• Title/Summary/Keyword: Prime ring

Search Result 358, Processing Time 0.029 seconds

ON STRONGLY QUASI PRIMARY IDEALS

  • Koc, Suat;Tekir, Unsal;Ulucak, Gulsen
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.3
    • /
    • pp.729-743
    • /
    • 2019
  • In this paper, we introduce strongly quasi primary ideals which is an intermediate class of primary ideals and quasi primary ideals. Let R be a commutative ring with nonzero identity and Q a proper ideal of R. Then Q is called strongly quasi primary if $ab{\in}Q$ for $a,b{\in}R$ implies either $a^2{\in}Q$ or $b^n{\in}Q$ ($a^n{\in}Q$ or $b^2{\in}Q$) for some $n{\in}{\mathbb{N}}$. We give many properties of strongly quasi primary ideals and investigate the relations between strongly quasi primary ideals and other classical ideals such as primary, 2-prime and quasi primary ideals. Among other results, we give a characterization of divided rings in terms of strongly quasi primary ideals. Also, we construct a subgraph of ideal based zero divisor graph ${\Gamma}_I(R)$ and denote it by ${\Gamma}^*_I(R)$, where I is an ideal of R. We investigate the relations between ${\Gamma}^*_I(R)$ and ${\Gamma}_I(R)$. Further, we use strongly quasi primary ideals and ${\Gamma}^*_I(R)$ to characterize von Neumann regular rings.

SOME ABELIAN MCCOY RINGS

  • Rasul Mohammadi;Ahmad Moussavi;Masoome Zahiri
    • Journal of the Korean Mathematical Society
    • /
    • v.60 no.6
    • /
    • pp.1233-1254
    • /
    • 2023
  • We introduce two subclasses of abelian McCoy rings, so-called π-CN-rings and π-duo rings, and systematically study their fundamental characteristic properties accomplished with relationships among certain classical sorts of rings such as 2-primal rings, bounded rings etc. It is shown that a ring R is π-CN whenever every nilpotent element of index 2 in R is central. These rings naturally generalize the long-known class of CN-rings, introduced by Drazin [9]. It is proved that π-CN-rings are abelian, McCoy and 2-primal. We also show that, π-duo rings are strongly McCoy and abelian and also they are strongly right AB. If R is π-duo, then R[x] has property (A). If R is π-duo and it is either right weakly continuous or every prime ideal of R is maximal, then R has property (A). A π-duo ring R is left perfect if and only if R contains no infinite set of orthogonal idempotents and every left R-module has a maximal submodule. Our achieved results substantially improve many existing results.

ALMOST SPLITTING SETS S OF AN INTEGRAL DOMAIN D SUCH THAT DS IS A PID

  • Chang, Gyu Whan
    • Korean Journal of Mathematics
    • /
    • v.19 no.2
    • /
    • pp.163-169
    • /
    • 2011
  • Let D be an integral domain, S be a multiplicative subset of D such that DS is a PID, and D[X] be the polynomial ring over D. We show that S is an almost splitting set in D if and only if every nonzero prime ideal of D disjoint from S contains a primary element. We use this result to give a simple proof of the known result that D is a UMT-domain and Cl(D[X]) is torsion if and only if each upper to zero in D[X] contains a primary element.

AN INDEPENDENT RESULT FOR ATTACHED PRIMES OF CERTAIN TOR-MODULES

  • Khanh, Pham Huu
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.2
    • /
    • pp.531-540
    • /
    • 2015
  • Let (R, m) be a Noetherian local ring, I an ideal of R, and A an Artinian R-module. Let $k{\geq}0$ be an integer and $r=Width_{>k}(I,A)$ the supremum of length of A-cosequence in dimension > k in I defined by Nhan-Hoang [8]. It is shown that for all $t{\leq}r$ the sets $$(\bigcup_{i=0}^{t}Att_R(Tor_i^R(R/I^n,A)))_{{\geq}k}\;and\\(\bigcup_{i=0}^{t}Att_R(Tor_i^R(R/(a_1^{n_1},{\cdots},a_l^{n_l}),A)))_{{\geq}k}$$ are independent of the choice of $n,n_1,{\cdots},n_l$ for any system of generators ($a_1,{\cdots},a_l$) of I.

SUMS OF (pr + 1)-TH POWERS IN THE POLYNOMIAL RING Fpm[T]

  • Car, Mireille
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.6
    • /
    • pp.1139-1161
    • /
    • 2012
  • Let $p$ be an odd prime number and let F be a finite field with $p^m$ elements. We study representations and strict representations of polynomials $M{\in}F$[T] by sums of ($p^r$ + 1)-th powers. A representation $$M=M_1^k+{\cdots}+M_s^k$$ of $M{\in}F$[T] as a sum of $k$-th powers of polynomials is strict if $k$ deg $M_i<k$ + degM.

SOME ARITHMETIC PROPERTIES ON NONSTANDARD NUMBER FIELDS

  • Lee, Junguk
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.4
    • /
    • pp.1345-1356
    • /
    • 2017
  • For a given number field K, we show that the ranks of elliptic curves over K are uniformly finitely bounded if and only if the weak Mordell-Weil property holds in all (some) ultrapowers $^*K$ of K. We introduce the nonstandard weak Mordell-Weil property for $^*K$ considering each Mordell-Weil group as $^*{\mathbb{Z}}$-module, where $^*{\mathbb{Z}}$ is an ultrapower of ${\mathbb{Z}}$, and we show that the nonstandard weak Mordell-Weil property is equivalent to the weak Mordell-Weil property in $^*K$. In a saturated nonstandard number field, there is a nonstandard ring of integers $^*{\mathbb{Z}}$, which is definable. We can consider definable abelian groups as $^*{\mathbb{Z}}$-modules so that the nonstandard weak Mordell-Weil property is well-defined, and we conclude that the nonstandard weak Mordell-Weil property and the weak Mordell-Weil property are equivalent. We have valuations induced from prime numbers in nonstandard rational number fields, and using these valuations, we identify two nonstandard rational numbers.

ON 2-ABSORBING PRIMARY IDEALS IN COMMUTATIVE RINGS

  • Badawi, Ayman;Tekir, Unsal;Yetkin, Ece
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.4
    • /
    • pp.1163-1173
    • /
    • 2014
  • Let R be a commutative ring with $1{\neq}0$. In this paper, we introduce the concept of 2-absorbing primary ideal which is a generalization of primary ideal. A proper ideal I of R is called a 2-absorbing primary ideal of R if whenever $a,b,c{\in}R$ and $abc{\in}I$, then $ab{\in}I$ or $ac{\in}\sqrt{I}$ or $bc{\in}\sqrt{I}$. A number of results concerning 2-absorbing primary ideals and examples of 2-absorbing primary ideals are given.

KUCERA GROUP OF CIRCULAR UNITS IN FUNCTION FIELDS

  • Ahn, Jae-Hyun;Jung, Hwan-Yup
    • Bulletin of the Korean Mathematical Society
    • /
    • v.44 no.2
    • /
    • pp.233-239
    • /
    • 2007
  • Let $\mathbb{A}=\mathbb{F}_q$[T] be the polynomial ring over a finite field $\mathbb{F}_q$[T] and K=$\mathbb{F}_q$(T) its field of fractions. Let ${\ell}$ be a fixed prime divisor of q-1. Let J be a finite set of monic irreducible polynomials $P{\in}{\mathbb{A}}$ with deg $P{\equiv}0$ (mod ${\ell})$. In this paper we define the group $C_K$ of circular units in K=k$(\{\sqrt[{\ell}]P\;:\;P{\in}J\})$ in the sense of Kucera [4] and compute the index of $C_K$ in the full unit group $O^*_K$.

AN AFFINE MODEL OF X0(mn)

  • Choi, So-Young;Koo, Ja-Kyung
    • Bulletin of the Korean Mathematical Society
    • /
    • v.44 no.2
    • /
    • pp.379-383
    • /
    • 2007
  • We show that the modular equation ${\phi}^{T_n}_m$ (X, Y) for the Thompson series $T_n$ corresponding to ${\Gamma}_0$(n) gives an affine model of the modular curve $X_0$(mn) which has better properties than the one derived from the modular j invariant. Here, m and n are relative prime. As an application, we construct a ring class field over an imaginary quadratic field K by singular values of $T_n(z)\;and\;T_n$(mz).

t-SPLITTING SETS S OF AN INTEGRAL DOMAIN D SUCH THAT DS IS A FACTORIAL DOMAIN

  • Chang, Gyu Whan
    • Korean Journal of Mathematics
    • /
    • v.21 no.4
    • /
    • pp.455-462
    • /
    • 2013
  • Let D be an integral domain, S be a saturated multi-plicative subset of D such that $D_S$ is a factorial domain, $\{X_{\alpha}\}$ be a nonempty set of indeterminates, and $D[\{X_{\alpha}\}]$ be the polynomial ring over D. We show that S is a splitting (resp., almost splitting, t-splitting) set in D if and only if every nonzero prime t-ideal of D disjoint from S is principal (resp., contains a primary element, is t-invertible). We use this result to show that $D{\backslash}\{0\}$ is a splitting (resp., almost splitting, t-splitting) set in $D[\{X_{\alpha}\}]$ if and only if D is a GCD-domain (resp., UMT-domain with $Cl(D[\{X_{\alpha}\}]$ torsion UMT-domain).