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Necessary and Sufficient Cenditions fer an
Optimal Centrol Problem Involving Discentinuocus
Cost Integrand
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Abstract
An optimal control problem in which the dynamics is nonlinear and the cost functional
‘includes a discontinuous integrand is investigated. By using Neustadt’s abstract maximum
principle, a necessary condition in the form of Pontryagin’s maximum principle is derived
and it is further shown that this necessary condition is also a sufficient condition for
normal problems with linear-in-the-state systems.

[. INTRODUCTION

One of the difficulties involved in applying
“the optimal control theory for practical problems
‘s to define a suitable cost functional by which
~the performance of the controller is judged for
-optimality. In many cases, it is a difficult task
to translate various requirements conceived by a
designer into appropriate mathemetical expres-
-sions. On the other hand, if the cost functional
is defined as desired, the resultant optimal pro-
blem may not be easily solved due to a nonstan-
.dard form of the cost functional. A class of
nondifferentiable or vectorvalued cost functionals
:is a typical example.

In this paper, a norstandard cost functional of
ithe form

J@=[[ foleu)bde
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where #o<t, <fp<loe- ty-,<Ey=ts, is
investigated. Note that the secend term of J(x)
contains a discontinucus integrand. Cost¢ fun-
ctionals of this type seem appropriate for con-
trolling a system in which a certain component
of the state variable becomes of practical impor-
tance for minimization on a particular subinterval
of the control duration. For example, in a regu-
lator problem, an initial error, even if large, can
be tolerated while errors after a certain period
should be as small as possible. Also the cost
functional such as above may be well-suited for
long-term control problems involving biological
systems, socioeconomic systems or political sys-
tems. For instance, an effective incumbent go-
vernor who wishes to get reelected seems to put
particularly more efforts during the election year
to improve the state of economy of the state.
In this note, a necessary condition for optima-
lity is derived by using Neustadt’s abstract
maximum principle [1]. This necessary condition,
which is valid for'a general nonlinear system, is
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further shown to be a sufficient condition for
optimality if the system under consideration is
linear in the state and the cost integrands are
convex in the state. -

It. is remarked that in [2], Geering considered
a cost functional including discrete statc penalty
terms of the form

=Y He(td)+ [ faun.ar,

and presented a necessary conditicn. In this paper
it will be shown that this result can be derived
from ours as a special case.

In the sequel, the partial derivatives are some-
times denoted by subscripts

(e.g. fx (o2t t):%f(x, u, t)‘x:xo).

For a given matrx B, its transpose and the

inverse are denoted BT and B-!, respectively. In

general, column vectors are not distinguished.
Z(');

function z(t) on an interval when it is regarded

or simply =z in some cases, denotes the

as an element of a function space.

II. PROBLEM FORMULATION

I-1. Problem Statement

Let [¢,,2x) be a given closed interval and #,&R
for, i=1,2,"", N-1,be given such that #,<¢,<t, <
sos ZEy-1 <ty. Consider the dynamic control system
described by

2(@)=f(x(@),u(t)t), 1 Lo, ty]

a(te) =z,

2.1
2.2)
where x iIs an n-vector state variable and u is

an r-vector control variable. f(x,u,t) and %f;
'z

(x,u,t) are assumed to be continuous on R'zR’zx
[ty tx ).

Let Qbe a given set in R". A measurable essen-
tially bounded r- vector function () on [fe,fy]
is called admissible if «(¢)=Q a.e. on [t ty]. U
will denote the set of all admissible controls.

Let Xi(z), =1,...,m, f%z,zt) and K; (z,0),
j=1,...,N be given real-valued functions. It is
assumed that X; (z) axzd %—(x) be continuous on
R, f° (z,u,t) and agx (z,u,t) be continuous on
R'XR'X [toty], and Ki(z,f) and %’i (z.) be con-

tinuous on R"X(fj-1,%i].
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The problem is to find an admissible controB
u*(t), t<{t,ty] with response 2*(-) of Egs. (2.1)
such that the target condition

2{z*(@x))=0, i=1,2,...,m 2.3)
is satisfied and the cost functional
N t \
Je=y [§ | Kttt
[ e, ), nat @4

attains its minimum at «(-)=u«*{-) (i.e., J@*)<
J(u) for all u=U whose trajectory of (2.1) and
(2.2) satisfies Eq. (2.3).)

I-2. Reformulation

Define a variable 2°(¢) by the relation

z°(8) :J;{“ Fozls), uls), s)ds.

Let 2=(z%a2)7T

and  f(2,u,0)=(fz,u,t), flz,u,t)T.

Let ¢ denote the set of all (#--1)-vector abseo-
lutely continuous functions Z£(¢} on [Z,, ¢ty] suchs
that i

O=F(RO),u(t), t) (0% ty]
for scme #{-)<=U. Define the functions ¢°e—R*
and ¢‘e—R', i=1,2...,m by

N
FE(- =2t v |1 Kt tat
=1 ti-l

o2, =Az(tn))y i=1,2,... 0.

Then the problem stated in Scc. 1I-1 is equiva-
lent to the {cllowing problem: Find an element
£*(+) ine such that

O (E*( =0, i=1,2,...,m
and

PUE*(+)<g(£()) for all 2(-) ..

Thus the origirzal cptimzl centrel problem cane
g i !

be considered as 2 ccastrzined minimization pro-

blem in a functicn spzce.

III. DERIVATION OF NECESBARY
CONDITICN

Let «*(¢), t<= ¢, ¢y, b2 an cptimzl centrel and
2*() on [%ty) be the cerresponding response.
Then by letting Z=R', Z={7:7<0}. ¢'=¢, ¢=(p",
0% .. 50" and @(2())=¢%£(-))—¢%£*(-)), one
can easily see that 2* () is a (p,¢, Z)-extremal
in the sense of Neustadt in [1]. Further, by
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«choosing Y,M, h and h as indicated below, one
can confirm the applicability of the abstract
maximum principle in [1} for the problem under
consideration. Specifically, let Y denote the space
of continuous functions £:[4,fy]J—R""* with the
sup norm topology. Let A=(h%...,A"): Y—R"
.and £:Y—Z be given by the formulas

h‘(ai(-))zwax(t“’), i=1,...,m (3.1
R(BE(+))=Dg(£*(+):0£(+)) 3.2)

for all 6£=(0x%dx)<=Y, where D@(2*(-):d2(-))
-denotes the Frechet differential of ¢° at 2*(+)
82(-) (see [31). Finally let M be
u=U}

with increment
the convex hull of the {df¢.(:): =R,
where 6£¢,.:(f, ty]— R is given by

826, (O)=0(B)+8(8) | 6 I 6)(5),9)

—-f(i*(s).u(s;,.v)]ds for t=(tety). (3.3)
‘Here &(¢) denotes the fundamental matrix sati-

sfying
Gt)=12 (E¥@), u*(t),0d) GRS
Hlta)=(n+1)x (nx1) identity matrix (3.5)

As in [1], one can show in a straightforward
manner that £2*(-) as an (p,¢,Z) extremal satis-
fies the condition 3.1 in [1].
the abstract maximum principle of Neustadt
(Theorem 3.1 in [11), it follows that there exist
-, a™ such that

Therefore, from

.numbers a% ',

(i) a°<0, Solai >0 (3.6)

(i) S5 (@ (1) 825, tn)

oo [ »—a—;i—uc*(z),t) 8, [O)dt<0
for all £&R"?, u=U, 3.7

where {2)=X:(z) and &(2,t)=K{xz,#). Set £¢=0to
obtain the relation

[ S e ()

[f(i*(«?),u(S)S%f(-i‘*(S),5)]ds
rarss [ 2w, [ o0e

[A@*(s), u(s), $)— F(2*(s),u*(s), 5)1ds dt
<20 for all u{-)e=U. (3.8)..
Define #;(s) : [¢,,¢¥]>R"Y, i=1,2, by

— 49 —

u(s)= (Za 20T (s (tidits)

ool Do), t>,<p(t>dt> 67(5)

on [ti-n ti:l; i:l!"'rNs'
lEn)=7n(tx-)s

772(5)—< o35 [ Phe, t)@(t)dt) 67s)

on [#;-4, s, t=1,++, N,
772('«'»:):0
Let #(s)=#(s)+9s), s<[to, tnl.
Then #(t) is absolutely continuous on [#.q,%],
i=1, 2, N, and

(=i F2(2¥(0), a (540, )

a.e. on [fi-y 1,
it )=5(t) + <“f ' gi (&4(8), )6 (t)ds) olt:)

i=1,2--,N.

fi(tN):i‘(tM)

n
=>_af
i 0

-1

o u*m»—( o Pk e,

qf’(l)dt> & tn).

Also using the general relation [4] of the form

[ [Lettodas ar=[7 [ ate, saeas
= [ et 9 as,

one can show after a short computation that the
relation (3.7) implies the following integral form
of maximum principle.
[T A0, 1lt), O~ FEH )40, D <0
for all u(-)sU.
Since fand &, i=1,2,-
z°% 1f H(s)2®°(s), p(s)) with »(s)=R", then
7°(t)=0
7(tn)=a’.

Hence #(s}=(a® 7(s)), and thus we obtain the fol-

-, N are independent of

lowing necessary condition.
Let @(¢f) be the nxX» fundamental matbrix such
that
O(t)=1(z*(0), w*(8), o(t)
O(ty)=(nXn) identity matrix.
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THEOREM 1 (NECESSARY CONDITION)Z

(+) with response z*(-) be an optimal
Then there exist numbers ag,at,+-,a”

Let u*
control.
and piecewise absolutely continuous function %(f)
such that y»(¢) is absolutely continuous on

[t-’-l,t"]’ i=1,2,+-, N, and

(i) <0, 33lail>0

(i) #(E)=—afoz*(@), u(t), ) —p(e)fL=*(8),u*(E), )

—a* 2K (30(0), 1)

a.e. on [#-1, ],

(i) 70 =1(n" =3 g (Ex)
—(af ¥ B ar@), D001t )o )

2=t
(af 7 2R (2,0, 000at)0m2(0)

i=1,-, N,
(iv) af *a*(£), (), 1)+ () f (2™ (), w*(2), 1)
=oax [a®fo(a*(t), 2, 1)+ p(E) f(2*(), 0, )],
u=Q
a.e. on [f,t5].

V. SUFFICIENCY RESULT

It can be shown that, under appropriate line-
arity and convexity asumptions indicated shortly,
the necessary condition derived in Sec. II is also
sufficient for optimality for normal control

problems. This sufficiency result, of course,
shows the strength of the derived maximum prin-
ciple in solving control problems.

The assumptions are as follows:

(A1) f(x,u,1) is linear-in-the-state, i,e.,

Flz,u, t)y=Alt)z+gu, t)
(A2) fYzx,u,t) can be written as
Iz, u, =52, t) + (e, 1),
and s%x,?) is convex in x for each ¢.
(A3) K;(z,t) is convex in = for each ¢, i=1,2,
w, N.
(A4) x(x) is affine in x, i=1,2,+,m

THEOREM 2 (SUFFICIENT CONDITION)
Let «*(-) of Egs. (2.1) and (2.2) which satisfies
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the target conditions Eq. (2.3). Suppose the pro-
blems data satisfies the assumptions (Al)~(A4)..
If there exist numbers ag, a?, -+, a™ with «°<0 and
a function »(#) on [#° 4] such that the conditions.
(ii)~(iv) of Theorem 1 are satisfied, then z* ()
is an optimal control.

Proof:

Let «{t) be an admissible control whose response:
2(t) satisfies X, (x(¢x))=0, i=1,--, m.

Let

f L0 ), 1) ("0, (0, 1)l

+Z} ' [K(x(f),t) Ki(=*()t)1dt.

It then suffices to show that 4<0.
Recall that
)=z O= | [AD()—2%()+(FGuls), 5)

—F(u*(s), 5))1ds
Since y(¢) is absolutely continuous on (4.1, %),
i=1,2,-,

S NS ECORION
=1
w35 [ dn) Lat))— 24y
-
+ F(u(s),9)— F(u*(s), 9)]ds

It is a consequence of a result en Riemann--
Stieltjes integral ([4. Theorem 5.5.7]) that

N, one may rewrite 4 as

—fo(a*(8), u*(£))1dt

LKi(x(®), ) KizX(t), t)]d¢

an(t) [ LAG) (als)—a*(s)

‘.%jf:::l dy()[z(t)—x*(8)]
—f {)(=lt) — 2*(t))dt

=53 () (b Dalt) —a*(E)

Also, since X; is affine in x, one finds that:
Ex) (x{tn)—z*(tx))

=S at S (@ t) (alta)—2"(t)

=3 o <X.~(x(t~))—x.~(x*((t~))> =

7(tt) (2{te)—x*(t0))=0.
Hence
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=5 (~1) (9l) — e Walt) — ¥(t,)

Therefore
4=at (fjf L () (t), )= Foa(0), w50, ]t

+,Zi1: :::1 [K,(I(t),t),t)—K.(x*([),t)]d[)

+ [ gt~ 2 )t

— S e (e el —24(0)

[ 3t0) LA ()22 O) +(Flatt), 1

— F(), £))dt

+ (=D 3590 (e —2* )| 1

Now make use of the conditions (ii) and (iii) to
obtain

a=[ (et tute), O+ 9O Fwlt), )
—La®c®(w*(t), t)+ v(t)F(u*(t),t)])dt
+ " a] s(alt), - 240, )
=22 (a*(e), )(alt)—2*(0) Jat
tar 35 [0 [Kiel0), 0~ Kila*(©),)
—2E (o (a), ) (al)—2*(2) Jae <0

The last inequality is an immediate consequence
of the condition (iv) and the convexity assump-
tions on s* and K;, i=1,2,:+-, N.

QE.D.

V. CONCLUDING REMARK

The cost functional *Eq. (1-2) considered by

—51 —
Geering in [2] may be rewritten as

— = ‘N o

Te)=[¥ foatt),u(t), it

Yo lim(te  _Hi(=z(8),?)
* e R Y hi dt

Since the cost functionals of the form
Te)=[ " o0, w0, s
+%J::-hi _}iz}?ﬂdt

where h;<t,—t;_,, i=1,2,---, N, is a special case
of (1.1), one may suspect that Jthe result in [2]
may be derived from Theorem 1 using the limi-
ting process. In fact Theorem 1 of [2] can be
derived from 1 of the present paper as a special
case in a straightforward manner.

The theory presented in this note may be
extended to the problem involving delay-differen-
tial systems, and in this case, the cost functional
of the form Eq. (1.1) can used in incorporating
a function target condition, say, =(¢)—¥(f) on
[ti—h,ts] as a part of the cost of the form
| MRIECEONED

f-n
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