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BOUNDARY POINTWISE ERROR ESTIMATE
FOR FINITE ELEMENT METHOD

HYEONG-OHK BAE, JEONG HO CHuU,
H1 JuN CHOE, AND Do WaAN KiMm

ABSTRACT. This paper is devoted to the pointwise error estimate
up to boundary for the standard finite element solution of Poisson
equation with Dirichlet boundary condition. Our new approach uses
the discrete maximum principle for the discrete harmonic solution.
Once the mesh in our domain satisfies the S— condition defined by
us, the discrete harmonic solution with Dirichlet boundary condition
has the discrete maximum principle and the pointwise error should
be bounded by L;— errors newly obtained.

1. Introduction

In the field of finite element methods the error estimates for Poisson
type equations have been extensively studied for several decades by many
authors because of its basic importance and applications. For example,
many problems physically interesting are concerned with Laplacian oper-
ator as principal part. If all other terms except for Laplacian are moved
to right-hand side, then we can get the equation of Poisson type. Thus
the errors in the regime of function spaces considered are interesting.
Especially, the pointwise error is natural and important thing for many
engineers and mathematicians. However it has been known that its error
analysis is hard one even for good mathematicians.

The key idea of our method for the pointwise error up to boundary is
to use the discrete maximum principle for discrete harmonic by which we
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mean the finite element solution for Laplace equation in term of piece-
wise linear interpolation polynomials. Recently we have obtained the
sufficient condition for triangulation under which the discrete harmonic
function satisfies maximum principle, i.e., its maximum can be obtained
on the boundary. We called this the 3— condition for the triangulation.
See [1].

In this paper we consider the finite element solution for the Poisson
equation

—Au = f in Q
v = 0 on 90N

where (2 is a bounded open set in RY. As usual triangulation in finite
element method, our domain  is divided by quasi-uniform polyhedrons
T;. Let T, (0 < h < 1) be the class of T;’s and Qy = Ure7,T;. By quasi-
uniformity, we mean that, for any T; € 7}, there exist constants ¢ > 0
and C > 0 such that

diam(T;) < Ch and sup{r >0|B, C T;} > ch.

Let us consider the finite element space S* which is composed of piece-
wise linear and continuous functions. Thus we have S* C W1>®(Qy).
From a usual Hilbert space theory we can find a solution u, € SP satis-

fying

Vuy, - Vydz = fxdzx
Qp Q
for all x € S where x € &} has supp x C Q. We assume that any
harmonic function u € Wh*(Q,) with piecewise linear boundary data
satisfies the localized estimate

(11) I = Pralliey < ¥ og () Iulliman
for some large constant ¢ and Bp C 0, where P, is the H' projection.
For the detail of the assumption, we refer (10.8) of [8]. In fact Schatz
and Wahlbin ([8]) proved (1.1) with suitable cut-off function.

Our main concern here is the L™ error estimate of the solution to
discrete Poisson equation globally.

Let us define B(zg,7) = {x € RN ||z — 20| < r}. LP is the usual
Lebesque space and W*?(Q) is the Sobolev space equipped with the
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usual norm 1
Iy = | 3 [ 1D a2 )
‘a‘(k
and W*2(Q) = H*(Q) as usual notation. It is assumed that an ex-

tendibility condition for our domain (), is satisfied, i.e., there is a suffi-
ciently large domain Q,(7) with Qa(T3r) D Qu(Tr) such that Tp D Ty

and
W = U Ti, = U T..
TiGTh TeTs
Moreover, at each point 2y € 0Q, B(zg, Ry) C ), for some fixed By > 0
independent of z5. Now we state our main theorem. -

THEOREM 1. Suppose Qy, is extendible and its triangulation Ty, sat-
isfies 3— condition. Then

et = unll o 5, o) < C (log ) i |1 = Xl zw((en, Ry

+C d= 5 ||u — wrl g-s(B(ao RIr)
where d = dist (8(B(zo, £) N Q)\0Q, 8(B(z0, R) N 2)\61) .

This theorem is achieved by a discrete maximum principle which is
known for the triangulation satisfying f—condition. Here an important
ingredient is a representation formula for the discrete harmonic func-
tions.

2. Discrete Representation Formula

In this section we solve a discrete boundary value problem by weight.
The weight corresponds to the Poisson kernel for the continuous case.
In order to expand our new theory several topological definitions are
needed for discrete cases. For readers’ convenience let T, be an extended
triangulation of 7, in 2, the set of all nodes in Q2 (or ﬁh) denoted by
®(or ®) and the set of all vertices in a polyhedron T.€ Ti(or T4) by
(7).

DEFINITION (Path). Let V, € ® and V, € ® be nodes of our triangu-
lation 7,. We define the discrete path P(V,, V) by the following ordered
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set of nodes:
PV, ;) ={V;e®|i=0,1,--- ,k, Vo =V, Vi = i}

where the successive nodes V; and V,.; are contained in an edge of the
same polyhedron. The length of P(V,, V) is defined by

|1P(Va, Vo)l = k.
DEFINITION (Discrete Distance). Let us define the discrete distance
between V, and Vj, by
min | P(V,, Vu)ll, if V,#V,
D, vy) = § TR IE( T 7
0, otherwise
where the minimum is taken among all possible path P between V; and
Vb.

REMARK. The distance D(V,,V};) as defined above is in fact a metric
on ®.

DEFINITION (Discrete b;),ll). The discrete ball By, (Vp, L) is the set
of node V satisfying

Buie(Vo, L) ={V € ®| D(V,, V) < L}

Furthermore, we define the continuous domain Bgy.(Vg, L) by

Buso(Vo, L) = | {T € T | B(T) N Base(Vo, L) # 0
or D(Vp,V)=L forall VeX(T)}.

DEFINITION (h-convex). The discrete ball Ed_s_c(%, L) is h-convex if
there is a hyperplane P(V;) for each node V; € 0Bgs(Vo, L) such that

P(V;) N Base(Vo, L) =0 and dist(V;, P(V;)) < Ch
for some C independent of L.

LEMMA 1. Let a polyhedron T € T, be given. T C Bys(V,, L) if and
only if D(V,,V) < L for all V € ¥(T).

Proof. Assume T C Bgys(V,, L). If there is a vertex V, € X(T) but
D(V,,V,) > L, then trivially V. ¢ Bys(V,, L+1). This means D(V,, V) >
L for all V € %(T) since D(V,,V) < 1 when V € X(T'). Thus we
have T ¢ Bgs(V., L), which is contradiction to our assumption. So, the
sufficiency has been proven.
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Now, assume D(V,,V) < L for all V € I(T). f T C Bys(V;, L), the
“we have done. If T ¢ By, (V., L), then from the definition of discrete
ball, £(T) N Bys(V,, L) = @. This implies that D(V,,V) > L for all
V € E(T). From the hypothesis of D(V,,V) < L, we conclude that
D(V,,V) = L for all V € £(T). Therefore, T € Bys(V., L). O

LEMMA 2. Let V., € ®. Then the following characterization is true.
0Byse(Vo, L)N®={V € ®|D(V,,V)=Land 3T >V
such that T ¢ By, (V,, L)}

Proof. Assume that V, is a node which satisfies D(V,,V,) = L and
there exists T-€ T containing V, as vertex such that T ¢ Fdsc(%, L.
First we note that there exist at least one polyhedron T' 3 V, such that
T € Byse(Ve, L) since D(V,, Vi) = L — 1 for some vertex V) of T} where
T; has V, as vertex and so we have T} € By, (V,, L) from the definition
of By,e(V,, L). Therefore V, is a boundary point of Byse(V., L).

To prove the converse, let V, € By,(V;, L) N ®. Then there must be
two polyhedron T}, € Bys(V,, L) and Ty ¢ Byso(Ve, L) ,in which V, is
contained as vertex, such that there are two vertices V;, € 3(T;,) with
D(V,,Vin) £ L and V,y € B(Tpu) with D(V,, V,,,) > L, respectively.
If D(V;,V.) < L, then from the fact that D(V,,V,,;) > L, we have
D(V,i,Voue) > 1. It is impossible. Thus we have D(V,,V,) > L. This
implies that D(V,,V,) = L since T, C Bys(V,, L). O

COROLLARY 1. Assume that Q, is extendible. Let V, € ® be a node
in Q and hL < Ry. Then Bys(V,, L) is simply connected polygonal
domain. If the triangulation of 0, can be extendible to quasi-uniform
one of Q, then 6—B—dec(Vc, L) is uniform Lipschitz domain.

Proof. Our hypothesis h L < Ry guarantees that dB,(V,, L)NOQy, =
0. From Lemma 1 and 2, our corollary can be obtained. W]

Let u be the harmonic function in a domain Q@ C RN and B(z, p) =
{y € RN |||z — y|| < p} be a ball. Then harmonic function u satisfies
the well known mean value property of the following form

u(z) = o=

'aB(xv p)l 9B(z,p)
whenever B(z,p) C Q. For the discrete harmonic function, we can
obtain the mean value property as analogous form to continuous case,
which is described below.

u(y) dl
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DEFINITION (Proper triangulation). Let 7; be a triangulation of a
domain Q. If ,for any discrete 1-ball By, (V, 1), its all interior node is
{V'}, then the triangulation 7, is called a proper triangulation of Q2.

REMARK. If 7}, is a proper triangulation of €2, then any discrete 1-ball
must be written as follows

Bue(V;1) = HT € Ta | (T) NV # 0}
whenever V is the node of 7;,.
Let us define the index set of nodes on the boundary of Fdsc(V, L) by
U(V,L)={1,2,---,n¥}
and its corresponding set of nodes by
O(V,L) = {Vi’ |k € ¥(V, L)}
and u, a discrete harmonic in By, (Vy, L). Then we obtain the following
representation formula for u, with respect to the boundary node values
n{o
(22) wn =Y un(Vi) wi
k=1
where each wf is the discrete harmonic function in Bys(Vy, L) such that
its boundary node values are defined by
(2.3) wE(VEY =6, i=1,2,---,np

where §;; = 1 if ¢ = k, otherwise, 0.
Let us assume that our triangulation 7, is assumed to be quasi-
uniform such that

hy = min{r|B(z,r) > T}, pr=max{r|B(z,r) C T}
h=max{hr |T € Ta}, p=min{pr|T € Tp}.
From the theorem of discrete maximum principle by H. J. Choe and D.

W. Kim [1] the following estimate can be obtained under the proper
triangulation '

c C
0< < <wi(Vo) < = <1
nYO k( 0) n¥° =
where ¢ is constant independent of mesh size h and node point V. If we
let for some y with 0 <y < 1

p="h,
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then the following inequalities hold

Loy 111"
on 7 % S 2N \5

where N is the space dimension. Therefore we can obtain the following
inequality

(2.4) 0<d<wi(Vp), forall ke ¥(Vy,1)

for some constants § independent of h and Vj.

The following Lemmas will be strongly used to prove our main theo-
rem. They can be obtained from our discrete ball theory combined with
the maximum principle of discrete harmonic function.

LEMMA 3. Let T, be a proper quasi-uniform triangulation of Q C
RY. Suppose V; € ® and By,(Vp, L) C Q4 and uy, € Sh() satisfies the
following equations

/ Vu,-Vodr = 0, forall v & SHBysVa, L))
Ft’lac(VO,L)

uhlaﬁm(%,L) = Uph (S Sh(EdSC(%) L))

Then we have the consequences

Y Y
"y Ry
(2.5) un(Vo) = D Brruon(VE), YAk =1,
k=1 : k=1
where the coefficients are satisfy
6t L
(2.6) N1 < Bo-

Proof. The equations (2.5) is obvious from the representation formula
(2.2) for the discrete harmonic function. Furthermore, it must be true
that

B% = wE(Vo) for all k € W(Vp, L).
Thus it will be proved by induction for the argument L that for any
integer L > 1,

L

2.7) 0< E‘fﬁ <wk(Vo) forall ke U(Vy, L).
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From the estimate (2.4), our claim (2.7) is true for L = 1. Assume that
it is true for less than or equal to L — 1. The representation formula (2.2)

has 8L, written as follows
0
L-1
wE(Vo) =Y _wi (Vo) wi (V) for all k € ¥(Vp, L).

j=1

If the nodes in ©(Vy, L — 1) are split into the following

L
e, L-1)>J&

=1

where S, = ©(VE, 1) N ©(Vp, L — 1). The maximum principle for the

discrete harmonic function wf yields the result of
(2.8) 0<d <wi(VF) forall Vi 'e S

Since our assumption implies that
5L—1 -1
(L — 1)~ <w;" (o),

we can obtain the following inequalities

Y

L 61 e LivsL-1
wy (Vo) > T wy (Vi)
J=1
9 O
> T wa wy (V)
(L — )~ I=1 VeS,;
5L—1 L '
2 (L — 1)V Z 0
=1
5L
= TN

The third inequality in the above is obtainable from that of (2.8).

Now we want to obtain an upper bound for ﬂoLj.

a
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LEMMA 4. Let all discrete ball centered at V; be h-convex. If Fdsc(%, L)
denotes arbitrary but fixed discrete ball contained in Q, then the fol-
lowing is obtained

1+loglL
IN-1

By; <C
for some C independent of L.

Proof. Let V; be a node in 8Bg,.(Vy, L). Then since we are assuming
our discrete ball By, (Vp, L) is h-convex, there is a hyperplane PV;)
such that

(2.9) dist(V;, P(V;)) < Cih and P(V;) N Byse(Vo, L) = 0.
Let Xy € P(V;) such that
dist(V;, Xo) = dist(V;, P(V;)).
In general we may assume
» Xo =0,
P(V;)={X =(z',zy) e RV |zy =0} and

Base(Vo, L) C {zn > 0}.
For given ¢, A > 0, we solve the problem

Av=0 in {zy >0}

v(2',0) = co XB(0R){ay=0}-

Then using the Poisson kernel for upper half plane in RY we have the
following solution for the problem:

(2.10) v(z,zy) = &/ , oy = dy’
CN JBOAR) /2! — 2 + 2%,
where cy = E(—g—) If we let T; € T, be any polyhedron in By..(V, L)

containing V; asa vertex, then for sufficiently large ¢y and )\ depending
only on C; which is the constant in expression (2.9)

v(z/,zy) > 1

for all z = (', 2n) € T;.
Now we let © be the solution to
A5=0 in By.(Vp, L)
T=wl on OB eo(Vo, L)

J
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where w! is the discrete harmonic function in Sn(Base(Vo, L)) with its
boundary values defined in (2.3). Then since ¥ < v on OBgsc(Vo, L) we
have

0y § v in -Bdsc(%yL)

from the comparison principle.
From the quasi-uniform condition if we set R, = Lh, it can be as-
sumed that

ay Ry, < dist(Vp, 0Buse(Vo, L)) < a2 Ry
From the Harnack principle (2.10), we have

@211) o) <o) < 2 @ 1 gy

N1
cN JBOAR)N{zy=0} 91 R}

B\ V-1
< —
< ¢ (RL)
where C is independent of L.
Let @ be the H! projection of 9. From the comparison principle
(2.12) (Vo) = wi (Vo)

since @, is discrete harmonic in Bg.(Vp, L). Therefore from (2.11) and
(2.12), the following estimates are obtained

wJL(VO) < (V) <3(Vo) + (tn(Vo) — 9(Vh)))

AN
< cg) +hm-nml
L
On the other hand, by the assumption (1.1) we obtain
- ¥ Rp\ -
o~ onliag) < Cb¥iog (5E) lolue

RN 1
< —_ =
<c(z) g
and

Ry .
(Vo) — (Vo) < Clog | == f o — x|l oo
|5(Vo) — tn(Vo)] < 0g< . ) xesgéic(vo,%» 1o — x|z ()

N
+ RLZH'U_’Uh”L"’(BL?‘)
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Therefore we obtain
5(Vo) — (Vo)| < C (1 + log L)L~ W=D

and

14+loglL
L
“’j(%)SC-‘D’V‘j—. -

From the bound of coefficients ,Bé*j we can develop an L!-estimate of
discrete harmonic functions.

THEOREM 2. Suppose uy, is a nonnegative discrete harmonic func-
tions in Bgs(Vy, L) C Q. Then

sup up <C (1 + logL) ! up dr

BuselVo, ) IEdSC(VO’ L) I Bloe(Vo,L)
for some C independent of L. ‘
Proof. Changing the radius of balls, we can assume

up(Vy) = sup  up.
Edac(VOaL)

Here we note supg, (y, 1) us is always achieved on the node. Since 8, <

Cl—zzlé’#,we obtain
un(w) = D Brzun(V)

Viev(V,L)

1+logL L L
< C——LN—__l—— Z ,Bo,jun(vj )
View(W,L)
and
N LN—l V < C d
1+logLu"( 0) < - Z_ TUh v
TEBd.sc(VOvL)\Bdsc(vbaL“l)
Therefore,
Lo v DV Lo
Z 1+logLu( 0)_02 — z:_ /Tuhdac
L=1 L=1 TEBdgc(VO,L)\Bdsc(VOvL—l)
and ]
| Buse(Va, Lo)un(Vi) < C updz.
1+10gLo| aee(Vor Lo)lua(Vo) Buse(Vo,Lo) "
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Now we want to develop boundary maximum principle and L'-theory
for discrete harmonic functions. Let V; € € be a node near boundary.
From our extendibility assumption of the domain Qp, we can find a
large discrete domain Q,(7) with (7)) D Q(Tr) such that ) Tr-
Moreover, we assume that the reference discrete ball Bys(Vo, L) C Qp
satisfies our h-convexity condition.

THEOREM 3. Assume that u, is a nonnegative discrete harmonic
function satisfying

Ahuh =0 in Qh N Bdsc(%; L)
Up = 0 on BQh N Bdsc(‘/o: L)

in the discrete sense. Then

un(Ve) < C 1+loglL

Q% N OBuse(Voy L)| Jon6Buvo,L)
Proof. We find out that
u(Vo) = Y, wiua(Vy)
‘/’fleaBdac(‘/OrL)
since up = 0 on O, N Byse(Vo, L). We let

{Ahvh = 0 in Bdsc(‘/(), L)

uyp, dx.

vh(VjL) =4, for VjL € 0Bys.(Vo, L).
Then from the estimate of Lemma 3,
1+loglL
LN-1
Therefore from the discrete maximum principle we have

1+ log L
LN-1 )

(W) < C

wp <wvp(Vp) £C

and
un(Vi) < CEE—CEL— S wvh)
VF€QuNdBys(Vo,L)
Following the same argument of Theorem 2 we prove
1+loglL
1, N 0Bsc(Vo, L) J0,00B1(vo,L)

u(Vo) < C

up, dx.
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The above estimate is the weak boundary maximum principle. With
standard modification we prove the following Theorem.

THEOREM 4 (Boundary Pointwise Estimate). Suppose that —Au =
f in Qy with uw = 0 on 0Qy, and —Apuy, = f in Q) with up, =0 on 0.
Then the pointwise error estimate up to boundary is

lw — unllzoBer) < Cllu — Poul reBwo,r)

R 1

+C’<log——) u — Puul|dz
h) B 2B OS] Jowymrn,
R 1

+C<log—) u — uyl dz
k) B 2B 0] Jogamrn, ™

where Pyu is the H} projection of u in Q.

Proof. From the quasi-uniform mesh 7}, there is some discrete length
L such that B(Vy, R) C Bys(Vo, L) € B(Vp,2R). From the fact that
Piu — uy, is a discrete harmonic, the pointwise error estimate satisfies
the following inequality, using Theorem 3,

llu — unllzow,r) < llu — Prullr=sr,m) + CllPw — |l Lo, (w,0)
< llu = Pl cosve,m)
1
| Base(Va, L) N Q| JBu(vo,1)
Since Lh < CR for some constant C' > 0 independent of h, we have
proven our main theorem. |
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|Piu — up| dz.
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