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POSITIVE SOLUTIONS TO DISCRETE HARMONIC

FUNCTIONS IN UNBOUNDED CYLINDERS

Fengwen Han and Lidan Wang

Abstract. In this paper, we study the positive solutions to a discrete

harmonic function for a random walk satisfying finite range and ellipticity
conditions, killed at the boundary of an unbounded cylinder in Zd. We

first prove the existence and uniqueness of positive solutions, and then
establish that all the positive solutions are generated by two special so-

lutions, which are exponential growth at one end and exponential decay

at the other. Our method is based on maximum principle and a Harnack
type inequality.

1. Introduction

The positive harmonic functions on Euclidean spaces have been studied ex-
tensively, see for examples [3,9,10,12,18,22]. It is worth noting that Benedicks
[3] proved that the cone of positiveharmonic functions vanishing on the bound-
ary of certain domains in Rd is generated by twolinearly independent minimal
positive harmonic functions, which means that the cone is two-dimensional.
Gardiner [9] considered the positive harmonic functions with zero boundary
condition in unbounded cylinders and obtained similar result. As is well known,
for the equation ∆u = 0 on R × (0, π) with the zero Dirichlet boundary con-
dition, any positive solution is a linear combination of ex sin y and e−x sin y.
Later, Gardiner’ result was extended to second order elliptic operators, one can
see [1, 18,24–28].

The positive harmonic functions on graphs have also been studied by many
authors, e.g., [11, 16, 17, 23]. Recently, random walks conditioned to live in
domains D ⊂ Zd are of growing interest because of the range of their appli-
cations in enumerative combinatorics, in probability theory and in harmonic
analysis, see for examples [2, 5, 7, 8, 19, 20]. The authors in [4] proved the ex-
istence and uniqueness of positive harmonic functions for random walks killed
at the boundary of an orthant in Zd. Mustapha and Sifi [21] generalized the
results of [4] to a globally Lipschitz unbounded domain in Zd. For more related
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works, we refer readers to [6, 13–15, 29]. Since it is crucial to identify the set
of all positive harmonic functions associated with a killed random walk, in this
paper, we study the positive harmonic functions for random walks killed at the
boundary of an unbounded cylinder in Zd. We will generalize Gardiner’s result
to graph setting.

We recall the setting on graphs. Let Γ be a finite subset of Zd containing all
unit vectors ek = (0, . . . , 0, 1, 0, . . . , 0) ∈ Zd, where the 1 is the k-th component;
and let π : Zd × Γ → [0, 1] such that∑

e∈Γ

π(x, e) = 1, x ∈ Zd.

Then we let {Xn}n∈N be the Markov chain on Zd defined by

P[Xn+1 = x+ e | Xn = x] = π(x, e), e ∈ Γ, x ∈ Zd, n = 0, 1, . . . .

{Xn}n∈N is a (spatially) homogeneous random walk with bounded increments
if π(x, e) = π(e); Otherwise, we call {Xn}n∈N spatially inhomogeneous. Let

Px[Xn = y], n = 1, 2, . . . , x, y ∈ Zd,

be the transition probability corresponding to the chain {Xn}n∈N, where Px is
the law of the chain with X0 = x.

Let A be a set of Zd. We define the boundary of A as

∂A = {x ∈ Ac | x = z + e, z ∈ A, e ∈ Γ},

where Ac = Zd\A. We say a function u : Ā = A ∪ ∂A → R is harmonic in A if
Lu = 0 in A, where L is the difference operator defined as

Lu(x) =
∑
e∈Γ

π(x, e)(u(x+ e)− u(x)).

We assume that the probability π(x, e) satisfies the following uniform ellipticity
condition:

π(x, e) ≥ λ, x ∈ Zd, e ∈ Γ,

for some λ > 0. Under the assumption above, such an L is a discrete analogue of
a uniformly elliptic, purely second order differential operator with measurable
coefficients.

To state our results, we first give some notations. Let x = (x′, y) ∈ Zd × Z.
We denote by C = D×Z an unbounded cylinder in Zd ×Z, where D ⊂ Zd is a
bounded domain (i.e., a finite connected set of vertices of Zd). Moreover, for
E ⊂ Z, let CE = D×E = {(x′, y) ∈ Zd×Z | x′ ∈ D, y ∈ E}, ∂lCE = ∂D×E =
{(x′, y) ∈ Zd × Z | x′ ∈ ∂D, y ∈ E} and ∂rCE = ∂CE\∂lCE . Without loss of
generality, we assume that 0′ ∈ D and the constants c, C may change from line
to line.

In this paper, we study the positive functions u which are discrete harmonic
for the random walk {Xn}n∈N killed at the boundary of an unbounded cylinder
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C, that is,

(1.1)


Lu(x) = 0, x ∈ C,
u(x) = 0, x ∈ ∂C,
u(x) > 0, x ∈ C.

We are interested in the existence and uniqueness (up to a multiplicative con-
stant) of a solution to the problem (1.1). In addition, we would like to extend
Gardiner’s result [9] to the discrete positive harmonic functions for random
walks killed at the boundary ∂C.

For any u ∈ C, let û(y) = max
x′∈D

u+(x′, y) and m(u) = inf
y∈Z

û(y), where u+ =

max{u, 0}. We denote by S the positive solution set of the problem (1.1).
Denote

S+ = {u ∈ S | lim
y→+∞

u(x′, y) = 0},

S− = {u ∈ S | lim
y→−∞

u(x′, y) = 0},

S∨ = {u ∈ S | there exists x∗ ∈ C such that u(x∗) = m(u) > 0}.

Our results are as follows.

Theorem 1.1. Let {Xn}n∈N be a random walk satisfying the above finite sup-
port and ellipticity conditions. Assume that C is an unbounded cylinder in Zd.
Then, up to a multiplicative constant, there exists a unique positive function,
harmonic for the random walk killed at the boundary ∂C.

Theorem 1.2. Let {Xn}n∈N be a random walk satisfying the above finite sup-
port and ellipticity conditions. Assume that C is an unbounded cylinder in Zd.
Then the solution set S+ and S− are well defined. Moreover, S is a linear
combination of S+ and S−, that is, for any u ∈ S+ and v ∈ S−,

S = S+ + S− = {au+ bv | a, b ≥ 0, a+ b > 0}.

Theorem 1.3. Let {Xn}n∈N be a random walk satisfying the above finite sup-
port and ellipticity conditions. Assume that C is an unbounded cylinder in Zd.
Then there exist constants c, C > 0 depending only on d, λ,Γ,D such that, for
any u ∈ S+, v ∈ S−, w ∈ S∨,

−cy ≤ ln(
û(y)

û(0)
) ≤ −Cy, y ∈ Z,

cy ≤ ln(
v̂(y)

v̂(0)
) ≤ Cy, y ∈ Z,

c|y − y∗| ≤ ln(
ŵ(y)

ŵ(y∗)
) ≤ C|y − y∗|, y ∈ Z,

where w(x∗) = m(w).
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Remark 1.4. (i) Since the spatially inhomogeneous random walks are consid-
ered as the discrete analogues of diffusions generated by second order differen-
tial operators in non-divergence form, for the proof of the theorems, we follow
the arguments in Bao et al. [1].

(ii) The basic tools used in [1] are maximum principle, boundary Hölder es-
timate, Harnack inequality, Carleson estimate and boundary Harnack inequal-
ity. While in our paper, maximum principle and a Harnack type inequality are
enough;

(iii) Our contribution is that we give a natural probabilistic proof for a decay
lemma (Lemma 2.1 below) and a Harnack inequality (Lemma 3.1 below), which
are the keystones for our theory of this paper.

The paper is organized as follows: in Section 2, we first prove a decay lemma
and use it to obtain a maximum principle in unbounded cylinders of Zd. This
yields a decomposition of the positive solution set S. In Section 3, we first
prove a Harnack inequality and use it to get the relations among the positive
solution sets S+, S− and S∨. In Section 4, we give the proofs of Theorem
1.1-Theorem 1.3.

2. Maximum principle

In this section, we prove a maximum principle in unbounded cylinders. For
a finite set A ⊂ Zd, we denote by τA the exit time from A, i.e., τA = inf{n ≥
0 : Xn /∈ A}. The harmonic measure in A at the point x is defined by

ωx
A(E) = Px[XτA ∈ E], E ⊂ ∂A.

It is well known that, for each ϕ : ∂A → R, the solution u : Ā → R of the
boundary value problem {

Lu(x) = 0, x ∈ A,

u(x) = ϕ(x), x ∈ ∂A,

can be represented by means of ωx
A, x ∈ A as follows:

(2.1) u(x) =
∑
z∈∂A

ϕ(z)Px[XτA = z].

First, we give a discrete version of maximum principle, see [4, Theorem 2.1].

Theorem 2.1 (Maximum principle). Let A ⊂ Zd be a bounded domain in Zd

and u : Ā → R a harmonic function on A. Assume that u ≥ 0 on ∂A. Then
u ≥ 0 in A.

Then we have the following decay lemma, which plays a key role in proving
a maximum principle in unbounded cylinders of Zd.
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Lemma 2.2. Assume that u(x) satisfies
Lu(x) ≥ 0, x ∈ C(k−1,k+1),

u(x) ≤ 0, x ∈ ∂lC(k−1,k+1),

u(x) ≤ 1, x ∈ ∂rC(k−1,k+1).

Then for any k ∈ Z, there exists a constant 0 < δ < 1 depending on d, λ, Γ, D
such that

u(x) ≤ 1− δ, x ∈ C{k}.

Proof. Let w(x) be the solution of the Dirichlet boundary problem
Lw(x) = 0, x ∈ C(k−1,k+1),

w(x) = 0, x ∈ ∂lC(k−1,k+1),

w(x) = 1, x ∈ ∂rC(k−1,k+1).

Then maximum principle implies that

u(x) ≤ w(x), x ∈ C(k−1,k+1).

Let τ be the exit time from C(k−1,k+1). We claim that

Px[Xτ ∈ ∂lC(k−1,k+1)] ≥ δ > 0,

where 0 < δ < 1 is a constant depending only on d, λ, Γ, D.
Indeed, we have that

Px[Xτ ∈ ∂lC(k−1,k+1)]

≥ Px[Xτ = z ∈ ∂lC(k−1,k+1)]

=
∑

x1,...,xn−1∈C(k−1,k+1)

Px[X1 = x1, . . . , Xn−1 = xn−1, Xτ = z]

=
∑

x1,...,xn−1∈C(k−1,k+1)

P[X1 = x1 | X0 = x] · · ·P[Xτ = z | Xn−1 = xn−1]

≥ P[X1 = x1 | X0 = x] · · ·P[Xτ = z | Xn−1 = xn−1]

≥ λdiam(C(k−1,k+1))

= δ.

Clearly, the constant δ ∈ (0, 1) is dependent of d, λ, Γ, D.
By (2.1), we have that

w(x) =
∑

z∈∂(C(k−1,k+1))

w(z)Px[Xτ = z]

=
∑

z∈∂(C(k−1,k+1))\∂lC(k−1,k+1)

Px[Xτ = z]

= 1−
∑

z∈∂lC(k−1,k+1)

Px[Xτ = z]
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≤ 1− δ.

Consequently, we obtain that

u(x) ≤ 1− δ, x ∈ C{k}. □

Lemma 2.3. Assume that u is a subharmonic function in C, and u is bounded
from above. Then

sup
x∈C

u(x) ≤ sup
x∈∂C

u+(x).

Proof. Without loss of generality, we assume that sup
x∈∂C

u+(x) = 0. Otherwise

one can consider v = u− sup
x∈∂C

u+(x). Hence we only need to prove that

(2.2) u(x) ≤ 0, x ∈ C.
Since u is bounded from above, we let u ≤ M , whereM is a positive constant.

In order to apply Lemma 2.2, for any ε > 0 and k ∈ Z, we consider the function

ũ(x) =
u(x)

max{û(k − 1), û(k + 1)}+ ε
, x ∈ C.

Obviously, ũ(x) satisfies
Lũ(x) ≥ 0, x ∈ C(k−1,k+1),

ũ(x) ≤ 0, x ∈ ∂lC(k−1,k+1),

ũ(x) ≤ 1, x ∈ ∂rC(k−1,k+1).

By Lemma 2.2, we derive, for 0 < δ < 1, that

ũ(x′, k) ≤ 1− δ, x′ ∈ D.

More precisely, we have that

u(x′, k) ≤ (1− δ)(max{û(k − 1), û(k + 1)}+ ε),

and hence

u+(x′, k) ≤ (1− δ)(max{û(k − 1), û(k + 1)}+ ε).

Then we get that

û(k) ≤ (1− δ)max{û(k − 1), û(k + 1)}.
The previous inequality implies that

û(k − 1) ≤ (1− δ)max{û(k − 2), û(k)}
= (1− δ) max

C[k−2,k]

u+

and

û(k + 1) ≤ (1− δ)max{û(k), û(k + 2)}
= (1− δ) max

C[k,k+2]

u+.
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Then it follows from the above inequalities that

max
C[k−1,k+1]

u+ ≤ (1− δ) max
C[k−2,k+2]

u+.

For any k ∈ Z, by iteration, we obtain that

û(k) ≤ (1− δ)max{û(k − 1), û(k + 1)}
= (1− δ) max

C[k−1,k+1]

u+

≤ (1− δ)2 max
C[k−2,k+2]

u+

...

≤ (1− δ)m max
C[k−m,k+m]

u+

≤ (1− δ)mM

→ 0, m → +∞.

Then the result (2.2) holds. We complete the proof. □

Corollary 2.4. Assume that u is a subharmonic function in C(0,+∞), and u is
bounded from above. Then

sup
x∈C(0,+∞)

u(x) ≤ sup
x∈∂C(0,+∞)

u+(x).

Lemma 2.5. Assume that u satisfies{
Lu(x) ≥ 0, x ∈ C(0,+∞),

u(x) = 0, x ∈ ∂lC(0,+∞),

and u is bounded from above. Then

u(x) ≤ e−βyû(0), x ∈ C(0,+∞),

where β > 0 is a constant depending on d, λ, Γ, D.

Proof. Corollary 2.4 implies that

û(y) ≤ û(0), y ∈ (0,+∞).

By Lemma 2.2, there exists a constant δ ∈ (0, 1) such that û(1) ≤ (1− δ)û(0).
Do the operation repeatedly, we get that

û(y) ≤ (1− δ)yû(0) = ey ln(1−δ)û(0).

Hence the proof ends with β = − ln(1− δ) > 0. □

Now we can prove the following proposition.

Proposition 2.6. Let u ∈ S. Then m(u) = inf
y∈Z

û(y) ≥ 0.

(1) If m(u) = inf
y∈Z

û(y) = 0, then either of the following alternatives holds:
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(i) there exists a sequence {xj = (x′
j , yj)} ⊂ C such that lim

j→∞
yj = +∞,

lim
j→∞

u(x′
j , yj) = 0, and û(y) is a strictly decreasing function in Z;

(ii) there exists a sequence {xj = (x′
j , yj)} ⊂ C such that lim

j→∞
yj = −∞,

lim
j→∞

u(x′
j , yj) = 0, and û(y) is a strictly increasing function in Z.

(2) If m(u) = inf
y∈Z

û(y) > 0, then there exists x∗ = (x′∗, y∗) ∈ C such that

u(x∗) = m(u), and û(y) is strictly increasing in [y∗,+∞) and strictly decreasing
in (−∞, y∗].

Proof. Let {xj = (x′
j , yj)} ⊂ C be a minimizing sequence that satisfies u(x′

j , yj)
= max

x′∈D
u(x′, yj) = û(yj) and lim

j→∞
u(xj) = lim

j→∞
û(yj) = m(u).

(1) If m(u) = 0, then lim
j→∞

u(xj) = m(u) = 0.

We claim that there exists a subsequence of {xj = (x′
j , yj)} ⊂ C (still denote

itself) such that lim
j→∞

yj = +∞ or lim
j→∞

yj = −∞.

In fact, if {yj} is bounded in Z, i.e., |yj | ≤ M for some M > 0, then C[−M,M ]

is a bounded domain (a finite vertex set). Hence there exist a subsequence
{xj} = {(x′

j , yj)} ⊂ C[−M,M ] and a point x0 ∈ C[−M,M ] such that lim
j→∞

u(xj) =

u(x0) > 0. We get a contradiction.
(i) If lim

j→∞
yj = +∞, then û(y) is a strictly decreasing function in Z.

Arguing indirectly, if there exist y1, y2 ∈ Z with y1 < y2 such that û(y2) ≥
û(y1) > 0. Since lim

j→∞
yj = +∞ and lim

j→∞
û(yj) = 0, by taking j sufficiently

large, one has that

y1 < y2 < yj and û(yj) ≤ û(y1).

Then we get a local maximum point x2 = (x′
2, y2) ∈ C(y1,yj), which contradicts

the maximum principle.
(ii) If lim

j→∞
yj = −∞, by similar arguments as in (i), we get that û(y) is a

strictly increasing function in Z.
(2) If m(u) > 0, then lim

j→∞
û(yj) = lim

j→∞
u(xj) = m(u) > 0. We first prove

that there exist a subsequence of {xj = (x′
j , yj)} ⊂ C (still denote itself) and a

point x∗ ∈ C such that

lim
j→∞

xj = x∗ and lim
j→∞

u(xj) = u(x∗).

In fact, |yj | ≤ M for some M > 0. Otherwise lim
j→∞

yj = +∞ or lim
j→∞

yj =

−∞. Without loss of generality, we assume that lim
j→∞

yj = +∞. Similar to the

proof of (i), we can get that û(y) is a strictly decreasing function in Z. Hence
u(x) is bounded in C(0,+∞). By Lemma 2.5, one gets that lim

j→∞
û(yj) = 0, which

is a contradiction. Hence there exist a subsequence {xj = (x′
j , yj)} ⊂ C[−M,M ]
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and a point x∗ ∈ C[−M,M ] such that lim
j→∞

xj = x∗ and lim
j→∞

u(xj) = u(x∗). As

a consequence, u(x∗) = m(u).
Next, we show that û(y) is strictly increasing in [y∗,+∞). Suppose it is not

true, then there exist y1, y2 ∈ Z with y∗ < y1 < y2 such that û(y1) ≥ û(y2) ≥
û(y∗) = m(u) > 0, we get a local maximum point x1 = (x′

1, y1) ∈ C(y∗,y2),
which contradicts the maximum principle. Similarly, we can prove that û(y) is
strictly decreasing in (−∞, y∗]. □

Remark 2.7. By Proposition 2.6, one gets that the positive solution set S =
S+ ∪ S− ∪ S∨ and S+ ∩ S− = S− ∩ S∨ = S+ ∩ S∨ = ∅.

3. Local Harnack inequality

In this section, in order to study the asymptotic behavior of the positive
harmonic functions for the random walk {Xn}n∈N killed at the boundary, we
first prove a discrete version of Harnack type inequality. We would like to say
that this is a local Harnack inequality, which depends on the domain. Hence
this Harnack inequality differs from the one that in [21, Theorem 2.1].

Lemma 3.1. Let u ∈ S. There exists a positive constant C depending only on
d, λ,Γ,D such that, for any y ∈ Z,

Cu(z) ≤ u(x) ≤ C−1u(z), x, z ∈ C(y−2,y+2).

Proof. We first claim that if u is harmonic in {x, x+ e} with e ∈ Γ, then

(3.1) λu(x+ e) ≤ u(x) ≤ λ−1u(x+ e).

In fact, we have that

u(x) =
∑
e∈Γ

π(x, e)u(x+ e) ≥ λu(x+ e).

Interchanging x and x+ e gives the second inequality.
For any y ∈ Z, since C(y−2,y+2) ⊂ C is connected, by iterating (3.1), we

deduce that

λdiam(C(y−2,y+2))u(z) ≤ u(x) ≤ λ−diam(C(y−2,y+2))u(z), z ∈ C(y−2,y+2).

We get the result by taking C = λdiam(C(y−2,y+2)). □

Remark 3.2. In fact, by similar arguments as in Lemma 3.1, we have the fol-
lowing Harnack inequality: for any given connected finite set Ω ⊂ Zd, if u ≥ 0
on Ω̄ and harmonic in Ω, then

(3.2) Cu(z) ≤ u(x) ≤ C−1u(z), x, z ∈ Ω,

where C depends only on d, λ,Γ and Ω.
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Corollary 3.3. Let u1, u2 ∈ S. For any y0 ∈ Z, if there exists a point x0 =
(x′

0, y0) ∈ C such that u1(x0) = u2(x0), then

Cu2(x) ≤ u1(x) ≤
1

C
u2(x), x ∈ C{y0},

where C > 0 depends only on d, λ,Γ,D.

Proof. The result follows from Lemma 3.1. □

Remark 3.4. If the condition u1(x0) = u2(x0) in Corollary 3.3 is replaced by
u1(x0) ≤ (≥)u2(x0), then it holds that u1(x) ≤ 1

Cu2(x) (u1(x) ≥ Cu2(x)). In

fact, let v(x) = u1(x0)
u2(x0)

u2(x). Then v ∈ S and v(x0) = u1(x0). By Corollary

3.3, there exists a positive constant C depending only on d, λ,Γ,D such that

Cu1(x) ≤ v(x) ≤ 1

C
u1(x), x ∈ C{y0}.

If u1(x0) ≤ u2(x0), then the left inequality implies that

u1(x) ≤
1

C
u2(x), x ∈ C{y0}.

If u1(x0) ≥ u2(x0), then the right inequality implies that

u1(x) ≥ Cu2(x), x ∈ C{y0}.

Proposition 3.5. For the solution set S+, S− and S∨, we have that:

(i) for any u ∈ S+ and w ∈ S∨, there exists a constant a > 0 such that

au(x) ≤ w(x), x ∈ C;

(ii) for any v ∈ S− and w ∈ S∨, there exists a constant b > 0 such that

bv(x) ≤ w(x), x ∈ C.

Proof. For any w ∈ S∨, by Proposition 2.6, there exists a point x∗ = (x′∗, y∗) ∈
C such that ŵ(y) is strictly decreasing in (−∞, y∗] and increasing in [y∗,+∞).
Hence w has no upper bound in C.

(i) For any u ∈ S+, u is bounded in CN since û(y) is strictly decreasing in
Z. By Corollary 3.3, there exists a positive constant C0 such that C0u(x) ≤
w(x), x ∈ C{0}. Then it follows from Corollary 2.4 that

(3.3) C0u(x) ≤ w(x), x ∈ C[0,+∞).

Now we prove that there exists a constant a > 0 such that au(x) ≤ w(x), x ∈
C. Suppose it is not true, then there exists a sequence {xj = (x′

j , yj)} ⊂ C such
that

(3.4)
1

j
u(xj) > w(xj).

We claim that there exists a subsequence of {xj = (x′
j , yj)} (still denote itself)

such that lim
j→∞

yj = −∞.
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In fact, one gets easily that the sequence {yj} is bounded from above in Z.
Otherwise, xj = (x′

j , yj) ∈ C(0,+∞) as j → ∞. Then it follows from (3.3) and
(3.4) that

w(xj) ≥ C0u(xj) > C0jw(xj),

which is a contradiction. If the sequence {yj} is bounded from below in Z, then
|yj | ≤ m0 for some m0 > 0. By Corollary 3.3 and Lemma 2.3, there exists a
constant Cm0

> 0 such that

(3.5) Cm0
u(x) ≤ w(x), x ∈ C[−m0,+∞).

Let j be large enough such that 1
j ≤ Cm0

. For xj ∈ C[−m0,+∞), by (3.4) and

(3.5), we get that

w(xj) <
1

j
u(xj) ≤ Cm0

u(xj) ≤ w(xj).

This is a contradiction. We complete the claim.
Without loss of generality, we assume that the sequence {yj} is strictly

decreasing, that is, for 1 ≤ j1 < j2, yj2 < yj1 < 0. For any j ≥ 1, by (3.4),
there exists a point xj ∈ C{yj} such that w(xj) <

1
j u(xj). Then it follows from

Corollary 3.3 that

w(x)− 1

Cj
u(x) ≤ 0, x ∈ C{yj}.

Then by maximum principle, one has that

w(x)− 1

Cj
u(x) ≤ ŵ(0), x ∈ C(yj ,0).

Since lim
j→∞

yj = −∞, we get that

lim
j→∞

[w(x)− 1

Cj
u(x)] = w(x) ≤ ŵ(0), x ∈ C(−∞,0).

This yields a contradiction since w(x) has no upper bound in C.
(ii) The proof is similar to that of (i), we omit here. □

Proposition 3.6. For the solution set S+ and S−, we have that:

(i) for any u, v ∈ S+, there exists a constant c > 0 such that

u(x) ≤ cv(x), x ∈ C;

(ii) for any u, v ∈ S−, there exists a constant d > 0 such that

u(x) ≤ dv(x), x ∈ C.

Proof. For any y ∈ Z, by Corollary 3.3, there exists a constant cy > 0 such
that

(3.6) u(x) ≤ cyv(x), x ∈ C{y}.
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(i) Suppose it is not true, then for any j ≥ 1, there exists a sequence {xj =
(x′

j , yj)} ⊂ C such that u(xj) > jv(xj). By Corollary 3.3, there exists a
constant C > 0 such that

u(x) ≥ Cjv(x), x ∈ C{yj}.

Let y = 0 in (3.6), by Corollary 2.4, we get that

u(x) ≤ c0v(x), x ∈ C[0,+∞).

Since lim
j→∞

yj = +∞ for j large enough, we have that C[yj ,+∞) ⊂ CN and

Cj > c0. Then the above inequalities imply that

c0v(x) ≥ u(x) ≥ Cjv(x) > c0v(x), x ∈ C[yj ,+∞),

which is a contradiction.
(ii) The proof is similar to that of (i), we omit here. □

4. Proof of the main theorems

In this section, we are devoted to prove Theorem 1.1–Theorem 1.3.

Proof of Theorem 1.1. For any k ∈ N+, consider the equation
Lu(x) = 0, x ∈ C(−k,k),

u(x) = 0, x ∈ ∂lC(−k,k) ∪ C{−k},

u(x) = Cdist(x′, ∂D), x ∈ C{k}.
By maximum principle, we get a positive solution uk(x) in C(−k,k). Without
loss of generality, we normalize uk such that uk(0) = 1.

Let l ∈ N+ : k > l. For x ∈ C(−l, l), by the local Harnack inequality (3.2),
we get that

max
C(−l, l)

uk(x) ≤ C min
C(−l, l)

uk(x) ≤ C,

where C depends on d,Γ, λ,D and l. By taking the diagonal convergent sub-
sequence, we may assume that lim

k→+∞
uk(x) = u(x) locally and uniformly in D.

Then it is clear that u(x) ≥ 0, u(0) = 1 and u satisfies the equation (1.1). By
maximum principle, we get that u > 0 for all x ∈ C. □

Proof of Theorem 1.2. The proof consists of two steps.
Step 1. The structure of S+ and S−.
For any u, v ∈ S+, define

E = {p > 0 | u(x) ≤ pv(x), x ∈ C} and P = inf E.

By Proposition 3.6, one gets that E ̸= ∅. Moreover, by the definition of P , we
have that, for any x ∈ C, Pv(x) − u(x) ≥ 0. This yields that P > 0. Now we
claim that

Pv(x)− u(x) = 0, x ∈ C.
In fact, if there exists x0 ∈ C such that Pv(x0)− u(x0) > 0, then Pv(x0)−

u(x0) ∈ S+. By Proposition 3.6, there exists a constant c > 0 such that
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v(x0) ≤ c(Pv(x0)−u(x0)), i.e., u(x0) ≤ (P − 1
c )v(x0). Then P − 1

c ∈ E, which
contradicts the definition of P . Hence,

u(x) = Pv(x), x ∈ C.
Therefore, we get the structure of S+: S+ = {pu | p > 0, u ∈ S+}.

Similarly, we can get the structure of S−: S− = {qv | q > 0, v ∈ S−}.
Step 2. The structure of S.
By Proposition 2.6, we have that

S = S+ ∪ S− ∪ S∨,

where S+ ∩ S− = S− ∩ S∨ = S+ ∩ S∨ = ∅.
For any u ∈ S, if u ∈ S+, or u ∈ S−, the result follows from Step 1. Now

we assume that u ∈ S∨. Define

F = {l > 0 | lv ≤ u, v ∈ S+} and L = supF.

By Proposition 3.5, one sees that F ̸= ∅, and hence L > 0. Clearly, for any
x ∈ C, u− Lv ≥ 0, which means that L < +∞. Now we claim that

(4.1) u− Lv > 0, x ∈ C.
In fact, if there exists x0 ∈ C such that u(x0) − Lv(x0)=0, then by Step 1,
u(x0) = Lv(x0) ∈ S+, which contradicts u ∈ S∨.

The claim (4.1) implies that u−Lv ∈ S. Next, we prove that u−Lv ∈ S−.
By contradiction, if u−Lv ∈ S+, then there exists q > 0 such that u−Lv = qv,
i.e. u = (L + q)v ∈ S+, this contradicts u ∈ S∨; If u − Lv ∈ S∨, then there
exists l > 0 such that lv ≤ (u−Lv), i.e., (L+ l)v ≤ u. Hence L+ l ∈ F , which
contradicts the definition of L. Therefore, we get that

u− Lv ∈ S−.

By Step 1, there exist Q > 0 and w ∈ S− such that u − Lv = Qw, i.e.,
u = Lv +Qw, where v ∈ S+, w ∈ S−. Then we get the solution set

S = S+ + S− = {pu+ qv | p, q ≥ 0, p+ q > 0}. □

Proof of Theorem 1.3. First, we claim that for any u ∈ S, there exists a con-
stant ξ > 0 depending only on d, λ,Γ,D such that

(4.2) û(y − 1) ≤ (1 + ξ)û(y), y ∈ Z,

and

(4.3) û(y + 1) ≤ (1 + ξ)û(y), y ∈ Z.

In fact, by Lemma 3.1, there exists a constant C > 0 depending only on
d, λ,Γ,D such that, for any y ∈ Z,

u(x) ≤ Cu(0′, y) ≤ Cû(y), x ∈ C(y−2,y+2).

Hence, we get that

û(y − 1) ≤ (1 + ξ)û(y), û(y + 1) ≤ (1 + ξ)û(y), y ∈ Z.
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Step 1. The asymptotic behavior of positive solutions in S+ and S−.
For any u ∈ S+, û(y) is strictly decreasing in Z. We prove that there exists

a constant ζ > 0 depending only on d, λ,Γ,D such that

(4.4) (1 + ζ)û(y + 1) ≤ û(y), y ∈ Z.
Suppose it is not true, then for any k ∈ Z+, there exists yk ∈ Z such that

(1 +
1

k
)û(yk + 1) > û(yk).

Apply Lemma 2.2 to u in C(yk,yk+2), we get that

û(yk + 1) ≤ (1− δ)û(yk) < (1− δ)(1 +
1

k
)û(yk + 1).

Let k large enough such that (1− δ)(1 + 1
k ) < 1, then

û(yk + 1) ≤ (1− δ)û(yk) < û(yk + 1),

which is a contradiction. Hence (4.4) holds.
For y ∈ (−∞, 0), by (4.2), one has that

û(y) ≤ (1 + ξ)−yû(0) = e−β1yû(0),

and by (4.4),

û(y) ≥ (1 + ζ)−yû(0) = e−α1yû(0),

where β1 = ln(1 + ξ) > 0 and α1 = ln(1 + ζ) > 0. Hence

(4.5) −α1y ≤ ln
û(y)

û(0)
≤ −β1y, y ∈ (−∞, 0).

For y ∈ (0,+∞), by (4.2), one has that

û(y) ≥ (1 + ξ)−yû(0) = e−β1yû(0),

and by (4.4),

û(y) ≤ (1 + ζ)−yû(0) = e−α1yû(0).

Consequently,

(4.6) −β1y ≤ ln
û(y)

û(0)
≤ −α1y, y ∈ (0,+∞).

Hence, by (4.5) and (4.6), we have that

−cy ≤ ln
û(y)

û(0)
≤ −Cy, y ∈ Z,

where c, C are positive constants depending only on d, λ,Γ,D.
For any v ∈ S−, since v̂(y) is strictly increasing in Z. By similar arguments

as above, we can get that

cy ≤ ln
v̂(y)

v̂(0)
≤ Cy, y ∈ Z,

where c, C are positive constants depending only on d, λ,Γ,D.
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Step 2. The asymptotic behavior of positive solutions in S∨.
For any w ∈ S∨, since ŵ(y) is strictly decreasing in (−∞, y∗] and increasing

in [y∗,+∞), similar to the proof of (4.4), there exist constants η1, η2 > 0
depending only on d, λ,Γ,D such that

(4.7) (1 + η1)ŵ(y
∗ + y + 1) ≤ ŵ(y∗ + y), y ∈ (−∞, y∗),

and

(4.8) (1 + η2)ŵ(y
∗ + y) ≤ ŵ(y∗ + y + 1), y ∈ (y∗,+∞).

For y ∈ (−∞, y∗), by (4.2),

ŵ(y) ≤ (1 + ξ)y
∗−yŵ(y∗) = eβ1(y

∗−y)ŵ(y∗),

and by (4.7),

ŵ(y) ≥ (1 + η1)
y∗−yŵ(y∗) = eγ1(y

∗−y)ŵ(y∗),

where γ1 = ln(1 + η1) > 0. Hence

(4.9) γ1(y
∗ − y) ≤ ln

ŵ(y)

ŵ(y∗)
≤ β1(y

∗ − y), y ∈ (−∞, y∗).

For y ∈ (y∗,+∞), by (4.3),

ŵ(y) ≤ (1 + ξ)y−y∗
ŵ(y∗) = eβ1(y−y∗)ŵ(y∗),

and by (4.8),

ŵ(y) ≥ (1 + η2)
y−y∗

ŵ(y∗) = eγ2(y−y∗)ŵ(y∗),

where γ2 = ln(1 + η2) > 0. As a consequence,

(4.10) γ2(y − y∗) ≤ ln
ŵ(y)

ŵ(y∗)
≤ β1(y − y∗), y ∈ (y∗,+∞).

Hence by (4.9) and (4.10), we get the result

c|y − y∗| ≤ ln
ŵ(y)

ŵ(y∗)
≤ C|y − y∗|, y ∈ Z,

where c, C are positive constants depending only on d, λ,Γ,D. □

Acknowledgements. The authors would like to thank the anonymous re-
viewer’s careful reading and helpful suggestions to improve the writing of this
paper. The authors would like to thank Bobo Hua for helpful discussions and
suggestions.



392 F. HAN AND L. WANG

References

[1] J. Bao, L. Wang, and C. Zhou, Positive solutions to elliptic equations in unbounded

cylinder, Discrete Contin. Dyn. Syst. Ser. B 21 (2016), no. 5, 1389–1400. https://doi.

org/10.3934/dcdsb.2016001

[2] M. T. Barlow, Random Walks and Heat Kernels on graphs, London Mathematical

Society Lecture Note Series, 438, Cambridge Univ. Press, Cambridge, 2017. https:

//doi.org/10.1017/9781107415690

[3] M. Benedicks, Positive harmonic functions vanishing on the boundary of certain do-

mains in Rn, Ark. Mat. 18 (1980), no. 1, 53–72. https://doi.org/10.1007/BF02384681

[4] A. Bouaziz, S. Mustapha, and M. Sifi, Discrete harmonic functions on an orthant in
Zd, Electron. Commun. Probab. 20 (2015), no. 52, 13 pp. https://doi.org/10.1214/

ecp.v20-4249

[5] D. Denisov and V. I. Wachtel, Random walks in cones, Ann. Probab. 43 (2015), no. 3,
992–1044. https://doi.org/10.1214/13-AOP867

[6] J. Doob, Discrete potential theory and boundaries, J. Math. Mech. 8 (1959), 433–458.
[7] E. Dynkin, The boundary theory of Markov processes (discrete case), Uspehi Mat. Nauk

24 (1969), no. 2, 3–42.

[8] G. Fayolle, R. Iasnogorodski, and V. Malyshev, Random walks in the quarter-plane,
Applications of Mathematics (New York), 40, Springer, Berlin, 1999. https://doi.org/

10.1007/978-3-642-60001-2

[9] S. J. Gardiner, The Martin boundary of NTA strips, Bull. London Math. Soc. 22 (1990),
no. 2, 163–166. https://doi.org/10.1112/blms/22.2.163

[10] M. Ghergu and J. Pres, Positive harmonic functions that vanish on a subset of a cylin-

drical surface, Potential Anal. 31 (2009), no. 2, 147–181. https://doi.org/10.1007/
s11118-009-9129-5

[11] B. Hua and J. Jost, Lq harmonic functions on graphs, Israel J. Math. 202 (2014), no. 1,

475–490. https://doi.org/10.1007/s11856-014-1089-9
[12] R. A. Hunt and R. L. Wheeden, Positive harmonic functions on Lipschitz domains,

Trans. Amer. Math. Soc. 147 (1970), 507–527. https://doi.org/10.2307/1995208
[13] H. J. Kuo and N. S. Trudinger, Positive difference operators on general meshes, Duke

Math. J. 83 (1996), no. 2, 415–433. https://doi.org/10.1215/S0012-7094-96-08314-3

[14] G. F. Lawler, Estimates for differences and Harnack inequality for difference operators
coming from random walks with symmetric, spatially inhomogeneous, increments, Proc.

London Math. Soc. (3) 63 (1991), no. 3, 552–568. https://doi.org/10.1112/plms/s3-

63.3.552

[15] G. F. Lawler, Random walk and the heat equation, Student Mathematical Library, 55,

Amer. Math. Soc., Providence, RI, 2010. https://doi.org/10.1090/stml/055

[16] Y. Lin and H. Song, Harnack and mean value inequalities on graphs, Acta Math. Sci. Ser.
B (Engl. Ed.) 38 (2018), no. 6, 1751–1758. https://doi.org/10.1016/S0252-9602(18)

30843-9

[17] Y. Lin and L. Xi, Lipschitz property of harmonic function on graphs, J. Math. Anal.
Appl. 366 (2010), no. 2, 673–678. https://doi.org/10.1016/j.jmaa.2009.12.037

[18] R. S. Martin, Minimal positive harmonic functions, Trans. Amer. Math. Soc. 49 (1941),
137–172. https://doi.org/10.2307/1990054

[19] S. Mustapha, Gaussian estimates for spatially inhomogeneous random walks on

Zd, Ann. Probab. 34 (2006), no. 1, 264–283. https://doi.org/10.1214/009117905

000000440

[20] S. Mustapha, Gambler’s ruin estimates for random walks with symmetric spatially in-

homogeneous increments, Bernoulli 13 (2007), no. 1, 131–147. https://doi.org/10.
3150/07-BEJ5135

https://doi.org/10.3934/dcdsb.2016001
https://doi.org/10.3934/dcdsb.2016001
https://doi.org/10.1017/9781107415690
https://doi.org/10.1017/9781107415690
https://doi.org/10.1007/BF02384681
https://doi.org/10.1214/ecp.v20-4249
https://doi.org/10.1214/ecp.v20-4249
https://doi.org/10.1214/13-AOP867
https://doi.org/10.1007/978-3-642-60001-2
https://doi.org/10.1007/978-3-642-60001-2
https://doi.org/10.1112/blms/22.2.163
https://doi.org/10.1007/s11118-009-9129-5
https://doi.org/10.1007/s11118-009-9129-5
https://doi.org/10.1007/s11856-014-1089-9
https://doi.org/10.2307/1995208
https://doi.org/10.1215/S0012-7094-96-08314-3
https://doi.org/10.1112/plms/s3-63.3.552
https://doi.org/10.1112/plms/s3-63.3.552
https://doi.org/10.1090/stml/055
https://doi.org/10.1016/S0252-9602(18)30843-9
https://doi.org/10.1016/S0252-9602(18)30843-9
https://doi.org/10.1016/j.jmaa.2009.12.037
https://doi.org/10.2307/1990054
https://doi.org/10.1214/009117905000000440
https://doi.org/10.1214/009117905000000440
https://doi.org/10.3150/07-BEJ5135
https://doi.org/10.3150/07-BEJ5135


POSITIVE SOLUTIONS TO DISCRETE HARMONIC FUNCTIONS 393

[21] S. Mustapha and M. Sifi, Discrete harmonic functions in Lipschitz domains, Elec-

tron. Commun. Probab. 24 (2019), Paper No. 58, 15 pp. https://doi.org/10.1214/19-

ecp259

[22] J. Pres, Positive harmonic functions on comb-like domains, Ann. Acad. Sci. Fenn. Math.

36 (2011), no. 2, 577–591. https://doi.org/10.5186/aasfm.2011.3630
[23] M. Rigoli, M. Salvatori, and M. Vignati, Subharmonic functions on graphs, Israel J.

Math. 99 (1997), 1–27. https://doi.org/10.1007/BF02760674

[24] L. Wang, The exponential property of solutions bounded from below to degenerate equa-
tions in unbounded domains, Acta Math. Sci. Ser. B (Engl. Ed.) 42 (2022), no. 1,

323–348. https://doi.org/10.1007/s10473-022-0118-8

[25] L. Wang, L. Wang, and C. Zhou, The exponential growth and decay properties for
solutions to elliptic equations in unbounded cylinders, J. Korean Math. Soc. 57 (2020),

no. 6, 1573–1590. https://doi.org/10.4134/JKMS.j190836

[26] L. Wang, L. Wang, and C. Zhou, Classification of positive solutions for fully nonlinear
elliptic equations in unbounded cylinders, Commun. Pure Appl. Anal. 20 (2021), no. 3,

1241–1261. https://doi.org/10.3934/cpaa.2021019

[27] L. Wang, L. Wang, and C. Zhou, The dimensional estimates of exponential growth
solutions to uniformly elliptic equations of non-divergence form, Discrete Contin. Dyn.

Syst. 42 (2022), no. 11, 5223–5238. https://doi.org/10.3934/dcds.2022092
[28] L. Wang, L. Wang, C. Zhou, and Z. Li, The behavior and classification of solutions

bounded from below to degenerate elliptic equations in unbounded cylinders, J. Math.

Anal. Appl. 516 (2022), no. 2, Paper No. 126560, 31 pp. https://doi.org/10.1016/j.
jmaa.2022.126560

[29] W. Woess, Random walks on infinite graphs and groups, Cambridge Tracts in Math-

ematics, 138, Cambridge Univ. Press, Cambridge, 2000. https://doi.org/10.1017/

CBO9780511470967

Fengwen Han

School of Mathematics and Statistics

Henan University
Kaifeng 475001, P. R. China

Email address: fwhan@outlook.com

Lidan Wang

School of Mathematical Sciences

Jiangsu University
Zhenjiang 212013, P. R. China

Email address: wanglidan@ujs.edu.cn

https://doi.org/10.1214/19-ecp259
https://doi.org/10.1214/19-ecp259
https://doi.org/10.5186/aasfm.2011.3630
https://doi.org/10.1007/BF02760674
https://doi.org/10.1007/s10473-022-0118-8
https://doi.org/10.4134/JKMS.j190836
https://doi.org/10.3934/cpaa.2021019
https://doi.org/10.3934/dcds.2022092
https://doi.org/10.1016/j.jmaa.2022.126560
https://doi.org/10.1016/j.jmaa.2022.126560
https://doi.org/10.1017/CBO9780511470967
https://doi.org/10.1017/CBO9780511470967

