in locally symmetric Riemannian manifold $N^{n+1}$. Under the assumption that the mean curvature attains its maximum and supposing an appropriated restriction on the norm of the traceless part of the second fundamental form, we prove that such a hypersurface must be either totally umbilical or hypersurface is an isoparametric hypersurface with two distinct principal curvatures one of which is simple.

Maximum Entropy Principle for Queueing Theory

  • SungJin Ahn;DongHoon Lim;SooTaek Kim
    • Communications for Statistical Applications and Methods
    • /
    • v.4 no.2
    • /
    • pp.497-505
    • /
    • 1997
  • We attempt to get a probabilistic model of a queueing system in the maximum entropy condition. Applying the maximum entropy principle to the queueing system, we obtain the most uncertain probability model compatible with the available information expressed by moments.

  • PDF

Internet Roundtrip Delay Prediction Using the Maximum Entropy Principle

  • Liu, Peter Xiaoping;Meng, Max Q-H;Gu, Jason
    • Journal of Communications and Networks
    • /
    • v.5 no.1
    • /
    • pp.65-72
    • /
    • 2003
  • Internet roundtrip delay/time (RTT) prediction plays an important role in detecting packet losses in reliable transport protocols for traditional web applications and determining proper transmission rates in many rate-based TCP-friendly protocols for Internet-based real-time applications. The widely adopted autoregressive and moving average (ARMA) model with fixed-parameters is shown to be insufficient for all scenarios due to its intrinsic limitation that it filters out all high-frequency components of RTT dynamics. In this paper, we introduce a novel parameter-varying RTT model for Internet roundtrip time prediction based on the information theory and the maximum entropy principle (MEP). Since the coefficients of the proposed RTT model are updated dynamically, the model is adaptive and it tracks RTT dynamics rapidly. The results of our experiments show that the MEP algorithm works better than the ARMA method in both RTT prediction and RTO estimation.

ON SOME UNBOUNDED DOMAINS FOR A MAXIMUM PRINCIPLE

  • CHO, SUNGWON
    • The Pure and Applied Mathematics
    • /
    • v.23 no.1
    • /
    • pp.13-19
    • /
    • 2016
  • In this paper, we study some characterizations of unbounded domains. Among these, so-called G-domain is introduced by Cabre for the Aleksandrov-Bakelman-Pucci maximum principle of second order linear elliptic operator in a non-divergence form. This domain is generalized to wG-domain by Vitolo for the maximum principle of an unbounded domain, which contains G-domain. We study the properties of these domains and compare some other characterizations. We prove that sA-domain is wG-domain, but using the Cantor set, we are able to construct a example which is wG-domain but not sA-domain.

BOUNDARY POINTWISE ERROR ESTIMATE FOR FINITE ELEMENT METHOD

  • Bae, Hyeong-Ohk;Chu, Jeong-Ho;Choe, Hi-Jun;Kim, Do-Wan
    • Journal of the Korean Mathematical Society
    • /
    • v.36 no.6
    • /
    • pp.1033-1046
    • /
    • 1999
  • This paper is devoted to the point wise error estimate up to boundary for the standard finite element solution of Poisson equation with Dirichlet boundary condition. Our new approach used the discrete maximum principle for the discrete harmonic solution. once the mesh in our domain satisfies the $\beta$-condition defined by us, the discrete harmonic solution with dirichlet boundary condition has the discrete maximum principle and the pointwise error should be bounded by L-errors newly obtained.

  • PDF

UPPER AND LOWER BOUNDS FOR ANISOTROPIC TORSIONAL RIGIDITY

  • Song, Jong-Ghul
    • Communications of the Korean Mathematical Society
    • /
    • v.10 no.2
    • /
    • pp.461-469
    • /
    • 1995
  • Some bounds for anisotropic torsional rigidity with one plane of elastic symmetry perpendicular to the axis of the beam are derived by making use of the isoperimetric inequalities, complementary variational principles, and the maximum principle. Upper and lower bounds are obtained by applying the isoperimetric inequalities. While the upper bound investigated by the variational principles and maximum principle. The analysis is patterned after the work of Payne and Weinbeger [J. Math. Anal. Appl. 2(1961). pp. 210-216].

  • PDF

POSITIVE SOLUTIONS TO DISCRETE HARMONIC FUNCTIONS IN UNBOUNDED CYLINDERS

  • Fengwen Han;Lidan Wang
    • Journal of the Korean Mathematical Society
    • /
    • v.61 no.2
    • /
    • pp.377-393
    • /
    • 2024
  • In this paper, we study the positive solutions to a discrete harmonic function for a random walk satisfying finite range and ellipticity conditions, killed at the boundary of an unbounded cylinder in ℤd. We first prove the existence and uniqueness of positive solutions, and then establish that all the positive solutions are generated by two special solutions, which are exponential growth at one end and exponential decay at the other. Our method is based on maximum principle and a Harnack type inequality.

Modified inverse moment estimation: its principle and applications

  • Gui, Wenhao
    • Communications for Statistical Applications and Methods
    • /
    • v.23 no.6
    • /
    • pp.479-496
    • /
    • 2016
  • In this survey, we present a modified inverse moment estimation of parameters and its applications. We use a specific model to demonstrate its principle and how to apply this method in practice. The estimation of unknown parameters is considered. A necessary and sufficient condition for the existence and uniqueness of maximum-likelihood estimates of the parameters is obtained for the classical maximum likelihood estimation. Inverse moment and modified inverse moment estimators are proposed and their properties are studied. Monte Carlo simulations are conducted to compare the performances of these estimators. As far as the biases and mean squared errors are concerned, modified inverse moment estimator works the best in all cases considered for estimating the unknown parameters. Its performance is followed by inverse moment estimator and maximum likelihood estimator, especially for small sample sizes.