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Abstract
In this survey, we present a modified inverse moment estimation of parameters and its applications. We

use a specific model to demonstrate its principle and how to apply this method in practice. The estimation of
unknown parameters is considered. A necessary and sufficient condition for the existence and uniqueness of
maximum-likelihood estimates of the parameters is obtained for the classical maximum likelihood estimation.
Inverse moment and modified inverse moment estimators are proposed and their properties are studied. Monte
Carlo simulations are conducted to compare the performances of these estimators. As far as the biases and
mean squared errors are concerned, modified inverse moment estimator works the best in all cases considered
for estimating the unknown parameters. Its performance is followed by inverse moment estimator and maximum
likelihood estimator, especially for small sample sizes.

Keywords: inverse moment estimators, maximum likelihood estimates, existence and unique-
ness, joint confidence regions, small sample size, Weibull distribution, inverted exponential Pareto
distribution, Monte Carlo simulation

1. Introduction

The inverse estimation method was originally proposed by Wang (1992) and was applied to study
parameter estimation for Weibull distribution. Different from the regular method of moments, the
idea of the inverse moment estimation (IME) is as follows.

For a sample X1, . . . , Xn from a distribution with unknown parameters, first transform the original
sample to a quasi-sample Y1, . . . , Yn, where Yi contains the unknown parameters but its distribution
does not depend on unknown parameters, that is, Yi is a pivot variable, i = 1, . . . , n. The population
moments of the new sample do not dependent on unknown parameters while the sample moments do.
Let the population moments of the quasi-sample equal the sample moments and solve the unknown
parameters.

Wang (2004) obtained the inverse moment estimators and the interval estimation based on type
II progressively censored data under the Weibull distribution. The simulation results showed that the
mean square errors of the inverse moment estimators are less than the maximum likelihood estimates
(MLE)’s. Gu and Yue (2013) considered the problem of estimating parameters of the generalized
exponential distribution based on a complete sample. They proposed the inverse moment estimators
of the parameters of the generalized exponential distribution. The precisions of MLEs and IMEs are
compared through numerical simulations. Gui (2015) studied the problem of estimating unknown
shape and scale parameters of exponentiated half logistic distribution. Inverse moment and modified
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inverse moment estimators were derived. Monte Carlo simulations were conducted to compare the
performances.

Wang et al. (2010) obtained some exponential inequalities for a negatively orthant dependent
sequence and used the exponential inequalities to study the asymptotic approximation of an inverse
moment for negatively orthant dependent random variables. Ye and Yang (2013) proposed a new
method for dimension reduction in regression using the first two inverse moments. Yang et al. (2014)
discussed the asymptotic approximation of an inverse moment for nonnegative random variables.
Cheng et al. (2014) established inverse moment bounds for sample autocovariance matrices based on
a detrended time series.

In this paper, we focus on the problem of parameter estimation for the inverted exponential Pareto
distribution and demonstrate the inverse estimation and its modified version. We begin with the clas-
sical MLE and obtain a necessary and sufficient condition for the existence and uniqueness of MLE
of the parameters. We propose inverse moment and modified inverse moment estimators and study
their properties. Monte Carlo simulations are used to compare the performances. We also propose
the methods for constructing joint confidence regions for the two parameters and study their perfor-
mances.

Gupta et al. (1998) introduced the exponential Pareto distribution Y to model failure time data.
The probability density function of Y is given by

f (y; λ, α) = αλ
[
1 − (1 + y)−λ

]α−1
(1 + y)−(λ+1), y > 0, (1.1)

where α > 0 and λ > 0 are two parameters. The corresponding cumulative distribution function is

F(y; λ, α) =
[
1 − (1 + y)−λ

]α
, y > 0. (1.2)

A random variable X = 1/Y is said to have the inverted exponential Pareto distribution. Its
cumulative distribution function (cdf) and probability density function (pdf) are specified by

F(x; λ, α) = 1 −
1 − (

1 +
1
x

)−λα , x > 0, (1.3)

and

f (x; λ, α) =
αλ

(
1
x + 1

)−λ−1
[
1 −

(
1
x + 1

)−λ]α−1

x2 , x > 0, (1.4)

respectively, where λ > 0 and α > 0 are the parameters. We denote this distribution as IEPD(λ, α).
When α = 1, the inverted exponential Pareto distribution reduces to the inverted Pareto distribution.
In this paper, we will show that the two-parameter inverted exponential Pareto distribution can be
quite effective in modeling lifetime data.

Shawky and Abu-Zinadah (2009) considered the maximum likelihood estimation of the different
parameters of an exponential Pareto distribution. Afify (2010) obtained Bayes and classical estimators
for two parameters exponentiated Pareto distribution when a sample is available from complete, type I
and type II censoring scheme. Ali et al. (2010) derived the distribution of the ratio of two independent
exponentiated Pareto random variables and studied its properties. Singh et al. (2013) proposed max-
imum likelihood estimators and Bayes estimators of parameters of exponentiated Pareto distribution
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under general entropy loss function and squared error loss function for progressive type-II censored
data with binomial removals.

The rest of this paper is organized as follows. In Section 2, we discuss the classical maximum
likelihood estimation of the parameters of the inverted exponential Pareto distribution. In Section
3, we propose the inverse and modified inverse estimation methods to estimate the parameters and
study their properties. Joint confidence regions for the two parameters are also proposed in Section
4. Section 5 conducts simulations to compare the estimators and the confidence regions. In Section
6, a numerical example is presented to illustrate the superiorities of the proposed methods. Finally,
Section 7 concludes.

2. Maximum likelihood estimation

In this section, we discuss the MLEs of the parameters of inverted exponential Pareto distribution
(IEPD) based on a complete sample. Let X1, X2, . . . , Xn be a random sample from IEPD(λ, α) with
pdf and cdf as (1.4) and (1.3), respectively. The log-likelihood function is given by

L(λ, α) = (α − 1)
n∑

i=1

log
[
1 −

(
1
xi
+ 1

)
−λ

]
− (λ + 1)

n∑
i=1

log
(

1
xi
+ 1

)

+ n logα + n log λ − 2
n∑

i=1

log (xi) . (2.1)

The score equations are as:

∂L(λ, α)
∂λ

= (α − 1)
n∑

i=1

(
1
xi
+ 1

)
−λ log

(
1
xi
+ 1

)
1 −

(
1
xi
+ 1

)
−λ

−
n∑

i=1

log
(

1
xi
+ 1

)
+

n
λ
, (2.2)

∂L(λ, α)
∂α

=

n∑
i=1

log
[
1 −

(
1
xi
+ 1

)
−λ

]
+

n
α
. (2.3)

Consider the case when x1 = · · · = xn = x, the MLEs λ̂ and α̂ are

α̂ = − 1

log
[
1 −

(
1
x + 1

)
−λ

]
and λ̂ is the solution of the equation

J(λ) = J1(λ) − J2(λ),

where

J1(λ) = −

(
1
x + 1

)
−λ log

(
1
x + 1

)
1 −

(
1
x + 1

)
−λ

− log
(

1
x
+ 1

)
+

1
λ
,

J2(λ) =
1

log
[
1 −

(
1
x + 1

)
−λ

] (
1
x + 1

)
−λ log

(
1
x + 1

)
1 −

(
1
x + 1

)
−λ

.
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Note that

J′1(λ) =
λ2

(
1
x + 1

)λ
log2

(
1
x + 1

)
−

((
1
x + 1

)λ − 1
)2

λ2
((

1
x + 1

)λ − 1
)2 < 0,

since (t − 1)2 > (log t)2t, for all t > 1.

J′2(λ) = −
log2

(
1
x + 1

) [(
1
x + 1

)λ
log

(
1 −

(
1
x + 1

)−λ)
+ 1

]
[(

1
x + 1

)λ − 1
]2

log2
(
1 −

(
1
x + 1

)−λ) > 0,

since (1/t) log(1 − t) + 1 < 0, for all t > 0. J′(λ) < 0, J(λ) is a decreasing function of λ. Moreover,
we have J(0) = ∞ and J(∞) = 0. Thus, J(λ) has no roots in the interval (0,∞).

In the following, we discuss the existence and uniqueness of MLEs in the case of at least two
non-identical observed values of the sample.

Theorem 1. Let X1, X2, . . . , Xn be a random sample from IEPD(λ, α), if the observed values of the
sample are not identical, that is xi , x(n) = max{x1, . . . , xn} for at least one i ∈ {1, . . . , n − 1}, then
MLEs of λ and α exist and unique.

Proof: From (2.3) we obtain the MLE of α as a function of λ,

α̂ = − n∑n
i=1 log

[
1 −

(
1
xi
+ 1

)
−λ

] . (2.4)

The MLE of λ is the root of the following equation

G(λ) =
n
λ
−

n∑
i=1

log
(

1
xi
+ 1

)
1 −

(
1
xi
+ 1

)−λ − n∑n
i=1 log

[
1 −

(
1
xi
+ 1

)−λ] n∑
i=1

(
1
xi
+ 1

)−λ
log

(
1
xi
+ 1

)
1 −

(
1
xi
+ 1

)−λ = 0. (2.5)

Firstly, we prove that the equation G(λ) = 0 has a positive root. We calculate the limits G(0) and
G(+∞) respectively.

G(0) =
n
λ
−

n∑
i=1

log
(

1
xi
+ 1

)
1 −

(
1
xi
+ 1

)
−λ
− n∑n

i=1 log
[
1 −

(
1
xi
+ 1

)
−λ

] n∑
i=1

(
1
xi
+ 1

)
−λ log

(
1
xi
+ 1

)
1 −

(
1
xi
+ 1

)
−λ

=

n∑
i=1

log
(

1
xi
+ 1

)
lim
λ→0

 1

λ log
(

1
xi
+ 1

) − 1

1 −
(

1
xi
+ 1

)
−λ


− lim
λ→0

n∑n
i=1 λ log

[
1 −

(
1
xi
+ 1

)
−λ

] n∑
i=1

λ
(

1
xi
+ 1

)
−λ log

(
1
xi
+ 1

)
1 −

(
1
xi
+ 1

)
−λ

= −1
2

n∑
i=1

log
(

1
xi
+ 1

)
− lim
λ→0

n2∑n
i=1 λ log

[
1 −

(
1
xi
+ 1

)
−λ

]
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= −1
2

n∑
i=1

log
(

1
xi
+ 1

)
− n2∑n

i=1

(
1/ log

(
1
xi
+ 1

))
limλ→0 λ log

(
1
xi
+ 1

)
log

[
1 −

(
1
xi
+ 1

)−λ]
= +∞.

G(+∞) = −
n∑

i=1

log
(

1
xi
+ 1

)
− lim
λ→∞

n
∑n

i=1

(
1
xi
+ 1

)
−λ log

(
1
xi
+ 1

)
∑n

i=1 log
[
1 −

(
1
xi
+ 1

)
−λ

]
= −

n∑
i=1

log
(

1
xi
+ 1

)
+ lim
λ→∞

n
∑n

i=1

(
1
xi
+ 1

)
−λ log

(
1
xi
+ 1

)
∑n

i=1

(
1
xi
+ 1

)
−λ

= −
n∑

i=1

log
(

1
xi
+ 1

)
+ lim
λ→∞

n
∑n

i=1

(
1
xi
+ 1

)
−λ

(
1

x(n)
+ 1

)
λ log

(
1
xi
+ 1

)
∑n

i=1

(
1
xi
+ 1

)
−λ

(
1

x(n)
+ 1

)
λ

= −
n∑

i=1

log
(

1
xi
+ 1

)
+ n log

(
1

x(n)
+ 1

)

= −
n∑

i=1

[
log

(
1
xi
+ 1

)
− log

(
1

x(n)
+ 1

)]
< 0.

It follows that the equation G(λ) = 0 has a positive real root.
Secondly, we show that the root is unique. We rewrite G(λ) as

G(λ) = G1(λ) −G2(λ),

where

G1(λ) =
n
λ
−

n∑
i=1

log
(

1
xi
+ 1

)
1 −

(
1
xi
+ 1

)
−λ

and G2(λ) =
n∑n

i=1 log
[
1−

(
1
xi
+1

)
−λ

] n∑
i=1

(
1
xi
+1

)
−λ log

(
1
xi
+ 1

)
1 −

(
1
xi
+1

)
−λ

.

G′1(λ) =
n∑

i=1


(

1
xi
+ 1

)
−λ log2

(
1
xi
+ 1

)(
1 −

(
1
xi
+ 1

)
−λ

)
2
− 1
λ2

 = n∑
i=1

−
[(

1
xi
+ 1

)
λ − 1

]2
+ λ2

(
1
xi
+ 1

)
λ log2

(
1
xi
+ 1

)
λ2

[(
1
xi
+ 1

)
λ − 1

]
2

< 0,

since (t − 1)2 > t(log t)2 for all t > 1.

G′2(λ) =

n

(∑n
i=1 − log

(
1 −

(
1
xi
+ 1

)
−λ

))∑n
i=1

(
1
xi
+1

)
λ log2

(
1
xi
+1

)
((

1
xi
+1

)
λ−1

)
2
−

∑n
i=1

log
(

1
xi
+1

)
(

1
xi
+1

)
λ−1

 2

(∑n
i=1 log

(
1 −

(
1
xi
+ 1

)
−λ

))
2

≥
n

(∑n
i=1

(
1
xi
+ 1

)
−λ

)∑n
i=1

(
1
xi
+1

)
λ log2

(
1
xi
+1

)
((

1
xi
+1

)
λ−1

)
2
−

∑n
i=1

log
(

1
xi
+1

)
(

1
xi
+1

)
λ−1

 2

(∑n
i=1 log

(
1 −

(
1
xi
+ 1

)
−λ

))
2

≥ 0.

Since − log(1 − t) ≥ t for all t > 0. The second inequality holds by Cauchy-Schwartz inequality.
Therefore, G′(λ) < 0, G(λ) is decreasing and G(λ) = 0 has unique root over (0,+∞). �
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3. Inverse and modified inverse moment estimation

In Statistics, there are many methods available for estimating the parameter(s) of interest. One of the
oldest methods is the method of moments. It is based on the assumption that sample moments should
provide adequate estimates of the corresponding population moments. Suppose we want to estimate
θ = (θ1, . . . , θk), the procedure is:

(1) Find k population moments, µi, i = 1, 2, . . . , k. µi will include one or more parameters θ1, . . . , θk.

(2) Determine the corresponding k sample moments, mi, i = 1, 2, . . . , k.

(3) Let µi = mi, i = 1, 2, . . . , k, solve for the parameters. The solution is a moment estimator.

The method of moments is simple and easy to compute. However, the estimator may not be unique
or not exist. In this section, we propose an inverse moment estimation. The superiority of the new
estimator is its existence and uniqueness.

Definition 1. Suppose X ∼ F(x, θ), where θ = (θ1, . . . , θk) is a parameter vector to be estimated.
Transform X to a pivotal variable Y = g(X, θ) whose distribution does not depend on θ. The population
moments µ′i (i = 1, . . . , k) of Y will not contain θ. The sample Yi = g(Xi, θ) (i = 1, . . . , k) is called
quasi-sample since it is a function of sample (X1, . . . , Xn) and parameter θ. The moments of the quasi-
sample m′i (i = 1, . . . , k) is also a function of θ. Let µ′i = m′i , i = 1, 2, . . . , k, solve for the parameters.
The solution is an inverse moment estimator.

Let X1, . . . , Xn form a sample from IEPD(λ, α) with pdf given in (1.4), it is known that F(Xi),
1 − F(Xi), i = 1, . . . , n follow uniform distribution U(0, 1), and − log[1 − F(Xi)], i = 1, . . . , n follow
standard exponential distribution Exp(1). By the method of inverse moment estimation, we set

1
n

n∑
i=1

{− log[1 − F(Xi)]
}
= 1, (3.1)

that is,

−α
n

n∑
i=1

log
1 − (

1
Xi
+ 1

)−λ = 1. (3.2)

Thus, the IME of α is obtained as a function of λ,

α̂ = − n∑n
i=1 log

[
1 −

(
1
Xi
+ 1

)−λ] , (3.3)

which is identical with the MLE of α.

Lemma 1. Let Z(1) ≤ Z(2) ≤ · · · ≤ Z(n) be the order statistics from the standard exponential distribu-
tion. Then, the random variables W1,W2, . . . ,Wn, where

Wi = (n − i + 1)
(
Z(i) − Z(i−1)

)
, i = 1, 2, . . . , n (3.4)

with Z(0) ≡ 0, are independent and follow standard exponential distributions.
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Proof: The proof can be found in Arnold et al. (1992). �

Lemma 2. Let W1,W2, . . . ,Wn be iid standard exponential variables, S i = W1 + · · · + Wi, Ui =

(S i/S i+1)i, i = 1, 2, . . . , n − 1, Un = W1 + · · · +Wn, then

(1) U1,U2, . . . ,Un are independent;

(2) U1,U2, . . . ,Un−1 follow the uniform distribution U(0, 1);

(3) 2Un follows χ2(2n).

Proof: The proof can be found in Wang (1992). �

Now we consider the IME of λ. For the sample X1, . . . , Xn from IEPD(λ, α), for the order statistics
X(1) ≤ · · · ≤ X(n), we have

− log[1 − F(X(1))] ≤ · · · ≤ − log[1 − F(X(n))] (3.5)

are n order statistics from standard exponential distribution Exp(1).
Let Z(i) = −α log[1 − (1/X(i) + 1)−λ], i = 1, . . . , n. Thus, Z(1) ≤ Z(2) ≤ · · · ≤ Z(n) are the first n

order statistics from the standard exponential distribution. By Lemma 1, Wi = (n− i+ 1)(Z(i) − Z(i−1)),
i = 1, 2, . . . , n form a random sample from standard exponential distribution.

Let S i = W1 + · · · +Wi, Ui = (S i/S i+1)i, i = 1, 2, . . . , n − 1, Un = W1 + · · · +Wn, by Lemma 2, we
have

−2
n−1∑
i=1

log Ui = −2
n−1∑
i=1

i log
(

S i

S i+1

)
= 2

n−1∑
i=1

log
(

S n

S i

)
∼ χ2(2n − 2), (3.6)

where

S n

S i
=

Z(1) + Z(2) + · · · + Z(n)

Z(1) + Z(2) + · · · + Z(i−1) + (n − i + 1)Z(i)

=

log
[
1 −

(
1

X(1)
+ 1

)−λ]
+ log

[
1 −

(
1

X(2)
+ 1

)−λ]
+ · · · + log

[
1 −

(
1

X(n)
+ 1

)−λ]
log

[
1 −

(
1

X(1)
+ 1

)−λ]
+ · · · + log

[
1 −

(
1

X(i−1)
+ 1

)−λ]
+ (n − i + 1) log

[
1 −

(
1

X(i)
+ 1

)−λ] .
Noting that the mean of χ2(2n − 2) is 2n − 2. Thus, we obtain an inverse moment equation for λ as
follows:

n−1∑
i=1

log


log

[
1 −

(
1

X(1)
+ 1

)−λ]
+ log

[
1 −

(
1

X(2)
+ 1

)−λ]
+ · · · + log

[
1 −

(
1

X(n)
+ 1

)−λ]
log

[
1 −

(
1

X(1)
+ 1

)−λ]
+ · · · + log

[
1 −

(
1

X(i−1)
+ 1

)−λ]
+ (n − i + 1) log

[
1 −

(
1

X(i)
+ 1

)−λ]


= n − 1. (3.7)

Solve the equation and we obtain the inverse estimate λ̂IME of λ. Plugging λ̂IME into (3.3), we obtain
the inverse estimate α̂IME . In addition, noting that the mode of χ2(2n − 2) is 2n − 4, we can obtain a
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modified equation for λ:

n−1∑
i=1

log


log

[
1 −

(
1

X(1)
+ 1

)−λ]
+ log

[
1 −

(
1

X(2)
+ 1

)−λ]
+ · · · + log

[
1 −

(
1

X(n)
+ 1

)−λ]
log

[
1 −

(
1

X(1)
+ 1

)−λ]
+ · · · + log

[
1 −

(
1

X(i−1)
+ 1

)−λ]
+ (n − i + 1) log

[
1 −

(
1

X(i)
+ 1

)−λ]


= n − 2. (3.8)

Solve the equation and we obtain the modified inverse estimate λ̂MIME of λ. Plugging λ̂MIME into
(3.3), we obtain the modified inverse estimate α̂MIME .

In the following, we prove the existence and uniqueness of the root in the equation (3.7) and (3.8).

Lemma 3. The following limits hold: (1) limλ→0 log[1 − (a + 1)−λ]/log[1 − (b + 1)−λ] = 1, for a >
0, b > 0. (2) limλ→∞ log[1 − (a + 1)−λ]/log[1 − (b + 1)−λ] = 0, for a > b > 0. (3) limλ→∞ log[1−
(a + 1)−λ]/log[1 − (b + 1)−λ] = +∞, for b > a > 0.

Lemma 4. For t > 0, f (t) = (1 + tet − et)/(1 − et) is a decreasing function of t.

Theorem 2. Let Wi = (n− i+1)(Z(i)−Z(i−1)), i = 1, 2, . . . , n form a sample from standard exponential
distribution, S i = W1 + · · · +Wi, then for t > 0, equation

∑n−1
i=1 log(S n/S i) = t has a unique positive

solution.

Proof: By Lemma 3, we obtain

lim
λ→0

S n

S i
= lim

λ→0

log
[
1 −

(
1

X(1)
+ 1

)−λ]
+ log

[
1 −

(
1

X(2)
+ 1

)−λ]
+ · · · + log

[
1 −

(
1

X(n)
+ 1

)−λ]
log

[
1 −

(
1

X(1)
+ 1

)−λ]
+ · · · + log

[
1 −

(
1

X(i−1)
+ 1

)−λ]
+ (n − i + 1) log

[
1 −

(
1

X(i)
+ 1

)−λ]

= lim
λ→0

log
[
1−

(
1

X(1)
+1

)−λ]
+log

[
1−

(
1

X(2)
+1

)−λ]
+···+log

[
1−

(
1

X(n)
+1

)−λ]
log

[
1−

(
1

X(n)
+1

)−λ]
log

[
1−

(
1

X(1)
+1

)−λ]
+···+log

[
1−

(
1

X(i−1)
+1

)−λ]
+(n−i+1) log

[
1−

(
1

X(i)
+1

)−λ]
log

[
1−

(
1

X(n)
+1

)−λ]
=

n
n
= 1.

Thus, limλ→0
∑n−1

i=1 log(S n/S i) = 0. However,

lim
λ→∞

S n

S i
= lim

λ→∞

log
[
1 −

(
1

X(1)
+ 1

)−λ]
+ log

[
1 −

(
1

X(2)
+ 1

)−λ]
+ · · · + log

[
1 −

(
1

X(n)
+ 1

)−λ]
log

[
1 −

(
1

X(1)
+ 1

)−λ]
+ · · · + log

[
1 −

(
1

X(i−1)
+ 1

)−λ]
+ (n − i + 1) log

[
1 −

(
1

X(i)
+ 1

)−λ]

= 1 + lim
λ→∞

log
[
1 −

(
1

X(i+1)
+ 1

)−λ]
+ · · · + log

[
1 −

(
1

X(n)
+ 1

)−λ] − (n − i) log
[
1 −

(
1

X(i)
+ 1

)−λ]
log

[
1 −

(
1

X(1)
+ 1

)−λ]
+ · · · + log

[
1 −

(
1

X(i)
+ 1

)−λ]
+ (n − i) log

[
1 −

(
1

X(i)
+ 1

)−λ]
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= 1 + lim
λ→∞

log
[
1−

(
1

X(i+1)
+1

)−λ]
+···+log

[
1−

(
1

X(n)
+1

)−λ]
−(n−i) log

[
1−

(
1

X(i)
+1

)−λ]
log

[
1−

(
1

X(i)
+1

)−λ]
log

[
1−

(
1

X(1)
+1

)−λ]
+···+log

[
1−

(
1

X(i)
+1

)−λ]
+(n−i) log

[
1−

(
1

X(i)
+1

)−λ]
log

[
1−

(
1

X(i)
+1

)−λ]
= +∞.

Thus, limλ→∞
∑n−1

i=1 log(S n/S i) = ∞. Therefore, for t > 0, equation
∑n−1

i=1 log(S n/S i) = t exists a
positive solution. For the uniqueness of the solution, we consider the derivative of S n/S i with respect
to λ.

Noting that, for i = 1, . . . , n,

dWi

dλ
= (n − i + 1)α


(

1
X(i−1)
+ 1

)
−λ log

(
1

X(i−1)
+ 1

)
1 −

(
1

X(i−1)
+ 1

)
−λ

−

(
1

X(i)
+ 1

)
−λ log

(
1

X(i)
+ 1

)
1 −

(
1

X(i)
+ 1

)
−λ



= Wi

(
1

X(i−1)
+1

)
−λ log

(
1

X(i−1)
+1

)
1−

(
1

X(i−1)
+1

)
−λ

−
(

1
X(i)
+1

)
−λ log

(
1

X(i)
+1

)
1−

(
1

X(i)
+1

)
−λ

log
(
1 −

(
1

X(i−1)
+ 1

)
−λ

)
− log

(
1 −

(
1

X(i)
+ 1

)
−λ

) .
(

S n

S i

)′
=

(
1 +

Wi+1 + · · · +Wn

W1 + · · · +Wi

)′
=

1(∑i
k=1 Wk

)2

n∑
j=i+1

i∑
k=1

[
W ′jWk −W jW ′k

]

=
1

λ
(∑i

k=1 Wk

)2

n∑
j=i+1

i∑
k=1

W jWk [A(λ) − B(λ)] ,

where

A(λ) =

(
1

X( j−1)
+1

)
−λλ log

(
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)
and

B(λ) =

(
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−λλ log

(
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log
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− log
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1
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)
−λ

) .
By Cauchy’s mean-value theorem, for j = i + 1, . . . , n, k = 1, . . . , i, there exist ξ1 ∈ (λ log(1/X( j) +

1), λ log(1/X( j−1) + 1)) and ξ2 ∈ (λ log(1/X(k) + 1), λ log(1/X(k−1) + 1)) such that

A(λ) =
1 + ξ1eξ1 − eξ1

1 − eξ1
, B(λ) =

1 + ξ2eξ2 − eξ2

1 − eξ2
.
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Note that ξ1 < ξ2, by Lemma 4, A(λ) − B(λ) > 0, (S n/S i)′ > 0, thus
∑n−1

i=1 log(S n/S i) is a strictly
increasing function of λ, equation

∑n−1
i=1 log(S n/S i) = t has a unique positive solution. �

4. Joint confidence regions for λλλ and ααα

Let X1, X2, . . . , Xn form a sample from IEPD(λ, α), X(1) ≤ X(2) ≤ · · · ≤ X(n) are the order statistics from
this sample. Let Z(i) = −α log[1−(1/X(i)+1)−λ], i = 1, . . . , n. Thus, Z(1) ≤ Z(2) ≤ · · · ≤ Z(n) are the first
n order statistics from the standard exponential distribution. By Lemma 1, Wi = (n− i+1)(Z(i)−Z(i−1)),
i = 1, 2, . . . , n form a sample from standard exponential distribution. Let S i = W1 + · · · + Wi, Ui =

(S i/S i+1)i, i = 1, 2, . . . , n − 1, Un = W1 + · · · +Wn. Hence,

V = 2S 1 = 2W1 = 2nZ(1) = −2nα log
[
1 −

(
1

X(1)
+ 1

)
−λ

]
∼ χ2(2), (4.1)

and

U = 2(S n − S 1) = 2
n∑

i=2

Wi = 2
[
Z(1) + · · · + Z(n) − nZ(1)

] ∼ χ2(2n − 2). (4.2)

It is obvious that U and V are independent. Define

T1 =
U/(2n − 2)

V/2
=

S n − S 1

(n − 1)S 1
∼ F(2n − 2, 2), (4.3)

and

T2 = U + V = 2S n ∼ χ2(2n). (4.4)

We obtain that T1 and T2 are independent using the known bank-post office story in statistics.
Let Fγ(v1, v2) denote the percentile of F distribution with left-tail probability γ and v1 and v2

degrees of freedom. Let χ2
γ(v) denote the percentile of χ2 distribution with left-tail probability γ and

v degrees of freedom.
By using the pivotal variables T1 and T2, a joint confidence region for the two parameters λ and α

can be constructed as follows.

Theorem 3. (Method 1) Let X1, X2, . . . , Xn form a sample from IEPD(λ, α), then, based on the piv-
otal variables T1 and T2, a 100(1 − γ)% joint confidence region for the two parameters λ and α is
determined by the following inequalities:

λL ≤ λ ≤ λU ,

χ2
1−
√

1−γ
2

(2n)

−2
∑n

i=1 log
[
1 −

(
1

X(i)
+ 1

)−λ] ≤ α ≤
χ2

1+
√

1−γ
2

(2n)

−2
∑n

i=1 log
[
1 −

(
1

X(i)
+ 1

)−λ] , (4.5)

where λL is the root of λ for the equation T1 = F(1−
√

1−γ )/2(2n − 2, 2) and λU is the root of λ for the
equation T1 = F(1+

√
1−γ )/2(2n − 2, 2).
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Proof: The function of λ is

T1 =
1

n − 1

log
[
1 −

(
1

X(1)
+ 1

)
−λ

]
+ · · · log

[
1 −

(
1

X(n)
+ 1

)
−λ

]
− n log

[
1 −

(
1

X(1)
+ 1

)
−λ

]
n log

[
1 −

(
1

X(1)
+ 1

)
−λ

]
and does not depend on α. From Theorem 2, we have limλ→0 T1 = (1/(n − 1)) limλ→0(S n/S 1−1) = 0,
limλ→∞ T1 = (1/(n − 1)) limλ→∞(S n/S 1 − 1) = ∞, T ′1 = (1/(n − 1))(S n/S i)′ > 0. Therefore, for any
t > 0, equation T1 = t has a unique positive root of λ.

1 − γ =
√

1 − γ
√

1 − γ

= P
(
F 1−

√
1−γ

2

(2n − 2, 2) ≤ T1 ≤ F 1+
√

1−γ
2

(2n − 2, 2)
)
× P

(
χ2

1−
√

1−γ
2

(2n) ≤ T2 ≤ χ2
1+
√

1−γ
2

(2n)
)

= P
(
F 1−

√
1−γ

2

(2n − 2, 2) ≤ T1 ≤ F 1+
√

1−γ
2

(2n − 2, 2)), χ2
1−
√

1−γ
2

(2n) ≤ T2 ≤ χ2
1+
√

1−γ
2

(2n)
)

= P

λL ≤ λ ≤ λU ,

χ2
1−
√

1−γ
2

(2n)

−2
∑n

i=1 log
[
1 −

(
1

X(i)
+ 1

)−λ] ≤ α ≤
χ2

1+
√

1−γ
2

(2n)

−2
∑n

i=1 log
[
1 −

(
1

X(i)
+ 1

)−λ]
 .

�

However, by Lemma 2, we have

T3 = −2
n−1∑
i=1

log Ui = −2
n−1∑
i=1

i log
(

S i

S i+1

)
= 2

n−1∑
i=1

log
(

S n

S i

)
∼ χ2(2n − 2). (4.6)

T2 and T3 are also independent. By using the pivotal variables T2 and T3, a joint confidence region
for the two parameters λ and α can be constructed as follows.

Theorem 4. (Method 2) Let X1, X2, . . . , Xn form a sample from IEPD(λ, α), then, based on the piv-
otal variables T2 and T3, a 100(1 − γ)% joint confidence region for the two parameters λ and α is
determined by the following inequalities:

λ∗L ≤ λ ≤ λ∗U ,
χ2

1−
√

1−γ
2

(2n)

−2
∑n

i=1 log
[
1 −

(
1

X(i)
+ 1

)−λ] ≤ α ≤
χ2

1+
√

1−γ
2

(2n)

−2
∑n

i=1 log
[
1 −

(
1

X(i)
+ 1

)−λ] , (4.7)

where λ∗L is the root of λ for the equation T3 = χ2
(1−
√

1−γ )/2
(2n − 2) and λ∗U is the root of λ for the

equation T3 = χ
2
(1+
√

1−γ )/2
(2n − 2).

Proof: T3 = 2
∑n−1

i=1 log(S n/S i) is a function of λ and does not depend on α. From Theorem 2, for
any s > 0, equation T3 = s has a unique positive root of λ.

1 − γ =
√

1 − γ
√

1 − γ

= P
(
χ2

1−
√

1−γ
2

(2n − 2) ≤ T3 ≤ χ2
1+
√

1−γ
2

(2n − 2)
)
× P

(
χ2

1−
√

1−γ
2

(2n) ≤ T2 ≤ χ2
1+
√

1−γ
2

(2n)
)
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Table 1: Average relative estimates and MSEs of α

n Methods α = 2.0 α = 2.5 α = 3.0 α = 3.5 α = 4.0

30
MLE 1.1229 (0.1600) 1.1518 (0.1753) 1.1790 (0.2353) 1.1735 (0.2472) 1.1736 (0.2482)
IME 1.0899 (0.1376) 1.1149 (0.1508) 1.1376 (0.2019) 1.1287 (0.2061) 1.1286 (0.2127)

MIME 1.0457 (0.1166) 1.0656 (0.1254) 1.0835 (0.1662) 1.0721 (0.1688) 1.0696 (0.1734)

40
MLE 1.0760 (0.0793) 1.0948 (0.0914) 1.1212 (0.1262) 1.1195 (0.1320) 1.1356 (0.1617)
IME 1.0531 (0.0717) 1.0690 (0.0820) 1.0922 (0.1116) 1.0897 (0.1179) 1.1014 (0.1416)

MIME 1.0220 (0.0638) 1.0345 (0.0717) 1.0543 (0.0964) 1.0499 (0.1017) 1.0590 (0.1212)

50
MLE 1.0720 (0.0661) 1.0663 (0.0658) 1.0941 (0.0831) 1.0866 (0.0877) 1.1038 (0.1028)
IME 1.0537 (0.0609) 1.0464 (0.0607) 1.0711 (0.0745) 1.0635 (0.0799) 1.0798 (0.0943)

MIME 1.0290 (0.0551) 1.0199 (0.0549) 1.0418 (0.0660) 1.0329 (0.0711) 1.0472 (0.0831)

80
MLE 1.0385 (0.0343) 1.0555 (0.0442) 1.0515 (0.0455) 1.0530 (0.0452) 1.0485 (0.0470)
IME 1.0276 (0.0325) 1.0438 (0.0419) 1.0387 (0.0431) 1.0390 (0.0422) 1.0331 (0.0437)

MIME 1.0129 (0.0306) 1.0275 (0.0390) 1.0214 (0.0401) 1.0207 (0.0392) 1.0141 (0.0407)

100
MLE 1.0345 (0.0311) 1.0431 (0.0318) 1.0382 (0.0322 ) 1.0393 (0.0353) 1.0419 (0.0374)
IME 1.0260 (0.0301) 1.0339 (0.0304) 1.0281 (0.0307) 1.0288 (0.0338) 1.0298 (0.0353)

MIME 1.0143 (0.0287) 1.0210 (0.0287) 1.0144 (0.0290) 1.0144 (0.0319) 1.0147 (0.0332)

MLE = maximum likelihood estimate; IME = inverse moment estimation; MIME = modified inverse moment estimation;
MSE = mean square error.

= P
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2
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i=1 log
[
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(
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X(i)
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)−λ] ≤ α ≤
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√

1−γ
2

(2n)

−2
∑n

i=1 log
[
1 −

(
1

X(i)
+ 1

)−λ]
 .

�

5. Simulation study

5.1. Comparison of the three estimation methods

In this section, we conduct simulations to compare the performances of the MLEs, IMEs and MIMEs
mainly with respect to their biases and mean squared errors (MSE’s), for various sample sizes and for
various true parametric values.

Suppose X ∼ IEPD(λ, α), the random data can be generated as: X = 1/[(1−U1/α)−1/λ − 1], where
U follows uniform distribution over [0, 1]. We obtain λ̂MLE by solving Equation (2.5) and α̂MLE by
(2.4). The λ̂IME and λ̂MIME can be obtained by solving (3.7) and (3.8) respectively. The α̂IME and
α̂MIME can be obtained from (3.3).

We consider sample sizes n = 30, 40, 50, 80, 100 and α = 2.0, 2.5, 3.0, 3.5, 4.0. We take λ = 4 in
all our computations. For each combination of sample size n and parameter α, we generate a sample of
size n from IEPD(λ = 4, α), and estimate the parameters λ and α by the MLE, IME, MIME methods.
The average values of α̂/α and λ̂/4 as well as the corresponding MSEs over 1,000 replications are
computed and reported.

For different cases, Table 1 reports the average values of α̂/α and the corresponding MSE is
reported within parenthesis. Figure 1(a), (b), (c), and (d) show the relative biases and the MSEs of the
three estimators of α for sample sizes n = 40 and n = 80. Figure 1(e) and (f) show the relative biases
and the MSEs of the three estimators of α for α = 3.0. The other cases are also similar.

For different cases, Table 2 reports the average values of λ̂/λ = λ̂/4 and the corresponding MSE
is reported within parenthesis. Figure 2(a), (b), (c) and (d) show the relative biases and the MSEs of
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(a) Relative biases (n = 40)
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(c) Relative biases (n = 80)
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(d) Relative MSEs (n = 80)
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(e) Relative biases (α = 3.0)
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(f) Relative MSEs (α = 3.0)

Figure 1: Average relative biases and MSEs of α.

Table 2: Average relative estimates and MSEs of λ

n Methods α = 2.0 α = 2.5 α = 3.0 α = 3.5 α = 4.0

30
MLE 1.0742 (0.0576) 1.0590 (0.0491) 1.0678 (0.0472) 1.0524 (0.0414) 1.0557 (0.0459)
IME 1.0451 (0.0516) 1.0316 (0.0445) 1.0406 (0.0423) 1.0257 (0.0376) 1.0294 (0.0419)

MIME 1.0054 (0.0466) 0.9940 (0.0410) 1.0038 (0.0385) 0.9901 (0.0350) 0.9944 (0.0389)

40
MLE 1.0628 (0.0396) 1.0569 (0.0395) 1.0530 (0.0364) 1.0480 (0.0310) 1.0385 (0.0299)
IME 1.0416 (0.0363) 1.0363 (0.0363) 1.0336 (0.0339) 1.0286 (0.0285) 1.0200 (0.0280)

MIME 1.0122 (0.0331) 1.0081 (0.0336) 1.0064 (0.0315) 1.0022 (0.0265) 0.9942 (0.0265)

50
MLE 1.0407 (0.0298) 1.0370 (0.0251) 1.0360 (0.0261) 1.0346 (0.0237) 1.0366 (0.0245)
IME 1.0243 (0.0280) 1.0207 (0.0235) 1.0203 (0.0246) 1.0198 (0.0225) 1.0209 (0.0231)

MIME 1.0013 (0.0264) 0.9986 (0.0223) 0.9988 (0.0234) 0.9989 (0.0214) 1.0004 (0.0220)

80
MLE 1.0234 (0.0179) 1.0200 (0.0147) 1.0162 (0.0145) 1.0255 (0.0136) 1.0161 (0.0139)
IME 1.0130 (0.0172) 1.0101 (0.0142) 1.0064 (0.0140) 1.0156 (0.0130) 1.0067 (0.0135)

MIME 0.9988 (0.0167) 0.9964 (0.0138) 0.9933 (0.0137) 1.0026 (0.0125) 0.9941 (0.0132)

100
MLE 1.0193 (0.0123) 1.0178 (0.0130) 1.0185 (0.0115) 1.0189 (0.0105) 1.0177 (0.0104)
IME 1.0113 (0.0119) 1.0101 (0.0127) 1.0109 (0.0112) 1.0116 (0.0102) 1.0101 (0.0102)

MIME 0.9999 (0.0116) 0.9992 (0.0123) 1.0004 (0.0109) 1.0013 (0.0099) 1.0000 (0.0099)

MLE = maximum likelihood estimate; IME = inverse moment estimation; MIME = modified inverse moment estimation;
MSE = mean square error.

the three estimators of λ for sample sizes n = 40 and n = 80. Figure 2(e) and (f) show the relative
biases and the MSEs of the three estimators of λ for α = 3.0. The other cases are similar.

From Tables 1 and 2, we observe that
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(f) Relative MSEs (α = 3.0)

Figure 2: Average relative biases and MSEs of λ.

• The average relative biases and the average relative MSEs for the three methods decrease as sam-
ple size n increases as expected. The asymptotic unbiasedness and consistency of all the estimators
are verified.

• For the three methods, the average biases and relative MSEs of λ̂/4 decrease as α goes up. The
average biases and relative MSEs of α̂/α increase as α goes up.

• Considering only MSE’s, the estimation of α′s are more accurate for smaller values while the
estimation of λ′s are more accurate for larger values of α.

• MLE and IME overestimate both of the two parameters α and λ. MIME overestimates only α.

As far as the biases and MSEs are concerned, it is clear MIME works the best in all the cases con-
sidered to estimate the two parameters. Its performance is followed by IME and MLE, especially for
small sample sizes. The three methods are close for larger sample sizes. Considering all the points,
MIME is recommended for estimating both the parameters of the IEPD(λ, α) distribution.

5.2. Comparison of the two joint confidence regions

In Section 4, two methods to construct the confidence regions of the two parameters λ and α are
proposed. In this section, we conduct simulations to compare the two methods.

First, we assess the precisions of the two methods of interval estimators for the parameter λ. We
take sample sizes n = 30, 40, 50, 80, 100 and α = 2.0, 2.5, 3.0, 3.5, 4.0. We take λ = 4 in all our
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Table 3: Results of the methods for constructing intervals for λ with confidence level 0.95

n Methods α = 2.0 α = 2.5 α = 3.0 α = 3.5 α = 4.0

30

(I) Mean width 5.6043 5.5489 5.5052 5.4440 5.2401
Coverage rate 0.955 0.953 0.953 0.942 0.954

(II) Mean width 3.3248 3.1778 3.0546 3.0291 2.9178
Coverage rate 0.961 0.950 0.957 0.947 0.958

40

(I) Mean width 5.2826 5.1410 5.0569 4.9930 4.8931
Coverage rate 0.944 0.950 0.943 0.959 0.949

(II) Mean width 2.8476 2.7187 2.6228 2.5556 2.5152
Coverage rate 0.951 0.940 0.957 0.958 0.951

50

(I) Mean width 4.9759 4.8686 4.7284 4.6879 4.6513
Coverage rate 0.938 0.959 0.968 0.966 0.950

(II) Mean width 2.5179 2.4105 2.3387 2.2844 2.2472
Coverage rate 0.948 0.943 0.951 0.952 0.960

80

(I) Mean width 4.4567 4.3395 4.2683 4.1983 4.2200
Coverage rate 0.954 0.950 0.952 0.949 0.941

(II) Mean width 1.9824 1.9010 1.8308 1.7857 1.7608
Coverage rate 0.938 0.952 0.956 0.949 0.961

100

(I) Mean width 4.2955 4.1699 4.1204 4.0131 3.9981
Coverage rate 0.952 0.959 0.953 0.945 0.957

(II) Mean width 1.7564 1.6938 1.6432 1.5951 1.5721
Coverage rate 0.957 0.939 0.951 0.931 0.950

computations. For each combination of sample size n and parameter α, we generate a sample of size
n from IEPD(λ = 4, α), and estimate the parameters λ by the two proposed methods (4.5) and (4.7).

The mean widths as well as the coverage rates over 1,000 replications are computed. Here the
coverage rate is defined as the rate of the confidence intervals that contain the true value λ = 4 among
these 1,000 confidence intervals. The results are reported in Table 3.

It is observed that:

• The mean widths of the intervals decrease as sample sizes n increase as expected.

• The mean widths of the intervals decrease as the parameter α increases.

• The coverage rates of the two methods are close to the nominal level 0.95.

Considering the mean widths, the interval estimate of λ obtained in method 2 performs better than
that obtained in method 1. Method 2 for constructing the interval estimate of λ is recommended.

We consider the two joint confidence regions and the empirical coverage rates and expected areas.
The results of the methods for constructing joint confidence regions for (λ, α) with confidence level
γ = 0.95 are reported in Table 4.

It is observed that:

• The mean areas of the joint regions decrease as sample sizes n increase as expected.

• The mean areas of the joint regions increase as the parameter α increases.

• The coverage rates of the two methods are close to the nominal level 0.95.

Considering the mean areas, the joint region of (λ, α) obtained in method 2 performs better than
that obtained in method 1. Method 2 is recommended.
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Table 4: Results of the methods for constructing joint confidence regions for (λ, α) with confidence level
γ = 0.95

n Methods α = 2.0 α = 2.5 α = 3.0 α = 3.5 α = 4.0

30

(I) Mean area 18.1447 24.1040 29.3229 37.4723 45.1162
Coverage rate 0.943 0.953 0.948 0.949 0.942

(II) Mean area 7.2611 9.0473 10.4347 12.2616 14.0958
Coverage rate 0.940 0.951 0.957 0.954 0.949

40

(I) Mean area 13.9298 17.2864 22.6337 28.3434 32.9806
Coverage rate 0.950 0.953 0.945 0.938 0.956

(II) Mean area 5.2359 6.1751 7.3436 8.6958 9.7041
Coverage rate 0.952 0.942 0.944 0.946 0.948

50

(I) Mean area 11.1586 14.1365 17.7005 21.1058 25.5788
Coverage rate 0.951 0.954 0.937 0.951 0.948

(II) Mean area 4.0731 4.8594 5.6845 6.4921 7.3824
Coverage rate 0.955 0.953 0.942 0.953 0.949

80

(I) Mean area 7.2142 9.5987 11.8881 13.8864 17.4234
Coverage rate 0.946 0.944 0.942 0.943 0.935

(II) Mean area 4.0370 4.9886 6.1020 7.1601 8.2498
Coverage rate 0.941 0.951 0.938 0.940 0.936

100

(I) Mean area 5.8819 7.7936 9.3763 11.3534 13.5202
Coverage rate 0.954 0.949 0.951 0.950 0.950

(II) Mean area 1.8788 2.2596 2.6727 3.0193 3.3800
Coverage rate 0.950 0.952 0.950 0.942 0.953

6. Real illustrative example

In this section, we consider a real dataset. This data set represents the total seasonal annual rainfall
(in inches) recorded at Los Angeles Civic Center during the last 25 years, from 1985 to 2009 (season
1 July–30 June). The observations are

12.82, 17.86, 7.66, 12.48, 8.08, 7.35, 11.99, 21.00, 27.36, 8.11, 24.35, 12.44, 12.40, 31.01,
9.09, 11.57, 17.94, 4.42, 16.42, 9.25, 37.96, 13.19, 3.21, 13.53, 9.08.

The dataset has been previously analyzed by Raqab (2006, 2013) and Ahmadi and Balakrishnan
(2009). Here we fit the data with IEPD.

The MLEs of the parameters are λ̂MLE = 25.6869 and α̂MLE = 4.9629 with log-likelihood value
−84.1822. The Kolmogorov-Smirnov distance and its corresponding p-value are D = 0.12 and p =
0.9955, respectively. The inverted exponential Pareto distribution can be effective in modeling the
rainfall data.

Using the methods proposed in Section 3, we obtain the following estimates:

λ̂IME = 24.7618, α̂IME = 4.6793, λ̂MIME = 23.7404, α̂MIME = 4.3801.

Based on method 1, the 95% joint confidence region for the parameters (λ, α) is given by the
following inequalities:

7.4044 ≤ λ ≤ 35.9168,
−15.17118∑25

i=1 log
(
1 −

(
1 + 1

Xi

)−λ) ≤ α ≤ −37.48729∑25
i=1 log

(
1 −

(
1 + 1

Xi

)−λ) .
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Figure 3: The 95% joint confidence region of (λ, α).

Based on method 2, the 95% joint confidence region for the parameters (λ, α) is given by the
following inequalities:


14.3964 ≤ λ ≤ 36.4891,

−15.17118∑25
i=1 log

(
1 −

(
1 + 1

Xi

)−λ) ≤ α ≤ −37.48729∑25
i=1 log

(
1 −

(
1 + 1

Xi

)−λ) .
Figure 3(a) and (b) show the 95% joint confidence regions of (λ, α).

7. Conclusions and remarks

In this article, we present the modified inverse moment estimation of parameters and its applications.
We use the inverted exponential Pareto distribution as a specific model to demonstrate its principle and
how to apply this method in practice. The estimation of unknown parameters is investigated. For the
classical maximum likelihood estimation, a necessary and sufficient condition for the existence and
uniqueness of MLEs of the parameters is obtained. Inverse moment and modified inverse moment
estimators are proposed and their properties are studied.

Monte Carlo simulations are conducted to compare the performances of the three estimators. The
simulation results show that the modified inverse moment estimator works the best in all the cases
considered for estimating the unknown parameters in terms of biases and mean squared errors. Its
performance is followed by inverse moment estimator and maximum likelihood estimator, especially
for small sample sizes. We also discuss joint confidence regions for unknown parameters. Real rainfall
dataset is analyzed and used to illustrate the proposed method.

The method discussed in this paper can be easily extended to other common distributions (such as
generalized exponential, and inverse Weibull distribution), which are frequently used in practice. Fu-
ture research topics should include a comparison of the proposed modified inverse moment estimator
with Bayesian estimator, what is the relation between the proposed estimator and sufficient statistics.
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