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Maximum Entropy Principle for Queueing Theory

SungJin Ahn!), DongHoon Lim2 and SooTaek Kim3)

Abstract

We attempt to get a probabilistic model of a queueing system in the maximum
entropy condition. Applying the maximum entropy principle to the queueing system,
we obtain the most uncertain probability model compatible with the available
information expressed by moments.

1. Introduction

Queueing theory studies queueing systems by formulating mathematical models of their
operation and then using these models to derive measures of performance. The term queueing
is used to describe a large class of phenomena involving arrivals, waiting, servicing, and
departures. The basic elements of a queueing model depend on, among others, the following
factors: arrival distrbution, service time distribution, and queue size. Assuming that the
queueing system is in a steady-state condition, queueing theory has tended to focus largely
on predicting such characteristics of the queue as the waiting time or system state under
certain arrivals or service-time distributions.

But generally, we do not know the real probability distributions. The available information is
frequently summarized in mean values or higher moments: mean arrival rates, mean service
rates, or mean number of customers in the system. Such a situation make us to rely on some
other methods to analyse the queueing system. Guiasu [1] proposed the maximum entropy
principle as one of such methods. We will modify and extend his propositions.

Suppose we know that a system has a set of possible states x; with unknown probabilities

f(x,), and we then learn constraints on the distribution f: either values of certain

1) Professor, Department of Statistics, and Information & Telecommunication Research Center,
Gyeongsang National Univ., Chinju 660-701, Korea.

2) Assistant Professor, Department of Statistics, and Information & Telecommunication Research Center,
Gyeongsang National Univ., Chinju 660-701, Korea.

3) Professor, Department of Statistics, and Information & Telecommunication Research Center,
Gyeongsang National Univ., Chinju 660-701, Korea.



498 Sung]in Ahn, DongHoon Lim, SooTaek Kim

expectations ;/(xk)g,-(xk) or bounds on these values. Suppose that we need to choose a

distribution f given what we know. Usually there remains an infinite set of distributions that
are not ruled out by the constraints. Which one should we choose?

The principle of maximum entropy states that, of all the distributions f that satisfies the
constraints, you should choose the one with the largest entropy — g f(x4) log f(x,). Entropy

maximization was first proposed as a general inference procedure by Jaynes [2]. It has been
applied successfully in a remarkable variety of fields, as mentioned in [6].

For the maximum entropy principle to be asserted as a general method of inductive
inference, it is reasonable to require that different ways of using it to take the same
information into account should lead to consistent results. Shore and Johnson [6] formalized
this requirement in four consistency axioms, and then proved that, given new constraint
information in terms of expected values, there is only one distribution satisfying these
constraints that can be chosen by a procedure that satisfies the consistency axioms; this
unique distribution can be obtained by maximizing entropy. After all, inference methods should
relate to entropy.

Supposing that the queueing system is in a maximum entropy condition, we obtain the most
uncertain probability model compatible with the available information expressed by the
moments.

2. Maximum Entropy Distribution

The distribution chosen by the maximum entropy principle will be called the maximum
entropy (ME) distribution. The density inference problem is formally stated as:

Determine the density f(x) of a random variable X subject to the condition that the
expected values 7, of z known functions g£;(X) of X are given, that is,

g0l = [ @ fDdc=n, i=1,....n. W

The ME distributions may be easily derived by the following two lemmas. We refer to
Papoulis [5] for proofs of them.

Lemma 1. The ME distribution must be an exponential form
f(x) = Aexp{—a121(%) — -~ — 2,82}, 2)

where @, are n constants determined from (1) and A is the constant satisfing the density
condition
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A J:exp{—algl(x) — = 2,8 0} = 1. (3)

Lemma 2. The following is a system of n equations equivalent to (1) and thus can be used
to determine the #» parameters a,

_ng—izvl! i:l’,..,n, (4)

where the partition function Z is defined as

Z=Za.....a) =% = [ ewv(-as® ——a,g@Dldk.  ©

3. Some General Results
We will give here some results for a general queueing system.

Proposition 1. If the amrival rate or service rate is available, then the ME distribution of the
interarrival time or service time is exponential.

Proof. We will give a proof for the interarrival time 7. The same arguments may be
applied to the service time S. If the arrival rate is A, then, by Lemma 1,

fr() = Ae™ ", 0< t< oo, (6)
The value of the partition function is
Za) =4 = [Temar=1, @
so that
xR STETY
From (7) and (8), we get
=Adand A= A. §2)
Inserting (9) into (6), we have the desired result
fr()) = de™", 0 < t<e0, (10)

which is an exponential distribution with mean 1/A.
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Proposition 2. If the expected number of customers in the system 1is available, then the ME

distribution of the system state N is geometric.

Proof. If the expected number of customers in the system is L, then, by Lemma 1,
P,=Ae ™, n=0,1,... (11D

The value of the partition function is

-1l _ S en_ 1
Z(a) = A € o7 (12)
so that
1 0z _ ,, _ - e ” - e *
Z 9a ~ 1 —e¢™9 (1-e 92 1-¢° L 13

From (12) and (13), we get

—a_ L | }
Inserting (14) into (11), we have the desired result
— — ) = 1 L _\" -
PV—HN—n%—1+L(1+L),n—OJH.” 15)

which is a geometric distribution with the success probability 1/(L + 1), a discrete analogue
of the exponential distribution. See Johnson and Kotz [3] for the distributions.

4. Some Specific Results

The Pollaczek-Khintchine formula gives the expected number of customers for an M/G/1
queueing system in a steady-state condition (see Taha [7] p. 619). So we can assert the
following proposition for the ME distribution of the system state.

Theorem 1. If the service time S in an M/G/l queueing system in a steady-state condition

has the mean 1/pg and the variance 02, then ME distribution of the system state N is
given by

n 2 n
Pn= P{N= n} — 2/1(#_/{)/1 (2/1_/1+Aﬂ 02) n_O,l,.

- = . 1
(2/12““A2+/{2/1202) n+1 ’ (16)

where A is the arrival rate such that A<
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Proof. The Pollaczek-Khintchine formula gives the expected number of customers
L = E[N] for an M/G/1 queueing system in a steady-state condition

_ A, Qe+ D)

Inserting (17) into (15) and applying Proposition 2, we obtain the result.

The classical theory of an M/G/1 queueing system based on a birth-and-death process
gives no simple analytical expression for the distribution of the system state, except for the
probability of state 0, which is given by

P=1- —;‘; . (18)

On the other hand,
= 1—A/u =[ LA ]_1 (19
Po= 10700 - @D L2 =22 1-u'd)| B )

If =1/ /.12 as is in the case of the exponential service time distributions, then

A
u

From the above theorem for general service time distributions, we can easily deduce the
following two corollaries for special service time distributions.

Pp=P=1-

Corollary 1. If @ = 1/p* as is in the case of the exponential service time distributions,
then the ME distribution of the system state N is given by :

(1 _ AN Ay,
P,= (1 ﬂ)(#),n 0,1,..., (20

which is equivalent to the result for an M/M/1 queueing system in a steady-state condition.

Proof. If ¢ = 1/4% then the Pollaczek-Khintchine formula (17) reduces to

_ _A
L= 1

(21)

which is just the ratio between the arrival rate A and the queue decrease rate u — A
Inserting (21) into (15), we obtain the desired result (20).

Corollary 2. If the service time is constant (with F = 0), then the ME distribution of the
system state N is given by

_ 20 - AMwQAIw"Q —A/m” -
P, [2— (/0" ,n=0,1,..., (22)
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which is the result for an M/D/1 queueing system.

Proof. If ¢ = 0, then the Pollaczek-Khintchine formula (17) reduces to

_ 2Mu— A/ w?
L= 5—oAlg - (23)

Inserting (23) into (15), we obtain the desired result (22).

Theorem 2. If the maximum number of customers allowed in the queueing system is K, and

if the expected number of customers in the system is L, then ME distribution of the system
state N is given by

P,=PN=m=2U=98 ,_,, g (24)

1 _ 6K+1 ’
where & is the quantity that has the relationship with L

[ — Ol — (K+]) " + Ke¥*Y
(1-8"H1 -9 |

(25)

which is just the ’classical’ result for the M/M/1/K queueing system with & playing the role
of the traffic intensity p = A/ pu.

Proof. Lemma 1 yields
P,=Ae ™, n=0,1,...,K. (26)

The value of the partition function is

_ L _ —en 1_ (e—a') K+1 _ 1__ 6K+1
Z(a) = 5 = goe =i H " 1-% - (27)
where
d=e ", (28)
Thus we have
190z _ _10Z 30 _ _ _1-8 (A=8""H—(K+1DU—-208)s" (-8 =L
Z da Z 38 da 1—8K*1 (1—9)° ’

which reduces to the relationship (25). From (27), we get

A= ﬁ‘?ﬁ (29)

Inserting (28) and (29) into (26), we have the desired result (24).
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5. Further Results

Until now, we have assumed that the available information is represented by the moments
of first order. If, however, some moments of higher order are also available, the maximum
entropy principle can still be applied.

Proposition 3. If both the mean and variance of the interarrival times or service times are
available, then the ME distribution of the interarrival time or service time is normal with the
given mean and variance.

Proof. Here we will give a proof for the interarrival time 7. The same arguments can also
be applied to the service time S. If the expected value and variance of the interarrival times

are 1 and ¢, respectively, then Lemma 1 yields
Fr(d = Ae ™", —o (o, (30)
The value of the partition function is
&
® _gt—af Aay
Z(ay, @) = % = f_we ! dt = \’-:-—ze , (31)
so that
21 oz _ _ o _ 1
Z oay 2a, 7P (32)
and
2
1 _dZ 1 44} 1
L = = i .. (33)
Z oday 2a, + 40% ﬂi t 02
Equations (32) and (33) yields the solutions
al=———#:7 and a, = 210%. (34)

Proposition 4. If the mean and variance of the number of customers in the system are L
and of, respectively, then the ME distribution of the system state N is

P,,=(§0u”v"z)‘1u"v"z, n=0,1,2,..., (35)

where # and v have the relationships with L and ¢
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(21 nu"v"z)/(Z) W™ = L, (36)
and
(’glnzu”v”z)/(z)u”v"z) =L%+ &. 37
Proof. Lemma 1 yields
P,=Ae ™" " 5—=0,1,2,... (38)

The value of the partition function is

Z(a,, a;) = —flT = Z,'Oe—'""*"’"z =1+ wv+ o' + 0° + -, (39
where
u=e “and v=-—e . (40)
Thus
_1l 0z _ _ 1 8Z du _ _uv+24*v'+ 340 + -0 _ I 4
Z da Z du da, 1+ uv+ o' + 0% + - '
and
_1 9Z _ _ 1 0Z v _ _uv+ 4P+ 9485 + - o
Z day Z 9v by 1+ uv+ vt + P + - =L+ 2

Inserting (39) through (42) into (38), we obtain the desired result (35).

6. Concluding Remarks

We have attempted to get a probabilistic model of a queueing system in the maximum
entropy condition. Applying the maximum entropy principle to the queueing system, we have
obtained the most uncertain probability model compatible with the available information
expressed by moments. To derive the maximum entropy distribution given second or higher
moments may require numerical analysis. We have derived:

* the maximum entropy distributions of interarrival or service time, given the first and/or
second moments, and

* the maximum entropy distributions of system states, given the first and/or second
moments.

We feel that the present approach may be, at least, a supplementary tool to the classical
approach to the queueing theory. If the form of the prior distribution % is available in
addition to the moment constraints, the maximum relative entropy principle of Kullback [4]
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may be applied: Of all the distributions f that satisfy the constraints, you should choose the
f with the largest relative entropy ff(x) log (f(x) / h(x)) dx.
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