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A MAXIMUM PRINCIPLE FOR COMPLETE

HYPERSURFACES IN LOCALLY SYMMETRIC

RIEMANNIAN MANIFOLD

Shicheng Zhang

Abstract. In this article, we apply the weak maximum principle in order
to obtain a suitable characterization of the complete linear Weingarten hy-
persurfaces immersed in locally symmetric Riemannian manifold Nn+1.
Under the assumption that the mean curvature attains its maximum and
supposing an appropriated restriction on the norm of the traceless part of
the second fundamental form, we prove that such a hypersurface must be
either totally umbilical or hypersurface is an isoparametric hypersurface
with two distinct principal curvatures one of which is simple.

1. Introduction

When the ambient manifolds possess very nice symmetry, for example the
sphere, many results have been obtained in the study of the minimal hypersur-
face and hypersurface with constant mean curvature or constant scalar curva-
ture in these ambient manifolds (One can see [7, 8, 11, 12, 15, 20, 23]). Recently,
Q. M. Cheng and H. Nakagawa [6], and H. W. Xu [22] have proved the opti-
mal rigidity theorem for hypersurface of constant mean curvature in a sphere
independently.

In order to study hypersurface with constant scalar curvature, Cheng and
Yau [9] introduced a new self-adjoint differential operator ✷ acting on C2-
functions defined on Riemannian manifolds. As a by-product of this approach
they were able to classify closed hypersurface M with constant normalized
scalar curvature R satisfying R ≥ c and non-negative sectional curvatures im-
mersed in complete and simply connected (n + 1)-dimensional Riemannian
manifolds of constant sectional curvature c, which will be denoted by Qn+1(c)
and are also known as space forms.

By using the Cheng-Yau technique, X. Liu and H. Li [15] also obtained some
rigidity theorems for hypersurface with constant scalar curvature. Therefore, it
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is important and natural to extend the Riemannian space forms to the locally
symmetric Riemannian manifolds.

Let the ambient manifoldNn+1 be a locally symmetric Riemannian manifold
with sectional curvature KN and M is an n-dimensional complete hypersurface
with constant mean curvature H in Nn+1. When 1

2 < δ ≤ KN ≤ 1 (δ is a
constant) at all points x ∈ M and the squared norm of the second fundamental

form S satisfies S < n+ n3

2(n−1)H2 −n(n−2)
2(n−1)

√

n2H4 + 4(n− 1)H2, S. Shu [21] and

D. S. [10] has obtained the hypersurface M is totally umbilical hypersurface,
respectively. H. W. Xu [24] has also obtained the same result when M is an
n-dimensional closed minimal hypersurface with constant mean curvature H in
Nn+1 and sectional curvature KN satisfying the condition δ ≤ KN ≤ 1 at all
points x ∈ M and the squared norm of the second fundamental form S satisfies
S ≤ (2δ − 1)n.

Next, Li et al. [14] extended the result of [9, 13] by considering linear Wein-
garten hypersurfaces immersed in the unit sphere Sn+1(1), that is, hypersur-
faces of Sn+1(1) whose mean curvature H and normalized scalar curvature R

satisfy R = aH+b for some a, b ∈ R. In this setting, they showed that if M is a
compact linear Weingarten hypersurface with nonnegative sectional curvature
immersed in Sn+1(1), such that R = aH + b with (n − 1)a2 + 4n(b − 1) ≥ 0,

then M is either totally umbilical or isometric to a Clifford torus Sk(
√
1− r2)×

Sn−k(r), where 1 ≤ k ≤ n−1. By applying a weak Omori-Yau maximum prin-
ciple, Pigola, Rigoli and Setti [17] studied the behavior of the scalar curvature
R of a complete hypersurface immersed with constant mean curvature into a
real space form Qn+1

c , deriving a sharp estimate for the infimum of R. Re-
cently, Aĺıas, Garćıa-Mart́ınez and Rigoli [1] obtained another suitable weak
maximum principle for complete hypersurfaces with constant scalar curvature
in Qn+1

c , and gave some applications of it in order to estimate the norm of the
traceless part of its second fundamental form. In particular, they extended the
main theorem of [3] for the context of Qn+1

c .
Here, our purpose is to establish a new characterization theorem concerning

the complete linear Weingarten hypersurfaces immersed in locally symmetric
Riemannian manifold Nn+1. Now let us introduce a notion for linear Wein-
garten hypersurfaces in an (n+ 1)-dimensional locally symmetric Riemannian
manifold Nn+1 as follows:

Definition 1.1. Let M be a hypersurface in an (n + 1)-dimensional locally
symmetric Riemannian manifold Nn+1. We call M a linear Weingarten hyper-
surface if cR+dH+e = 0, where c, d and e are constants such that c2+d2 6= 0,
R and H , respectively, denote the scalar curvature and the mean curvature of
M .

Remark 1.1. When the constant d = 0 in Definition 1.1, a linear Weingarten hy-
persurface M reduces to a hypersurface with constant scalar curvature. When
the constant c = 0 in Definition 1.1, a linear Weingarten hypersurface M re-
duces to a hypersurface with constant mean curvature. In such a sense, the
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linear Weingarten hypersurfaces can be regarded as a natural generalization of
hypersurfaces with constant scalar curvature or with constant mean curvature.

In this paper, let the ambient manifold Nn+1 be a locally symmetric Rie-
mannian manifold with sectional curvature KN satisfying the condition

K(u ∧ v) ≥ c2 (c2 is a constant), where u, v ∈ TM and

K(ω ∧ v) = c1 (c1 is a constant), where ω ∈ T⊥M and v ∈ TM ;

we shall say the manifold Nn+1 satisfies condition (∗). We study the linear
Weingarten hypersurfaces in a locally symmetric Riemannian manifold.

Like in the computation of ([25, 26]), we compute the scalar curvature of a
point in Nn+1,

K =

n+1
∑

A=1

KAA = 2

n
∑

i=1

Kn+1in+1i +

n
∑

i,j=1

Kijji = 2nc1 +

n
∑

i,j=1

Kijji.

It is known that K is constant when Nn+1 is locally symmetric, so
∑n

i,j=1 Kijji

is constant.
From (2.3), we denote

n(n− 1)P = n2H2 − S = n(n− 1)r −
n
∑

i,j=1

Kijji,(1.1)

where r is normalized scalar curvature of M . By investigating Cheng-Yau’s
operator ✷ given in [9] and using some new estimations, we want to study the
linear Weingarten hypersurfaces in a locally symmetric Riemannian manifold
as follows:

Theorem 1.1. Let M be an n(≥ 3)-dimensional compact hypersurface in a

locally symmetric Riemannian manifold Nn+1 satisfying condition (∗). P =
aH + b, a, b ∈ R and (n − 1)a2 + 4nb ≥ 0, P > −2

n
c. The mean curvature

H attains its maximum. Let φ stand for the total umbilicity tensor of the

immersion and if

sup
M

|φ|2 ≥ α(n, P ) =
n(n− 1)(P + c)2

(n− 2)(nP + 2c)
> 0.

Then

(1) either supM |φ|2 = 0 and M is totally umbilical hypersurface; or
(2) M is an isoparametric hypersurface with two distinct principal curvatures

one of which is simple and |φ|2 = α(n, P ), where c = 2c2 − c1 ≥ 0.

Remark 1.2. Since n(n− 1)P = n(n− 1)r−
∑n

i,j=1 Kijji, a hypersurface M in
Theorem 1.1 satisfying r = aH + b is just a linear Weingarten hypersurface in
Definition 1.1.

Remark 1.3. If c1 = 1, c2 = 1, i.e., the locally symmetric Riemannian manifold
Nn+1 is the unit sphere Sn+1(1), our Theorem 1.1 reduces to Theorem 1.1 in
[1].
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Remark 1.4. If c1 = 1, c2 = 1. When the constant a in above identically
vanishes, our Theorem 1.1 reduces to Theorem 2 in [2] and the main Theorem
in [5].

Remark 1.5. Equivalently, we can also state Theorem 1.1 in terms of the
squared norm of the second fundamental form S, (1) and (2) become:
If

sup
M

S ≥ (n− 1)(nP + 2c)

n− 2
+

(n− 2)c2

nP + 2c
,

then
(1) either supM S = nP and M is totally umbilical hypersurface; or
(2)M is an isoparametric hypersurface with two distinct principal curvatures

one of which is simple and supM S = (n−1)(nP+2c)
n−2 + (n−2)c2

nP+2c .

Corollary 1.2. Let M be an n-dimensional complete hypersurface immersed

in a sphere Sn+1(c), n ≥ 3, the normalized scalar curvature r and the mean

curvature H of M satisfy the following conditions: P = r−c = aH+b, a, b ∈ R

and (n−1)a2+4nb ≥ 0, P > −2
n
c. The mean curvature H attains its maximum.

Let φ stand for the total umbilicity tensor of the immersion and if

sup
M

|φ|2 ≥ α(n, P ) =
n(n− 1)(P + c)2

(n− 2)(nP + 2c)
> 0.

Then

(1) either supM |φ|2 = 0 and M is totally umbilical hypersurface; or
(2) M is an isoparametric hypersurface with two distinct principal curvatures

one of which is simple and |φ|2 = α(n, P ).

2. Preliminaries

If M is a hypersurface with constant mean curvature in Nn+1. Let {e1, e2,
. . . , en+1} be a local frame of orthonormal vector fields in Nn+1 such that,
restricted to M the vectors {e1, e2, . . . , en} are tangent to M , the vector en+1

is normal to M . Let {ω1, ω2, . . . , ωn+1} be its dual frame field. We use the
following convention on the rang of indices:

1 ≤ A,B,C, . . . ≤ n+ 1, 1 ≤ i, j, k, . . . ≤ n.

Let KABCD and Rijkl be the components of the curvature tensors of Nn+1 and
M respectively. h = hij be the second fundamental form of M , the square of
the norm of h is denoted by S =

∑n
i,j=1(hij)

2.

It is well known that for an arbitrary hypersurface M of Nn+1, we have

dωij = −
∑

k

ωik ∧ ωkj +
1

2

∑

k,l

Rijklω
k ∧ ωl.(2.1)

Rijkl = Kijkl + hikhjl − hilhjk.(2.2)
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Components Rij of Ricci tensor and the normalized scalar curvature r of M
are given by

Rij =

n
∑

k=1

Kkijk + nHhij −
n
∑

k=1

hikhkj ,

n(n− 1)r =

n
∑

i,j=1

Kijji + (nH)2 − S.(2.3)

We denote the first and second covariant derivatives of hij by hijk and hijkl

respectively, which are defined as in [7]. Following [7] and [16], we have

hijk − hikj = −Kn+1ijk,(2.4)

∑

k

hijkωk = dhij −
∑

k

hikωkj −
∑

k

hkjωki(2.5)

and the Ricci formula

hijkl − hijlk =
∑

s

hsjRsikl +
∑

s

hisRsjkl .(2.6)

Let Kn+1ijk,l be the covariant derivative of Kn+1ijk as the section of T⊥M⊗
T ∗M ⊗ T ∗M ⊗ T ∗M and KABCD,E be the covariant derivative of KABCD as
curvature tensor of Nn+1. Restricted to M we have

(2.7)
∑

l

Kn+1ijklωl = dKn+1ijk +
∑

s

Kn+1sjkωis +
∑

s

Kn+1ijsωks,

and

(2.8) Kn+1ijk,l = Kn+1ijkl −Kn+1in+1khjl −Kn+1ijn+1hkl +
∑

m

Kmijkhml.

The mean curvature of M is given by H = 1
n

∑n
i=1 hiien+1, the Laplacian

∆hij of the second fundamental form h of M is defined by ∆hij =
∑n

k=1 hijkk

∆hij =
∑

k

hkkij + nHKn+1in+1j −
∑

k

Kn+1kn+1khij + nH
∑

k

hikhkj − Shij

+
∑

k

(Klkikhlj +Klkjkhli + 2Klijkhlk)−
∑

k

(Kn+1ijk,k +Kn+1kik,j).(2.9)

Since Nn+1 is complete and locally symmetric, thus

KABCD,E = 0

for all A,B,C,D,E. This together with (2.2), (2.7) and (2.8) implies

1

2
∆S =

∑

i,j,k

h2
ijk +

∑

i,j,k

hijkkhij

= nHtrH3
n+1 − S2 +

∑

i,j,k

h2
ijk +

∑

i,j,k,l

2(hijhklKlijk + hlihijKlkjk)
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+
∑

i,j,k

hijkkhij +
∑

i,j

nHhijKn+1ijn+1 − S
∑

k

Kn+1kn+1k.(2.10)

Following Cheng-Yau [9], we introduce a modified operator ✷ acting on any
C2-function f by

(2.11) L(f) = [✷− n− 1

2
a∆]f =

∑

i,j

(nHδij − hij)fij −
n− 1

2
a∆f.

Choose a local frame of orthonormal vector fields {ei} in order to at arbitrary
point x of M hij = λiδij , then at the point x, and by use of (1.1) and (2.10),
we have

L(nH) = nH∆(nH)−
∑

l

λi(nH)ii −
n− 1

2
a∆(nH)

=
1

2
∆(n(n− 1)r −

n
∑

i,j=1

Kijji) +
1

2
∆S

− n2|∇H |2 −
∑

i

λi(nH)ii −
1

2
∆(n(n− 1)r)

=
1

2
∆S − n2|∇H |2 −

∑

i

λi(nH)ii.(2.12)

Putting (2.9) into (2.11), we obtain

L(nH) = nH∆(nH)−
∑

l

λi(nH)ii

=
1

2
∆(n(n− 1)r −

n
∑

i,j=1

Kijji) +
∑

i,j,k

h2
ijk − n2|∇H |2 +X + Y + Z,(2.13)

where

X = nHtrH3
n+1 − S2,

Y =
∑

i,j,k,l

2(hijhklKlijk + hlihijKlkjk),

Z =
∑

i,j

nHhijKn+1ijn+1 − S
∑

k

Kn+1kn+1k.

3. Proof of Theorem 1.1

The following lemmas are useful in the proof of Theorem 1.1.

Lemma 3.1. Let M be an n-dimensional hypersurface in a locally symmetric

Riemannian manifold Nn+1 satisfying condition (∗). If P = aH + b, a, b ∈ R

and (n− 1)a2 + 4nb ≥ 0. Then we have

|∇h|2 =
∑

α,i,j,k

(hα
ijk)

2 ≥ n2|∇H |2.
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Proof. From Gauss equation, we have

S = n2H2 − n(n− 1)P = n2H2 − n(n− 1)(aH + b).

Taking the covariant derivative of the above equation, we have

2
∑

α,i,j

hα
ijh

α
ijk = 2n2HHk − n(n− 1)aHk.

Therefore,

4|h|2|∇h|2 ≥ 4
∑

k

(

hα
ijh

α
ijk

)2

= [2n2H − n(n− 1)a]2|∇H |2.

On the other hand,

[2n2H − n(n− 1)a]2 − 4n2S

= 4n4H2 + n2(n− 1)2a2 − 4n3(n− 1)Ha

− 4n3[nH2 − (n− 1)(aH + b)]

= n2(n− 1)[(n− 1)a2 + 4nb]

≥ 0,

it follows that

|∇h|2 ≥ n2|∇H |2. �

Lemma 3.2 ([16]). Let µ1, . . . , µn be real numbers such that
∑

i µi = 0 and
∑

i µ
2
i = B, where B = const. ≥ 0, then

|
∑

i

µ3
i | ≤

n− 2
√

n(n− 1)
B

3

2 ,

and equality holds if and only if

µ1 = · · · = µn−1 = −
√

1

n(n− 1)
B, µn =

√

n− 1

n
B.

Choose a local frame of orthonormal vector fields {ei} in order to at arbitrary
point x of M hij = λiδij , then at the point x we have

S =
∑

i

λ2
i .

Putting µj = H − λj , we obtain

(3.1)
∑

j

µj = 0, |φ|2 =
∑

j

µ2
j = S − nH2,

and

(3.2)
∑

i

λ3
i = nH3 + 3H

∑

i

µ2
i −

∑

i

µ3
i .
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So

nHtrH3
n+1 = nH(nH3 + 3H

∑

i

µ2
i −

∑

i

µ3
i )

≥ 3nH2|φ|2 + n2H4 − n|H | n− 2
√

n(n− 1)
|φ|3

and we obtain

Lemma 3.3. X ≥ |φ|2
[

nH2 − |φ|2 − n(n−2)√
n(n−1)

|H ||φ|
]

.

Lemma 3.4 ([24]). Y ≥ 2nc2|φ|2.
Lemma 3.5. Z = c1n(nH

2 − S) = −c1n|φ|2.
Proof.

Z =
∑

i,j

nHhijKn+1ijn+1 − S
∑

k

Kn+1kn+1k

= nH
∑

i

λiKn+1in+1i − S
∑

i

Kn+1in+1i

=
∑

i

(S − nHλi)Kn+1in+1i = c1n(nH
2 − S).

This proves Lemma 3.5. �

From the assumption of Theorem that
∑n

i,j=1 Kijji = const. and Lemmas
3.1, 3.3, 3.4 and 3.5, we obtain

(3.3) L(nH) ≥ |φ|2
[

nc− |φ|2 − n|H | n− 2
√

n(n− 1)
|φ|+ nH2

]

,

where c = 2c2 − c1.
Recall that |φ|2 = S − nH2, so that (3.3) becomes

(3.4)
1

2(n− 1)
L(|φ|2) ≥ H |φ|2

[

nc− |φ|2 − n|H | n− 2
√

n(n− 1)
|φ|+ nH2

]

.

On the other hand, we have

H2 =
1

n(n− 1)
|φ|2 + P,

and therefore, taking into account that H ≥ 0, we may write

H =
1

√

n(n− 1)

√

|φ|2 + n(n− 1)P .

Finally, we obtain

(3.5)
1

2
L(|φ|2) ≥ 1

√

n(n− 1)
|φ|2QP (|φ|)

√

|φ|2 + n(n− 1)P ,

where

(3.6) QP (x) = −(n− 2)x2 − (n− 2)x
√

x2 + n(n− 1)P + n(n− 1)(P + c).
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Lemma 3.6. Let M be an n-dimensional compact hypersurface in a locally

symmetric Riemannian manifold Nn+1 satisfying condition (∗) such that P =
aH + b and (n− 1)a2 + 4nb ≥ 0, where a and b are constants. Let µ− and µ+

be the minimum and the maximum of the eigenvalues of L, respectively. Then

µ− > 0, µ+ < 2nH − (n− 1)a.

Proof. From (1.1), we have

0 ≤ S = n2H2 − n(n− 1)P = n2H2 − n(n− 1)(aH + b),

thus, H satisfies

H ≥ (n− 1)a+
√

(n− 1)2a2 + 4n(n− 1)b

2n
or

H ≤ (n− 1)a−
√

(n− 1)2a2 + 4n(n− 1)b

2n
,

we get

nH − (n− 1)a

2
≥

√

(n− 1)2a2 + 4n(n− 1)b

2
or

nH − (n− 1)a

2
≤

√

(n− 1)2a2 + 4n(n− 1)b

2
.

This means that nH − (n−1)a
2 has the same sign on M . Without loss of gener-

ality, we assume nH − (n−1)a
2 > 0.

Since

[nH − (n− 1)a

2
]2 =

1

4
[4n2H2 − 4n(n− 1)aH + (n− 1)2a2]

> n2H2 − n(n− 1)aH − n(n− 1)b

= S ≥ (λi)
2, ∀i,

moreover, µi = nH − (n−1)a
2 − λi are precisely the eigenvalues of the operator

L, we obtain µ− ≥ 0 and µ+ ≤ 2nH − (n− 1)a in particular. �

Remark 3.1. From Lemma 3.6, which implies L is elliptic.

In what follows we shall also need a version of a weak maximum principle
for the operator L that we state in a form useful to our present purposes.

Theorem 3.7 ([1, 18]). Let (Σ, 〈, 〉) be a complete Riemannian manifold, let

o be a reference point in Σ, and let r(p) be the distance function from o. Let

h be a symmetric (0, 2) tensor field on Σ and set ♯ : T ∗Σ → TΣ to denote the

musical isomorphism, so that h(X, )♯ is the vector field on Σ defined by

〈h(X, ·)♯, Y 〉 = h(X,Y )

for every Y ∈ TpΣ and p ∈ Σ. Assume that, for some positive continuous

function h+ defined on [0,+∞), the tensor h satisfies the following bound

0 ≤ h(X,Y ) ≤ h+(r)
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for every X ∈ TpΣ, |X | = 1, and every p ∈ ∂Br, where Br denotes the geodesic

ball of radius r centered at o. Set

h∗
+(r) = sup

s≤r

h+(s).

Given f ∈ C0(R), assume that u ∈ C2(Σ) satisfies u∗ = supΣ u < +∞ and

L(u) = div(h(∇u, ·)♯) ≥ f(u)

on the set Ωγ = {p ∈ Σ : u(p) > γ} for some γ < u∗. If

lim
r→+∞

h∗
+(r)

r2
= 0(3.7)

and

lim inf
r→+∞

h∗
+(r) log volBr

r2
< +∞,(3.8)

then f(u∗) ≤ 0.

As we shall see in the next section, the idea of proof of our main results is
to apply Theorem 3.7 to the operator L, by considering the operator h given
by

h(X,Y )〈PX, Y 〉
for every u ∈ C2. Thus, L(u) = div(h(∇u) − n−1

2 a∇u, ·)♯) = L(u). Toward
this aim, from Lemma 3.6 and under the hypothesis of Theorem 1.1, we have

h+(r) = 2n sup
∂Br

H − (n− 1)a,

so that

h∗
+(r) = 2n sup

Br

H − (n− 1)a.

On the other hand, conditions (3.7) and (3.8) are also satisfied if supΣ |φ|2 <

+∞. Since P = aH + b, supΣ |φ|2 < +∞ implies that supΣ H < +∞. Thus

h∗
+(r) = 2n sup

Br

H − (n− 1)a ≤ 2n sup
Σ

H − (n− 1)a(3.9)

and therefore (3.7) is automatically satisfied. As for (3.8), by (3.9) it becomes

lim inf
r→+∞

log volBr

r2
< +∞.(3.10)

From supΣ |φ|2 < +∞, we also have that supΣ S = supΣ |A|2 < +∞. Thus,
we can estimate

H〈AX,X〉 ≥ − sup
Σ

H〈AX,X〉 ≥ − sup
Σ

H sup
Σ

|A||X |2,

and

|AX |2 ≤ sup
Σ

|A|2|X |2
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for X ∈ TΣ, we get

Ric(X,X) = (n− 1)|X |2 + nH〈AX,X〉 − |AX |2

≥ [(n− 1)c2 − n sup
Σ

H sup
Σ

|A| − Σ|A|2]|X |2.

Therefore, we obtain that the Ricci curvature of Σ is bounded from below.
Since Σ is complete, by Bishops volume comparison theorem it follows that
(3.10) is satisfied. As a consequence, we obtain the following weak maximum
principle for L.

Corollary 3.8. Let M → Nn+1 be a complete oriented isometrically immersed

hypersurface with P = aH+ b, (n−1)a2+4nb ≥ 0 and H attains its maximum

on M . Assume that supM |φ|2 < +∞. If u ∈ C2(M) satisfies u∗ = supM u <

+∞ and for a given f ∈ C0(R), L(u) ≥ f(u) on the set Ωγ = {p ∈ M : u(p) >
γ} for some γ < u∗, then f(u∗) ≤ 0.

Next, we will prove the main theorem.
If supM |φ|2 = +∞, then (ii) of Theorem 1.1 is trivially satisfied and there

is nothing to prove. If supM |φ|2 = 0, then (i) holds. Then let us assume that
0 < supM |φ|2 < +∞. This can be proved after a similar argument as in [1],
we omit the details here.

Since

(3.11) H2 =
1

n(n− 1)
|φ|2 + P.

Thus, from (3.5) and (3.11). Let u = |φ|2, we obtain

(3.12) L(u) ≥ 2
√

n(n− 1)
uQP (

√
u)
√

u+ n(n− 1)P = f(u),

where

(3.13) QP (x) = −(n− 2)x2 − (n− 2)x
√

x2 + n(n− 1)P + n(n− 1)(P + c).

Therefore, by applying Corollary 3.1, the inequality (3.12), we have

f(u∗) ≤ 0,

from the inequality, we get

QP (
√
u∗) ≤ 0.

Since we are supposing that P > −2
n
c, PR(0) = n(n − 1)(P + c) > 0 and the

function QP (x) is strictly decreasing for x ≥ 0, with QP (x0) = 0 at

x0 = (P + c)

√

n(n− 1)

(n− 2)(nP + 2c)
> 0,

therefore, we obtain

sup
M

|φ|2 ≥ n(n− 1)(P + c)2

(n− 2)(nP + 2c)
.
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Moreover, equality supM |φ|2 = n(n−1)(P+c)2

(n−2)(nP+2c) holds if and only if
√
u∗ = x0,

and QP (
√
u) ≥ 0 on M , jointly with (3.5) implies that

(3.14) L(u) ≥ 0 on M.

Consequently, since L is elliptic and as we are supposing that H attains its
maximum on M , from (3.14) we conclude that H is constant on M . Thus, we
get

|∇A|2 = n2|∇H |2 = 0,

and it follows that λi is constant for every i = 1, . . . , n. Hence, by the classical
results on isoparametric hypersurfaces of real space forms [4, 19] and since we
are supposing P > 0, we conclude that either |φ| = 0 andM is totally umbilical,
or

|φ|2 =
n(n− 1)(P + c)2

(n− 2)(nP + 2c)
.

If M is not totally umbilical, we can see that the equalities hold in Lemma
3.1 and Lemma 3.2, and it follows that λi = const. for all i and (n− 1) of the
λ′
is are equal. After re-number if necessary, we can assume that

λ1 = λ2 = · · · = λn−1, λ1 6= λn.

Therefor, M is a isoparametric hypersurface with two distinct principal curva-
tures one of which is simple.

This completes the proof of Theorem 1.1.
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