SUMS OF ($p^{r}+1$)-TH POWERS
 IN THE POLYNOMIAL RING $\mathbb{F}_{p^{m}}[T]$

Mireille Car

$$
\begin{aligned}
& \text { Abstract. Let } p \text { be an odd prime number and let } F \text { be a finite field } \\
& \text { with } p^{m} \text { elements. We study representations and strict representations of } \\
& \text { polynomials } M \in F[T] \text { by sums of }\left(p^{r}+1\right) \text {-th powers. A representation } \\
& \qquad M=M_{1}^{k}+\cdots+M_{s}^{k} \\
& \text { of } M \in F[T] \text { as a sum of } k \text {-th powers of polynomials is strict if } k \operatorname{deg} M_{i}< \\
& k+\operatorname{deg} M .
\end{aligned}
$$

1. Introduction

Let F be a finite field of characteristic p with p^{m} elements and let $k>1$ be an integer. The similarity between the ring \mathbb{Z} of rational integers and the polynomial ring $F[T]$ had led to investigations of an analogue of the Waring problem for $F[T]$ (See [2], [6], [11], [14], [17], [19], [20], [21], [22] for general exponent k or [4], [5], [8], [9], [10] for some particular exponents). Roughly speaking, Waring's problem over $F[T]$ is that of the representation of polynomials $M \in F[T]$ as sums

$$
\begin{equation*}
M=M_{1}^{k}+\cdots+M_{s}^{k} \tag{1.1}
\end{equation*}
$$

with $M_{1}, \ldots, M_{s} \in F[T]$. Some obstructions to that may occur which led to considering Waring's problem over the subring $\mathcal{S}(F, k)$ formed by the polynomials of $F[T]$ which are sums of k-th powers. Two variants of Waring's problem over $\mathcal{S}(F, k)$ have been considered. The unrestricted Waring's problem is the problem of proving the existence of an integer $w=w\left(p^{m}, k\right)$, with the property that whenever $M \in \mathcal{S}(F, k)$ and $s \geq w\left(p^{m}, k\right)$, the equation (1.1) is solvable. This problem is close to the so called easy Waring's problem for \mathbb{Z} ([17], [18], [19], [20]). In order to have an analogue for the non easy Waring problem, the degree conditions

$$
\begin{equation*}
\operatorname{deg} M_{i} \leq n \tag{1.2}
\end{equation*}
$$

Received November 26, 2010; Revised July 8, 2012.
2010 Mathematics Subject Classification. Primary 11T55; Secondary 11R58.
Key words and phrases. finite fields, polynomials, Waring's problem.
are required with n defined by the condition

$$
\begin{equation*}
k(n-1)<\operatorname{deg} M \leq k n . \tag{1.3}
\end{equation*}
$$

With such degree conditions, the representation (1.1) is strict in opposition to representations without degree conditions. For the strict Waring's problem, analogues to the classical Waring's numbers $g_{\mathbb{N}}(k)$ and $G_{\mathbb{N}}(k)$ have been defined as follows. Let $g\left(p^{m}, k\right)$, respectively, $G\left(p^{m}, k\right)$, denote the least integer s, if it exists, such that every polynomial $M \in \mathcal{S}(F, k)$, respectively, every polynomial $M \in \mathcal{S}(F, k)$ of sufficiently large degree, may be written as a sum (1.1) satisfying the degree conditions (1.2) and (1.3). Otherwise, $g\left(p^{m}, k\right)$, respectively, $G\left(p^{m}, k\right)$ is equal to ∞. This notation is possible since these numbers depend only on p^{m} and k. Waring's problem consists of determining or, at least, bounding the numbers $g\left(p^{m}, k\right)$ and $G\left(p^{m}, k\right)$.

Gallardo's method introduced in [8] and performed in [5] to deal with Waring's problem for cubes was generalized in [2] and [11] where bounds for $g\left(p^{m}, k\right)$ and $G\left(p^{m}, k\right)$ were established when p^{m} and k satisfy some conditions. For instance, Theorem 1.2 in [2] and Theorem 1.4 in [11] require that every $a \in F$ is a sum of k-th powers and $p^{m}>k$. Theorem 1.3 in [2] gives a bound for the numbers $g\left(p^{m}, k\right)$ in the case where $p>k$ or in the case $k=h p^{\nu}-1<p^{m}$ for some positive integers ν and $h \leq p$.

The case of the exponent $k=p^{r}+1$ is not covered by these theorems. The object of this paper is the study of Waring's problem in the case where $k=p^{r}+1$ for odd p. It can be seen as a generalisation of [4] where sums of biquadrates over a field of characteristic 3 were studied. The easier case $p=2$ has been studied in [3].

Some notations and definitions are necessary before stating the main results proved in this work.

The set $\mathcal{S}(F, k)$ and the numbers $g\left(p^{m}, k\right)$ and $G\left(p^{m}, k\right)$ are not sufficient to describe every possible case. Proposition 4.5 in [2] and Proposition 3.7 in [3] give examples of polynomials in $\mathcal{S}(F, k)$ which are not strict sums of k-th powers. Thus, we introduce new parameters.

Let $\mathcal{S}^{\times}(F, k)$ denote the set of polynomials in $F[T]$ which are strict sums of k-th powers. Let $g^{\times}\left(p^{m}, k\right)$, respectively $G^{\times}\left(p^{m}, k\right)$, denote the least integer s, if it exists, such that every polynomial $M \in \mathcal{S}^{\times}(F, k)$ respectively, every polynomial $M \in \mathcal{S}^{\times}(F, k)$ of sufficiently large degree, may be written as a strict sum

$$
M=M_{1}^{k}+\cdots+M_{s}^{k}
$$

From now on, F is a finite field with p^{m} elements. The main results proved in this work are summarized in the following theorems.

Theorem 1.1. Let $k=p^{r}+1$, where p is an odd prime number and r a positive integer.
(1) If $m / \operatorname{gcd}(m, r) \geq 3$, then the set $\mathcal{S}(F, k)$ is equal to the whole ring $F[T]$ and

$$
\mathcal{S}^{\times}(F, k)=\mathcal{A}_{\infty} \cup\left(\bigcup_{N=0}^{k-3} \mathcal{A}_{N}\right)
$$

where

$$
\mathcal{A}_{\infty}=\{A \in F[T] \mid \operatorname{deg} A>k(k-3)\}, \quad \mathcal{A}_{0}=F
$$

and for $N=1, \ldots, k-3$,

$$
\mathcal{A}_{N}=\left\{A \in F[T] \mid A=\sum_{n=0}^{N} \sum_{i=0}^{N} x_{n, i} T^{i+n p^{r}}\right\}
$$

with $x_{n, i} \in F$.
(2) If m divides r,
$\mathcal{S}^{\times}(F, k)=\mathcal{S}(F, k)=\left\{A \in F[T] \mid A^{p^{r}}-A \equiv 0 \quad\left(\bmod \quad T^{p^{2 r}}-T\right)\right\}$.
(3) If $m / \operatorname{gcd}(m, r)=2$,

$$
\mathcal{S}(F, k)=\left\{A \in F[T] \mid A^{p^{r}}-A \equiv 0 \quad\left(\bmod \quad T^{p^{2 r}}-T\right)\right\}
$$

and $\mathcal{S}^{\times}(F, k)$ is the set formed by the $A \in \mathcal{S}(F, k)$ such that, either $\operatorname{deg} A$ is not multiple of k, or $\operatorname{deg} A$ is multiple of k and the leading coefficient of A is in the subfield of F of order $p^{\operatorname{gcd}(m, r)}$.

This theorem is a consequence of Corollary 3.3, Proposition 5.1, and Corollaries 5.4 and 5.6 below.

Theorem 1.2. Let $k=p^{r}+1$, where p is an odd prime number and r a positive integer.
(1) (a) If $m / \operatorname{gcd}(m, r) \geq 3, m / \operatorname{gcd}(m, r) \neq 4$, and if p^{m} is congruent to 1 modulo 4,

$$
\begin{aligned}
G\left(p^{m}, k\right)= & G^{\times}\left(p^{m}, k\right) \leq \min \left(\frac{\log k}{\log (k /(k-1))}+5,2 k+3\right) ; \\
& g^{\times}\left(p^{m}, k\right) \leq 5 k-4 .
\end{aligned}
$$

(b) If $m / \operatorname{gcd}(m, r) \geq 3$, and if p^{m} is congruent to 3 modulo 4,

$$
\begin{aligned}
G\left(p^{m}, k\right)= & G^{\times}\left(p^{m}, k\right) \leq \min \left(\frac{\log k}{\log (k /(k-1))}+6,3 k+3\right) ; \\
& g^{\times}\left(p^{m}, k\right) \leq 6 k-4 .
\end{aligned}
$$

(c) If $m / \operatorname{gcd}(m, r)=4$,

$$
\begin{aligned}
G\left(p^{m}, k\right)=G^{\times}\left(p^{m}, k\right) \leq \min \left(\frac{\log k}{\log (k /(k-1))}+6,2 k+4\right) ; \\
g^{\times}\left(p^{m}, k\right) \leq 6 k-6 .
\end{aligned}
$$

(d) If $m / \operatorname{gcd}(m, r) \geq 3$, then $g\left(p^{m}, k\right)=\infty$.
(2) (a) If m divides r and if p^{m} is congruent to 1 modulo 4,

$$
\begin{aligned}
G\left(p^{m}, k\right) & =G^{\times}\left(p^{m}, k\right) \leq 2 k \\
g\left(p^{m}, k\right) & =g^{\times}\left(p^{m}, k\right) \leq 3 k-6
\end{aligned}
$$

(b) If m divides r and if p^{m} is congruent to 3 modulo 4,

$$
\begin{aligned}
G\left(p^{m}, k\right) & =G^{\times}\left(p^{m}, k\right) \leq 3 k \\
g\left(p^{m}, k\right) & =g^{\times}\left(p^{m}, k\right) \leq 3 k
\end{aligned}
$$

(3) If $m / \operatorname{gcd}(m, r)=2$,

$$
\begin{aligned}
G\left(p^{m}, k\right) & =g\left(p^{m}, k\right)=\infty \\
G^{\times}\left(p^{m}, k\right) & \leq g^{\times}\left(p^{m}, k\right) \leq 2 k .
\end{aligned}
$$

This theorem is a consequence of Corollaries 3.5, 5.4 and 5.6 below. It shows that the analogy with the rational integers does not work completely since the following bounds hold for large exponents k :

$$
G_{\mathbb{N}}(k) \leq k(\log k+\log (\log k)+O(1))
$$

see [23] and

$$
2^{k}+\left[(3 / 2)^{k}\right]-2 \leq g_{\mathbb{N}}(k) \leq 2^{k}+\left[(3 / 2)^{k}\right]+\left[(4 / 3)^{k}\right]-2
$$

(see [7], [12, Chap. 21], [23]).
With the necessary adaptations, the proof follows the method used in [3] where we dealt with the case of characteristic 2 . We omit the proofs in [3].

Let $v\left(p^{m}, k\right)$ denote the least integer v, if it exists, such that T may be written as a sum $\left(a_{1} T+b_{1}\right)^{k}+\cdots+\left(a_{v} T+b_{v}\right)^{k}$ with $a_{i}, b_{i} \in F$. Otherwise, let $v\left(p^{m}, k\right)=\infty$. If $v\left(p^{m}, k\right)$ is finite, every $P \in F[T]$ may be written as a sum

$$
P=\left(a_{1} P+b_{1}\right)^{k}+\cdots+\left(a_{v(F, k)} P+b_{v(F, k)}\right)^{k}
$$

so that $\mathcal{S}(F, k)=F[T]$ and F is a k-Waring field.
As in the case $p=2$, it is possible to compute the exact value of $v\left(p^{m}, p^{r}+1\right)$. This improves a theorem of Paley [15].

The paper is organized as follows. In order to get the exact value of $v\left(p^{m}, k\right)$ we have to prove that some algebraic equations have solutions in F. This is done in Section 2. In Section 3, we compute the numbers $v\left(p^{m}, k\right)$. This yields a characterization of the fields F for which the equality $\mathcal{S}(F, k)=F[T]$ holds. Some bounds for the Waring numbers $G\left(p^{m}, k\right)$ follow. In Section 4, we prove some key identities and we classify strict sums of degree $\leq k(k-2)$. In Section 5 , we describe a descent process and we conclude the proof. We shall use two types of numbering. Pairs ($X . Y$) will be used to number formulae occurring in definitions, propositions and theorems, single numbers (z) will be used for formulae only used in the course of a proof.

If every $a \in F$ is a sum of k-th powers, the field F is called a Waring field for the exponent k or briefly, a k-Waring field. If F is a k-Waring field, let $\ell\left(p^{m}, k\right)$ denote the least integer ℓ such that every element of F is a sum of ℓ
k-th powers. We shall denote by $\lambda\left(p^{m}, k\right)$ the least integer s such that -1 is a sum of $s k$-th powers. We write $\Delta\left(p^{m}, k\right)$ for $\operatorname{gcd}\left(p^{m}-1, k\right)$.

We fix an algebraic closure \bar{F} of the field F. For a positive integer n, we denote by $\mathbb{F}_{p^{n}}$ the subfield of \bar{F} with p^{n} elements, so that $F=\mathbb{F}_{p^{m}}$. The proofs will often use the following facts:

- the field F contains exactly $\Delta\left(p^{m}, k\right)=\operatorname{gcd}\left(p^{m}-1, k\right)=\operatorname{gcd}\left(p^{m}-\right.$ $\left.1, p^{r}+1\right) k$-th roots of 1 ;
- a k-th power in F is a $\operatorname{gcd}\left(p^{m}-1, k\right)$-th power.

We introduce the notations

$$
\begin{gather*}
Q=p^{r}=k-1, \quad q=p^{\operatorname{gcd}(m, r)}, \tag{1.4}\\
d=\operatorname{gcd}(m, r) \tag{1.5}
\end{gather*}
$$

so that

$$
\begin{equation*}
q=p^{d} \tag{1.6}
\end{equation*}
$$

If x is a real number, we denote by $[x]$ its integral part and by $\lceil x\rceil$ its ceiling, that is the least integer $n \geq x$.

2. Sums of \boldsymbol{k}-th powers in the finite field \boldsymbol{F}

Since a k-th power in F is a $\operatorname{gcd}\left(p^{m}-1, k\right)$-th power, we begin this section by computing $\Delta=\Delta\left(p^{m}, k\right)$. We continue by a study of a sum of characters which will be useful to compute numbers of solutions of some equations.

The following proposition completes Lemma 4 in [15]. It is a special case of exercise 125 in De Koninck and Mercier's book. See [13, exercise 125, p. 23, solution p. 125].

Proposition 2.1. One has

$$
\begin{equation*}
\operatorname{gcd}\left(p^{m}-1, p^{r}-1\right)=p^{d}-1 \tag{2.1}
\end{equation*}
$$

The greatest common divisor of $p^{m}-1$ and $p^{r}+1$ is an even number. Moreover, $\operatorname{gcd}\left(p^{m}-1, p^{r}+1\right) \neq 2$ if and only if m / d is even and, in that case,

$$
\begin{equation*}
\operatorname{gcd}\left(p^{m}-1, p^{r}+1\right)=p^{d}+1 \tag{2.2}
\end{equation*}
$$

2.1. The systems $\mathcal{E}(u, v, a, b)$ and $\mathcal{S}(a, b, c)$

Lemma 2.2. Let $(u, v) \in F^{2}$ be such that $u v \neq 0$ and $u^{Q^{2}-1} \neq v^{Q^{2}-1}$. For every ordered pair $(a, b) \in F^{2}$, the system $\mathcal{E}(u, v, a, b)$:

$$
\left\{\begin{array}{l}
a=u^{Q} x+v^{Q} y \tag{2.3}\\
b=u x^{Q}+v y^{Q}
\end{array}\right.
$$

admits a unique solution in F^{2}.
Proof. Immediate.

Lemma 2.3. Let $(a, b, c) \in F^{3}$. Then, the system $\mathcal{S}(a, b, c)$:

$$
\left\{\begin{array}{l}
a=x^{2}+y^{2}+z^{2} \tag{2.4}\\
b=x \xi+y \eta+z \zeta \\
c=\xi^{2}+\eta^{2}+\zeta^{2}
\end{array}\right.
$$

has a solution $(x, y, z, \xi, \eta, \zeta)$ in F^{6}.
Proof. Serre's theorem asserts that with the exceptions of polynomials of degree 3 and 4 in the case $q=3$, every polynomial in $F[T]$ is a strict sum of 3 squares ($[6$, Theorem 1.14, p. 7$]$). Applied to $P=a T^{2}+2 b T+c$, Serre's theorem gives the existence of $(x, y, z, \xi, \eta, \zeta) \in F^{6}$ such that

$$
a T^{2}+2 b T+c=(x T+\xi)^{2}+(y T+\eta)^{2}+(z T+\zeta)^{2}
$$

so that $(x, y, z, \xi, \eta, \zeta)$ is a solution of $\mathcal{S}(a, b, c)$.
When m / d is odd, $\operatorname{gcd}\left(2^{m}-1, k\right)=2$, and the set of k-th powers in F is the set of squares, so that the numbers $\nu_{i}(a)$ of representations of $a \in F$ as sums of $i k$-th powers are well known (see e.g. [1]). We compute the numbers $\nu_{i}(a)$ in the case where m / d is even. For that we introduce some character sums.

2.2. Sums of characters

In this subsection, we suppose that m / d is even, so that $\mathbb{F}_{q^{2}} \subset F$. From Proposition 2.1, the set of k-th powers in F, resp. in $\mathbb{F}_{q^{2}}$ is the set of $(q+1)$-th powers in F, resp. in $\mathbb{F}_{q^{2}}$. Let

$$
\begin{equation*}
n=m / 2 d . \tag{2.5}
\end{equation*}
$$

Let θ be a generator of the cyclic group $\mathbb{F}_{q^{2}}^{\times}$and let

$$
\begin{equation*}
\alpha=\theta^{(q+1) / 2} \tag{2.6}
\end{equation*}
$$

Let tr: $F \mapsto \mathbb{F}_{p}$ be the absolute trace on F and let ψ be the character of the additive group of F defined by

$$
\begin{equation*}
\psi(x)=\exp \left(\frac{2 \pi i \operatorname{tr}(x)}{p}\right) \tag{2.7}
\end{equation*}
$$

Then ψ is not trivial. For $t \in F$ let

$$
\begin{equation*}
f(t)=\sum_{x \in F} \psi\left(t x^{q+1}\right) \tag{2.8}
\end{equation*}
$$

Let B denote the set of non-zero k-th powers in F or, equivalently, the set of non-zero $(q+1)$-th powers in F.
Proposition 2.4. (1) If $u \in \mathbb{F}_{q^{2}}$, then $u^{q+1} \in \mathbb{F}_{q}$.
(2) For every $u \in \mathbb{F}_{q}$, there is $v \in \mathbb{F}_{q^{2}}$ such that $u=v^{q+1}$.
(3) One has

$$
\begin{equation*}
f(0)=p^{m} \tag{2.9}
\end{equation*}
$$

(4) Let $t \in F^{\times}$.
(a) If $t \in \alpha B$, then

$$
\begin{equation*}
f(t)=f(\alpha)=(-q)^{n+1} \tag{2.10}
\end{equation*}
$$

(b) If $t \notin \alpha B$, then

$$
\begin{equation*}
q f(t)+f(\alpha)=0 \tag{2.11}
\end{equation*}
$$

Proof. (1) If $u \in \mathbb{F}_{q^{2}}$, then $\left(u^{q+1}\right)^{q-1}=u^{q^{2}-1}=1$, so that $u^{q+1} \in \mathbb{F}_{q}$.
(2) Since θ generates $\mathbb{F}_{q^{2}}^{\times}$, the cyclic group \mathbb{F}_{q}^{\times}is generated by θ^{q+1}, so that every $u \in F_{q}^{\times}$is a power of θ^{q+1}.
(3) Obvious.
(4) It is a generalization of [4, Proposition 2.2]. See the proof of [3, Proposition 2.4(i)] and [3, Proposition 2.5] for the proof of (2.10); see the proof of [3, Proposition 2.4(iii)] for the proof of (2.11).

2.3. Sums of \boldsymbol{k}-th powers in \boldsymbol{F}

Let i be a positive integer. For $a \in F$, let $\nu_{i}(a)$ denote the number of solutions $\left(x_{1}, \ldots, x_{i}\right) \in F^{i}$ of the equation

$$
\begin{equation*}
a=x_{1}^{k}+\cdots+x_{i}^{k} . \tag{2.12}
\end{equation*}
$$

Proposition 2.5. Suppose m / d odd.

- If $q \equiv 1(\bmod 4)$, then,

$$
\begin{aligned}
& \nu_{2}(0)=2 p^{m}-1, \\
& \nu_{3}(0)=p^{2 m}
\end{aligned}
$$

and for $a \in F^{\times}$, one has

$$
\begin{gathered}
\nu_{2}(a)=p^{m}-1, \\
\nu_{3}(a)=\left\{\begin{array}{lll}
p^{2 m}+p^{m} & \text { if } & a \in B, \\
p^{2 m}-p^{m} & \text { if } & a \notin B .
\end{array}\right.
\end{gathered}
$$

- If $q \equiv 3(\bmod 4)$, then,

$$
\begin{aligned}
& \nu_{2}(0)=1 \\
& \nu_{3}(0)=p^{2 m}
\end{aligned}
$$

and for $a \in F^{\times}$, one has

$$
\begin{gathered}
\nu_{2}(a)=p^{m}+1, \\
\nu_{3}(a)=\left\{\begin{array}{lll}
p^{2 m}-p^{m} & \text { if } & a \in B \\
p^{2 m}+p^{m} & \text { if } & a \notin B
\end{array}\right.
\end{gathered}
$$

Proof. Observe that $a \in F$ is a k-th power if and only if a is a square. Apply the well-known results on sums of squares in a finite field, [1, exercise 5, pp. 175176].

Proposition 2.6. Suppose m / d even. Then,

$$
\begin{gathered}
\nu_{2}(0)=(q+1) p^{m}-q, \\
\nu_{3}(0)=p^{2 m}+f(\alpha)(q-1)\left(p^{m}-1\right)
\end{gathered}
$$

and for $a \in F^{\times}$, one has

$$
\begin{gathered}
\nu_{1}(a)=\left\{\begin{array}{lll}
q+1 & \text { if } & a \in B, \\
0 & \text { if } & a \notin B,
\end{array}\right. \\
\nu_{2}(a)=p^{m}-q+(q-1) f(a \alpha), \\
\nu_{3}(a)=p^{2 m}-p^{m}+p^{m} \nu_{1}(a)-(q-1) f(\alpha)+(q-1) f(\alpha) f(a \alpha) .
\end{gathered}
$$

Proof. Similar to that of Proposition 2.7 in [3].
Proposition 2.7. - F is a Waring field for the exponent $k=p^{r}+1$ if and only if $\frac{m}{d} \neq 2$.

- If $\frac{m}{d} \neq 2$, then $\ell\left(p^{m}, k\right)=2$.

Proof. From Proposition 2.1, if m / d is odd, then $\Delta\left(p^{m}, k\right)=2$. From [2, Proposition 3.1], F is a k-Waring field with $\ell\left(p^{m}, k\right)=2$. Now, suppose $\frac{m}{d}$ even. Set $m=2 n d$. From Proposition 2.1, $\Delta\left(p^{m}, k\right)=1+p^{d}$. Since $\Delta\left(p^{m}, k\right)>1$, we have $\ell\left(2^{m}, k\right) \geq 2$. We prove that, with the exception $n=1, F$ is a k-Waring field with $\ell\left(p^{m}, k\right) \leq 2$. Let $a \in F$ be different from a k-th power. From Proposition 2.6, then Proposition 2.4,
$\nu_{2}(a)=p^{m}-q+(q-1) f(a \alpha) \geq p^{m}-q-(q-1) p^{m / 2}=q^{2 n}-q-q^{n+1}+q^{n}$.
If $n>1$, then $\nu_{2}(a)>0$ and a is the sum of two k-th powers. Thus, if $a \in F$, either a is a k-th power or a is a sum of two k-th powers. Hence, $\ell\left(p^{m}, k\right)=\ell(F, k) \leq 2$ (Note that Small had already established this bound in the case where $m>4 r,[16])$.

Remark 2.8. We have $\lambda\left(p^{m}, k\right)=1$ if and only if p^{m} is congruent to 1 modulo 4.

Proof. If $\lambda\left(p^{m}, k\right)=1$, then -1 is a k-th power in F, so that -1 is a square in F. Now, we suppose that -1 is a square in F. Firstly, we suppose m / d odd. From Proposition 2.1, the set of k-th powers in F is the set of squares in F, so that -1 is a k-th power in F. Secondly, suppose m / d even. Then, $\mathbb{F}_{q^{2}} \subset F$. Since θ generates the cyclic group $\mathbb{F}_{q^{2}}$, we have

$$
-1=\theta^{\left(q^{2}-1\right) / 2}=\left(\theta^{(q-1) / 2}\right)^{q+1}
$$

with $\theta \in \mathbb{F}_{q^{2}} \subset F$. From Proposition 2.1, the set of k-th powers in F is the set of $(q+1)$-th powers in F. Therefore -1 is a k-th power in F.

Proposition 2.9. For $a \in F$, let $N_{3}(a)$ denote the number of $(x, y, z) \in F^{3}$ such that
$(\mathcal{F}(a))$

$$
\begin{cases}x^{k}+y^{k}+z^{k}=a, & \left(e_{1}\right) \\ x y \neq 0, & \left(e_{2}\right) \\ x^{Q^{2}-1} \neq y^{Q^{2}-1} \cdot & \left(e_{3}\right)\end{cases}
$$

- Suppose m / d even. Then,

$$
N_{3}(0)=p^{2 m}-p^{m}\left(q^{3}+1\right)+q^{3}+(q-1)\left(p^{m}-1\right) f(\alpha)
$$

and for $a \in F^{\times}$, one has

$$
N_{3}(a)= \begin{cases}p^{2 m}+p^{m}\left(q^{3}-3 q^{2}-1\right)+2 q^{3}-(q-1)\left(q^{2}-q+1\right) f(\alpha) & \text { if } a \in B \\ p^{2 m}-p^{m}\left(2 q^{2}-2 q+1\right)+q^{3}-q^{2}+(q-1)(q-2) f(\alpha) & \text { if } a \notin B\end{cases}
$$

where α is as in (2.6) and f as in (2.8).

- Suppose m / d odd. Then,

$$
N_{3}(0)=\left(p^{m}-1\right)\left(p^{m}-q\right)
$$

and for $a \in F^{\times}$,

$$
N_{3}(a)= \begin{cases}\left(p^{m}-2\right)\left(p^{m}-q\right) & \text { if } \quad a \in B \\ p^{m}\left(p^{m}-q\right) & \text { if } \quad a \notin B\end{cases}
$$

Proof. The proof is a generalization of the proof of Proposition 2.6 in [4]. In the case of [4], $p=3$ and $k=4$, so that the proof only needs to distinguish two cases depending on the parity of m. In the present general setting we have to distinguish different cases according to whether or not F contains $\mathbb{F}_{q^{2}}$, and according to whether or not -1 is a k-th power in F.

Corollary 2.10. Let $a \in F$.
(1) If $a \neq 0$ and $m / d \geq 3$, or if $a=0$ and $m / d \geq 3$ with $m / d \neq 4$, then $(\mathcal{F}(a))$ has solutions in F^{3}.
(2) If $m / d \leq 2$, for any $a \in F,(\mathcal{F}(a))$ has no solutions in F^{3}.
(3) Suppose $m=4 d$. Then $(\mathcal{F}(0))$ has no solutions in F^{3}. Let $a \in F$. Then, there exists $(x, y, z, u) \in F^{4}$ such that

$$
\begin{cases}x^{k}+y^{k}+z^{k}+u^{k}=a, & \left(e_{1}\right) \tag{a}\\ x y \neq 0, & \left(e_{2}\right) \\ x^{Q^{2}-1} \neq y^{Q^{2}-1} . & \left(e_{3}\right)\end{cases}
$$

Proof. If $m / d \leq 2$, then $F \subset \mathbb{F}_{q^{2}}$, so that $\left(e_{3}\right)$ is not satisfied in F. This proves the second claim. We prove the other claims.
(A) Suppose m / d even, say $m=2 n d$ with $n>1$. From Proposition 2.9,

$$
N_{3}(0)=q^{4 n}-q^{2 n}\left(q^{3}+1\right)+q^{3}+(q-1)\left(q^{2 n}-1\right) f(\alpha)
$$

By (2.10),

$$
N_{3}(0)=q^{4 n}-q^{2 n}\left(q^{3}+1\right)+q^{3}+(q-1)\left(q^{2 n}-1\right)(-q)^{n+1}
$$

If $n>2$, then $N_{3}(0)>0$, so that $(\mathcal{F}(0))$ has a solution. If $n=2$, then $N_{3}(0)=0$, so that $(\mathcal{F}(0))$ has no solutions. Let $a \in B$. From Propositions 2.9 and 2.4,

$$
\begin{aligned}
N_{3}(a) & \geq p^{2 m}+p^{m}\left(q^{3}-3 q^{2}-1\right)+2 q^{3}-(q-1)\left(q^{2}-q+1\right) q p^{m / 2} \\
& >p^{2 m}+p^{m}\left(q^{3}-3 q^{2}-1-q(q-1)\left(q^{2}-q+1\right)\right) \\
& =p^{2 m}-p^{m}\left(q^{4}-3 q^{3}+5 q^{2}+q-1\right) \\
& >q^{4 n}-q^{2 n+4} \geq 0 .
\end{aligned}
$$

Thus, $(\mathcal{F}(a))$ has a solution. Let $a \in F^{\times} \backslash B$. From Propositions 2.4 and 2.9,

$$
\begin{aligned}
N_{3}(a) & \geq p^{2 m}-p^{m}\left(2 q^{2}-2 q+1\right)+q^{3}-q^{2}-(q-1)(q-2) q p^{m / 2} \\
& >p^{2 m}-p^{m}\left(q^{3}-q^{2}+1\right) \\
& >p^{2 m}-p^{m} q^{3}=q^{4 n}-q^{2 n+3}>0 .
\end{aligned}
$$

If $n \geq 2$, then $N_{3}(a)>0$. Thus, $(\mathcal{F}(a))$ has a solution. Suppose $n=2$. If $a \neq 0$, for every (x, y, z) solution of $(\mathcal{F}(a)),(x, y, z, 0)$ is a solution of $(\mathcal{G}(a))$; if $a=0$, for every (x, y, z) solution of $(\mathcal{F}(-1)),(x, y, z, 1)$ is a solution of $(\mathcal{G}(a))$.
(B) Suppose m / d odd. From Proposition $2.9, N_{3}(a)>0 \Leftrightarrow m>d$. Thus $(\mathcal{F}(a))$ has a solution if and only if $m / d>1$.

3. The numbers $\boldsymbol{v}\left(\boldsymbol{p}^{\boldsymbol{m}}, \boldsymbol{k}\right)$

Proposition 3.1. We have $v\left(p^{m}, k\right) \geq 3$. Moreover, if m divides $2 r$, then $v\left(2^{m}, k\right)=\infty$.
Proof. Similar to the proof of Proposition 3.1 in [3].
Proposition 3.2. (1) If $m / d \notin\{1,2,4\}$, then $v\left(p^{m}, k\right)=3$.
(2) If $m / d=4$, then $v\left(p^{m}, k\right)=4$.

Proof. If $m / d \notin\{1,2,4\}$, Corollary 2.10 implies the existence of $\left(a_{1}, a_{2}, a_{3}\right) \in$ F^{3} solution of $(\mathcal{F}(0))$. If $m / d=4$, Corollary 2.10 implies the existence of $\left(a_{1}, a_{2}, a_{3}, a_{4}\right) \in F^{4}$ solution of $(\mathcal{G}(0))$. Let $\left(b_{1}, b_{2}\right) \in F^{2}$ be a solution of $\left(\mathcal{E}\left(a_{1}, a_{2}, 0,1\right)\right)$, with (\mathcal{E}) defined by (2.3). As for the proof of Proposition 3.2 in [3], we get:
(1) If $m / d \notin\{1,2,4\}$, then

$$
\left(a_{1} T+b_{1}\right)^{k}+\left(a_{2} T+b_{2}\right)^{k}+\left(a_{3} T\right)^{k}=T+\left(b_{1}\right)^{k}+\left(b_{2}\right)^{k},
$$

so that T is a sum of three k-th powers of linear polynomials.
(2) If $m / d=4$, then

$$
\left(a_{1} T+b_{1}\right)^{k}+\left(a_{2} T+b_{2}\right)^{k}+\left(a_{3} T\right)^{k}+\left(a_{4} T\right)^{k}=T+\left(b_{1}\right)^{k}+\left(b_{2}\right)^{k}
$$

so that T is a sum of four k-th powers of linear polynomials.
In the first case, Proposition 3.1 gives $v\left(p^{m}, k\right)=3$. In the second case, we have $v\left(p^{m}, k\right) \leq 4$. We end the proof by proving that $v\left(p^{m}, k\right)>3$ as we did in the proof of Proposition 3.2 in [3].

Corollary 3.3. We have $\mathcal{S}(F, k)=F[T]$ if and only if $m / d \geq 3$. More precisely, if either, m / d is odd and $m \neq d$, or, if m / d is even and $m / d>4$, then every $A \in F[T]$ is sum of three k-th powers; if $m=4 d$, then every $A \in F[T]$ is a sum of four k-th powers.

We are ready to present our first result.
Proposition 3.4. Assume that m does not divide $2 r$. Let

$$
\gamma(m)=\left\{\begin{array}{lll}
2 & \text { if } & p^{m} \equiv 1 \tag{3.1}\\
3 & \text { if } & p^{m} \equiv 3
\end{array} \quad(\bmod 4),\right.
$$

(1) Let $s \geq\left[\frac{\log k}{\log (k /(k-1))}\right]$. Then, every $P \in F[T]$ of degree $\geq \delta(s, k)=$ $k\left\lceil\frac{k^{2}-2 k-k^{2}\left(1-\frac{1}{k}\right)^{s+1}}{1-k\left(1-\frac{1}{k}\right)^{s+1}}\right\rceil-k+1$ is the strict sum of $s+\gamma(m)+v\left(p^{m}, k\right)$ k-th powers.

$$
\text { Moreover, if } s \geq \frac{\log k}{\log (k /(k-1))} \text {, then } \delta(s, k) \leq k^{4}-3 k^{3}+2 k^{2}-2 k+1
$$

(2) Let $s \geq \frac{\log (k(k-1) / 2)}{\log (k /(k-1))}$. Then, every $P \in F[T]$ of degree $\geq k^{3}-3 k+1$ is a strict sum of $s+\gamma(m)+v\left(p^{m}, k\right) k$-th powers.
(3) Let $s \geq \frac{3 \log k}{\log (k /(k-1))}-1$. Then, every $P \in F[T]$ such that $k^{3}-2 k^{2}-$ $k+1 \leq \operatorname{deg} P \leq k^{3}-3 k$ is the strict sum of $s+\gamma(m)+v\left(p^{m}, k\right) k$-th powers.
Proof. From Propositions 2.7 and 3.2, F is a k-Waring field and $v\left(p^{m}, k\right)$ is finite. Let $w(m, k)=v\left(p^{m}, k\right)+\max \left(\ell\left(p^{m}, k\right), 1+\lambda\left(p^{m}, k\right)\right)$. From [2, Proposition 5.3], we have the following facts:
(1) Let $s \geq\left[\frac{\log k}{\log (k /(k-1))}\right]$. Then every $P \in F[T]$ of degree $\geq \delta(s, k)=$ $k\left\lceil\frac{k^{2}-2 k-k^{2}\left(1-\frac{1}{k}\right)^{s+1}}{1-k\left(1-\frac{1}{k}\right)^{s+1}}\right\rceil-k+1$ is a strict sum of $\left.s+w(m, k)\right) k$-th powers. Moreover, if $s \geq \frac{\log k}{\log (k /(k-1))}$, then $\delta(s, k) \leq k^{4}-3 k^{3}+2 k^{2}-2 k+1$.
(2) Let $s \geq \frac{\log (k(k-1) / 2)}{\log (k /(k-1))}$. Then every $P \in F[T]$ of degree $\geq k^{3}-3 k+1$ is the strict sum of $s+w(m, k) k$-th powers.
(3) Let $s \geq \frac{3 \log k}{\log (k /(k-1))}-1$. Then every $P \in F[T]$ such that

$$
k^{3}-2 k^{2}-k+1 \leq \operatorname{deg} P \leq k^{3}-3 k
$$

is the strict sum of $s+w(m, k) k$-th powers.
From Proposition 2.7, $\ell\left(2^{m}, k\right)=2$. From Remark 2.8, $\lambda\left(p^{m}, k\right)=1$ or 2 according as $p^{m} \equiv 1$ or $3(\bmod 4)$, so that, with $(3.1), w(m, k)=v\left(p^{m}, k\right)+$ $\gamma(m)$.
Corollary 3.5. (1) Suppose $p^{m} \equiv 1(\bmod 4)$.
(a) If either, m / d is odd and $m \notin\{1, r\}$, or, if m / d is even and $m / d>4$, then $G\left(p^{m}, k\right) \leq\left[\frac{\log k}{\log (k /(k-1))}\right]+5 \leq k \log k+5$.
(b) If $m / d=4$, then $G\left(p^{m}, k\right) \leq\left[\frac{\log k}{\log (k /(k-1))}\right]+6 \leq k \log k+6$.
(2) Suppose $p^{m} \equiv 3(\bmod 4)$. If $m \notin\{1, r\}$, then $G\left(p^{m}, k\right) \leq\left[\frac{\log k}{\log (k /(k-1))}\right]+$ $6 \leq k \log k+6$.

Proof. Apply the first of part of the previous proposition.
The following proposition gives an example of an infinite sequence of polynomials which are sums of k-th powers and not strict sums of k-th powers.

Proposition 3.6. Suppose $m=2 d$. Let $a \in F$ be such that $a \notin \mathbb{F}_{q}$. Let $b \in F$ be such that $b^{Q}=a$. For $n \geq Q$, let

$$
B_{n}=a T^{n k}+b T^{n k+1-Q^{2}}
$$

Then B_{n} is a sum of three k-th powers and is not a strict sum of k-th powers.
Proof. Similar to the proof of Proposition 3.7 in [3].
Corollary 3.7. If $m / d=2$, then $G\left(p^{m}, k\right)=\infty$.

4. Strict sums of degree $\leq k(k-2)$

The two following propositions form the key of the proof.
Proposition 4.1. For $i \in\{0, \ldots, Q-1\}$ and $X \in F[T]$ let

$$
\begin{equation*}
L_{i}(X)=X^{Q} T^{i}+X T^{Q i} \tag{4.1}
\end{equation*}
$$

Then, the map $X \mapsto L_{i}(X)$ is additive and the following identities are satisfied:

$$
\begin{equation*}
L_{i}(X)=\left(X+\frac{1}{2} T^{i}\right)^{Q+1}-\left(X-\frac{1}{2} T^{i}\right)^{Q+1} . \tag{4.2}
\end{equation*}
$$

For every $b \in F$,

$$
\begin{equation*}
L_{i}\left(X+b T^{i}\right)=L_{i}(X)+\left(b^{Q}+b\right) T^{i(Q+1)} . \tag{4.3}
\end{equation*}
$$

Moreover, if $F \subset \mathbb{F}_{Q^{2}}$, then, for every $c \in F^{\times}$,

$$
\begin{equation*}
L_{i}(X)+c^{Q+1} T^{(Q+1) i}=\left(\frac{1}{c^{Q}} X+c T^{i}\right)^{Q+1}-\left(\frac{1}{c^{Q}} X\right)^{Q+1} \tag{4.4}
\end{equation*}
$$

Proof. The proof of (4.2) and (4.3) is immediate. We get (4.4) from observing that $c^{Q^{2}}=c$.

Proposition 4.2. Suppose $F=\mathbb{F}_{q}$.
(1) For every $(a, b, c) \in F^{3}$, the polynomial $c+b T+b T^{Q}+a T^{Q+1}$ is a strict sum of three k-th powers.
(2) Let $c \in F$. There exists $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \beta_{1}, \beta_{2}, \beta_{3}\right) \in F^{6}$ such that for $i \in$ $\{0, \ldots, Q-1\}$ and $X \in F[T]$,
(4.5) $L_{i}(X)+c T^{(Q+1) i}=\left(\alpha_{1} X+\beta_{1} T^{i}\right)^{k}+\left(\alpha_{2} X+\beta_{2} T^{i}\right)^{k}+\left(\alpha_{3} X+\beta_{3} T^{i}\right)^{k}$.

Proof. (1) Let $(a, b, c) \in F^{3}$ and let

$$
A=a+b T+b T^{Q}+c T^{Q+1}
$$

From Lemma 2.3, there is $(x, y, z, \xi, \eta, \zeta) \in F^{6}$ such that

$$
\left\{\begin{array}{l}
a=x^{2}+y^{2}+z^{2} \\
b=x \xi+y \eta+z \zeta \\
c=\xi^{2}+\eta^{2}+\zeta^{2}
\end{array}\right.
$$

Since $F \subset \mathbb{F}_{Q}$, for every $u \in F$, we have $u^{Q}=u$, so that,

$$
\left\{\begin{array}{l}
a=x^{Q+1}+y^{Q+1}+z^{Q+1} \\
b=x^{Q} \xi+y^{Q} \eta+z^{Q} \zeta \\
c=\xi^{Q+1}+\eta^{Q+1}+\zeta^{Q+1}
\end{array}\right.
$$

Hence,

$$
a+b T+b T^{Q}+c T^{Q+1}=(x+\xi T)^{Q+1}+(y+\eta T)^{Q+1}+(z+\zeta T)^{Q+1}
$$

so that A is a strict sum of three k-th powers.
(2) Apply (\dagger) with $a=0, b=1$. There exists $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \beta_{1}, \beta_{2}, \beta_{3}\right) \in F^{6}$ such that

$$
\left\{\begin{array}{l}
\alpha_{1}^{k}+\alpha_{2}^{k}+\alpha_{3}^{k}=0 \\
\alpha_{1}^{Q} \beta_{1}+\alpha_{2}^{Q} \beta_{2}+\alpha_{3}^{Q} \beta_{3}=\alpha_{1} \beta_{1}^{Q}+\alpha_{2} \beta_{2}^{Q}+\alpha_{3} \beta_{3}^{Q}=1 \\
\beta_{1}^{k}+\beta_{2}^{k}+\beta_{3}^{k}=c
\end{array}\right.
$$

Thus,

$$
\left(\alpha_{1} X+\beta_{1} T^{i}\right)^{k}+\left(\alpha_{2} X+\beta_{2} T^{i}\right)^{k}+\left(\alpha_{3} X+\beta_{3} T^{i}\right)^{k}=c T^{(Q+1) i}+X^{Q} T^{i}+X T^{Q i}
$$

Proposition 4.3. Suppose that $m / d \geq 3$.

- Let $0<N<k-2$ and let

$$
A=\sum_{n=0}^{k N} a_{n} T^{n}
$$

be a polynomial of $F[T]$ such that

$$
k(N-1)<\operatorname{deg} A \leq k N
$$

Then, A is a strict sum of k-th powers if and only if $a_{n}=0$ for each $n \in \bigcup_{i=0}^{N-1}[i Q+N+1,(i+1) Q-1]$. Thus, $\mathcal{S}(F, k) \neq \mathcal{S}^{\times}(F, k)$ and $g\left(p^{m}, k\right)=\infty$.

- Let $A \in F[T]$ be such that

$$
k(k-3)<\operatorname{deg} A \leq k(k-2)
$$

Then, A is a strict sum of k-th powers.

- Let $A \in F[T]$ of degree $\leq k(k-2)$ be a strict sum of k-th powers. Then, A is a strict sum of $v\left(p^{m}, k\right)\left\lceil\frac{\operatorname{deg} A}{k}\right\rceil+2 k$-th powers of polynomials of degree $\leq k-2$.
- Let $A \in F[T]$ of degree $\leq k(k-2)$. Then,

$$
A=\sum_{i=1}^{s}\left(X_{i}\right)^{k}
$$

with $s=v\left(2^{m}, k\right)(k-2)+2$ and $\operatorname{deg} X_{i} \leq k-2$ for $i=1, \ldots, s$.
Proof. The proof is similar to that of Proposition 4.3 in [3]. It makes use of Lemma 2.2 and Corollary 2.10 as the proof of Proposition 4.3 in [3] makes use of Lemma 2.2 and Corollary 2.10 in [3].

Lemma 4.4. Suppose $F \subset \mathbb{F}_{Q^{2}}$. Let $A \in F[T]$ be a sum of k-th powers. Then $T^{Q^{2}}-T$ divides $A^{Q}-A$.

Proof. As for Lemma 4.4 in [3].
Proposition 4.5. Suppose $F \subset \mathbb{F}_{Q^{2}}$. Let

$$
A=\sum_{n=0}^{Q^{2}-1} a_{n} T^{n}
$$

be a polynomial of $F[T]$ with $\operatorname{deg} A<Q^{2}$ and such that $T^{Q^{2}}-T$ divides $A^{Q}-A$.

- For every $n=Q j+i$ with $0 \leq j<Q, 0 \leq i<Q$, one has

$$
a_{n}=\left(a_{\bar{n}}\right)^{Q},
$$

where $\bar{n}=Q i+j$.

- For every $n=k j$ with $0 \leq j \leq Q-1, a_{n} \in F \cap \mathbb{F}_{Q}$.
- If $\operatorname{deg} A \leq Q+1$, then A is a strict sum of three k-th powers.
- (A) If $F \subset \mathbb{F}_{Q}$ and $Q+1<\operatorname{deg} A<Q^{2}$, then A is a strict sum of $3 k-6 k$-th powers.
(B) If $F \not \subset \mathbb{F}_{Q}$ and $Q+1<\operatorname{deg} A<Q^{2}$, then A is a strict sum of $2 k-3$ k-th powers (If, in addition, k divides $\operatorname{deg} A$, then $a_{\operatorname{deg} A} \in \mathbb{F}_{q}$).

Proof. Making use of Lemma 4.4, the proof of the first part is similar to that of Proposition 4.5-(I) in [3]. Let $n=k j$ with $0 \leq j \leq Q-1$. Then $\bar{n}=n$, so that $a_{n} \in F_{Q}$. Let $0 \leq i, j<Q$ and let $n=Q j+i \leq Q^{2}-2$ be non divisible by $Q+1$. Then

$$
a_{n} T^{n}+a_{\bar{n}} T^{\bar{n}}=L_{i}\left(a_{Q i+j} T^{j}\right)=L_{j}\left(a_{Q j+i} T^{i}\right),
$$

so that,

$$
\begin{align*}
A & =\sum_{i=0}^{Q-1} a_{(Q+1) i} T^{(Q+1) i}+\sum_{i=0}^{Q-2} \sum_{j=i+1}^{Q-1} L_{i}\left(a_{Q i+j} T^{j}\right) \\
& =\sum_{i=0}^{Q-1} a_{(Q+1) i} T^{(Q+1) i}+\sum_{j=1}^{Q-1} \sum_{i=0}^{j-1} L_{j}\left(a_{Q j+i} T^{i}\right) . \tag{1}
\end{align*}
$$

(A) Suppose $F \subset \mathbb{F}_{Q}$, that is $F=\mathbb{F}_{q}$. Firstly, we suppose $\operatorname{deg} A \leq Q+1$. Then,

$$
A=a+b T+b T^{Q}+c T^{Q+1}
$$

with $a, b, c \in F$. From Proposition 4.2, A is a strict sum of three k-th powers. This proves the second part.

Now, we suppose $Q+1<\operatorname{deg} A \leq Q^{2}-1$. By (1),

$$
A=a_{0}+L_{1}\left(a_{Q}\right)+a_{Q+1} T^{Q+1}+\sum_{j=2}^{Q-1}\left(a_{(Q+1) j} T^{(Q+1) j}+L_{j}\left(B_{j}\right)\right)
$$

with

$$
\begin{equation*}
B_{j}=\sum_{i=0}^{j-1} a_{Q j+i} T^{i} \tag{2}
\end{equation*}
$$

From Proposition 4.2, for every $j=2, \ldots, Q-1$, there exist $\left(\alpha_{j, 1}, \alpha_{j, 2}, \alpha_{j, 3}\right.$, $\left.\beta_{j, 1}, \beta_{j, 2}, \beta_{j, 3}\right) \in F^{6}$ such that

$$
\begin{equation*}
a_{(Q+1) j} T^{(Q+1) j}+L_{j}\left(B_{j}\right)=\sum_{\nu=1}^{3}\left(\alpha_{j, \nu} B_{j}+\beta_{j, \nu}\right)^{k} \tag{3}
\end{equation*}
$$

Thus, $B=A-\left(a_{0}+L_{1}\left(a_{Q}\right)+a_{Q+1} T^{Q+1}\right)$ is a sum of $3(Q-2) k$-th powers. From Lemma 4.4, $B^{Q}-B$ is divisible by $T^{Q^{2}}-T$, so that, $\left(a_{0}+L_{1}\left(a_{Q}\right)+\right.$ $\left.a_{Q+1} T^{Q+1}\right)^{Q}-\left(a_{0}+L_{1}\left(a_{Q}\right)+a_{Q+1} T^{Q+1}\right)$ is divisible by $T^{Q^{2}}-T$. Since $\operatorname{deg}\left(a_{0}+L_{1}\left(a_{Q}\right)+a_{Q+1} T^{Q+1}\right) \leq Q+1, a_{0}+L_{1}\left(a_{Q}\right)+a_{Q+1} T^{Q+1}$ is a strict sum of three k-th powers. Thus, by (3), A is a sum of $3+3(Q-2) k$-th powers.

We consider the degrees. Suppose that

$$
\begin{equation*}
\operatorname{deg} A=(Q+1) N-\rho \tag{4}
\end{equation*}
$$

with

$$
\begin{equation*}
0 \leq \rho \leq Q \tag{5}
\end{equation*}
$$

Observe that

$$
\begin{equation*}
N<Q \tag{6}
\end{equation*}
$$

Let $j \in\{2, \ldots, Q-1\}$ be such that $j>N$. Then, $(Q+1) j>(Q+1) N-\rho$, so that $a_{(Q+1) j}=0$. We have $Q j+i \geq(Q+1) N+Q-N+i>(Q+1) N-\rho$, so that $a_{Q j+i}=0$. Hence, $B_{j}=0$. Thus, the ($\alpha_{j, \nu} B_{j}+\beta_{j, \nu}$) occurring in (3) are zero polynomials. If $2 \leq j \leq N$, then by (2), $\operatorname{deg} B_{j} \leq N$. Thus, the sum (3) is a strict one.
(B) Suppose $F \not \subset \mathbb{F}_{Q}$. Since $F \subset \mathbb{F}_{Q^{2}}$, we have $F=\mathbb{F}_{q^{2}}$. Thus, $m=2 d$ and r / d is odd. For every $j=0, \ldots, Q-1, a_{(Q+1) j} \in F \cap \mathbb{F}_{Q}=\mathbb{F}_{q}$. Thus, if $k=Q+1$ divides $\operatorname{deg} A$, then $a_{\operatorname{deg} A} \in \mathbb{F}_{q}$. The trace map $x \mapsto x^{q}+x$ from $F=\mathbb{F}_{q^{2}}$ to \mathbb{F}_{q} is onto. For every $j=0, \ldots, Q-1$, there is $b_{j} \in F$ such that

$$
a_{(Q+1) j}=b_{j}^{q}+b_{j}
$$

For every $y \in \mathbb{F}_{q^{2}}$, we have $y^{q^{2}}=y$, so that, by induction, for every positive integer s, we have $y^{q^{2 s}}=y$ and $y^{q^{2 s+1}}=y^{q}$. Since $Q=q^{r / d}$ with r / d odd, for every $j=0, \ldots, Q-1$, we have

$$
a_{(Q+1) j}=b_{j}^{Q}+b_{j} .
$$

Moreover, from Proposition 2.4, each $x \in \mathbb{F}_{q}$ is a $(q+1)$-th power, so that there is $c_{j} \in F$ such that $a_{(Q+1) j}=\left(c_{j}\right)^{k}=\left(c_{j}\right)^{Q+1}$.

Suppose $\operatorname{deg} A \leq Q+1$. Then

$$
A=b_{0}+b_{0}^{Q}+L_{0}\left(a_{1} T\right)+\left(c_{1} T\right)^{Q+1}
$$

By (4.3),

$$
A=L_{0}\left(a_{1} T+b_{0}\right)+\left(c_{1} T\right)^{Q+1}
$$

then by (4.2),

$$
\begin{equation*}
A=\left(a_{1} T+b_{0}+\frac{1}{2}\right)^{Q+1}-\left(a_{1} T+b_{0}-\frac{1}{2}\right)^{Q+1}+\left(c_{1} T\right)^{Q+1} \tag{7}
\end{equation*}
$$

Suppose $\operatorname{deg} A>Q+1$. Then,

$$
\begin{aligned}
A & =c_{0}^{Q+1}+\sum_{j=1}^{Q-1}\left(\left(b_{j}^{Q}+b_{j}\right) T^{j(Q+1)}+\sum_{i=0}^{j-1} L_{j}\left(a_{Q j+i} T^{i}\right)\right) \\
& =c_{0}^{Q+1}+\sum_{j=1}^{Q-1}\left(\left(b_{j}^{Q}+b_{j}\right) T^{j(Q+1)}+L_{j}\left(B_{j}\right)\right)
\end{aligned}
$$

with B_{j} defined by (2). By (4.3),

$$
A=c_{0}^{Q+1}+\sum_{j=1}^{Q-1} L_{j}\left(B_{j}+b_{j} T^{j}\right)
$$

Then, by (4.2),

$$
\begin{equation*}
A=c_{0}^{k}+\sum_{j=1}^{Q-1}\left(\left(B_{j}+b_{j} T^{j}+\frac{1}{2} T^{j}\right)^{k}-\left(B_{j}+b_{j} T^{j}-\frac{1}{2} T^{j}\right)^{k}\right) \tag{8}
\end{equation*}
$$

From Remark 2.8, -1 is a k-th power, so that (7) is a sum of three k-th powers and (8) is a sum of $(1+2(Q-1)) k$-th powers. We observe that (7) is a strict sum and we finish the proof, proving as above that (8) is a strict sum.

5. The descent process

In this section, we use the descent process already used in [3] and [4].
Proposition 5.1. Suppose $F \subset \mathbb{F}_{Q^{2}}$. Then $\mathcal{S}(F, k)$ is the subset of $F[T]$ formed by the polynomials A such that $T^{Q^{2}}-T$ divides $A^{Q}-A$.

Proof. The proof is similar to those of Proposition 5.1 and Corollary 5.2 in [3].

Lemma 5.2. Let n be a positive integer and let $H \in F[T]$ be such that

$$
\begin{equation*}
k(n-1)<\operatorname{deg} H \leq k n \tag{5.1}
\end{equation*}
$$

In addition, in the case when $m=2 d$ and $\operatorname{deg} H=k n$, we suppose that the leading coefficient of H is a k-th power. Then, we have

$$
\begin{equation*}
H=\sum_{i=1}^{1+\lambda} B_{i}^{k}+\sum_{i=0}^{Q-1} L_{i}\left(Y_{i}\right)+R \tag{5.2}
\end{equation*}
$$

with $\lambda=\lambda\left(p^{m}, k\right)$ and where $B_{1}, \ldots, B_{\lambda+1}, Y_{0}, \ldots, Y_{Q-1}, R \in F[T]$ with

$$
\begin{gather*}
\operatorname{deg} B_{1}, \ldots, \operatorname{deg} B_{\lambda+1} \leq n \tag{5.3}\\
\operatorname{deg} Y_{0}, \ldots, \operatorname{deg} Y_{Q-1}<n \tag{5.4}\\
\operatorname{deg} R<Q^{2} \tag{5.5}
\end{gather*}
$$

$$
\begin{equation*}
R=\sum_{i=0}^{Q-1} \sum_{j=0}^{i} x_{Q j+i} T^{Q j+i} \tag{5.6}
\end{equation*}
$$

with $x_{Q j+i} \in F$ for all i and j. Moreover, if $\lambda\left(p^{m}, k\right)=2$ and $\operatorname{deg} H=k n$, or if $m=2 d$ and $\operatorname{deg} H=k n$, then $B_{1}=0$.
Proof. (I) Suppose $m \neq 2 d$. From Proposition 2.7, F is a k-Waring field with $\ell\left(p^{m}, k\right)=2$, so that $\max \left(\ell\left(p^{m}, k\right)-1, \lambda\left(p^{m}, k\right)\right)=\lambda\left(p^{m}, k\right)=\lambda$. From [2, Lemma 5.1], there exist $B_{1}, \ldots, B_{\lambda}, P \in F[T]$ such that

$$
\begin{equation*}
H=B_{1}^{k}+\cdots+B_{\lambda}^{k}+P \tag{1}
\end{equation*}
$$

with

$$
\operatorname{deg} B_{1}, \ldots, \operatorname{deg} B_{\lambda} \leq n, \quad \operatorname{deg} P=k n
$$

the leading coefficient of P being a k-th power. Observe that in the case when $\operatorname{deg} H=k n$, the leading coefficient of H is a sum of two k-th powers, so that, when $\lambda=2$ and $\operatorname{deg} H=k n$, in (1), we can take $B_{1}=0$.
(II) Suppose $m=2 d$. From Remark $2.8,-1$ is a k-th power in $\mathbb{F}_{q^{2}}=F$, say $-1=b^{k}$. Thus $\lambda=1$. If $\operatorname{deg} H<k n$, then

$$
H=-T^{k n}+P
$$

with P monic of degree $k n$, so that (1) is true with $\lambda=1$ and $B_{1}=b T^{n}$. If $\operatorname{deg} H=k n$, the hypothesis insures that (1) is true with $B_{1}=0$.

Ending the proof as for Lemma 5.3 in [3], we get the identity (5.2) with degree conditions (5.3)-(5.5).

We are now ready to present our second result.
Proposition 5.3. Suppose that $m / d \geq 3$. Then:

- Every polynomial $H \in F[T]$ with degree $\geq k^{3}-2 k^{2}-k+1$ is the strict sum of $k\left(\lambda\left(p^{m}, k\right)+1\right)+v\left(p^{m}, k\right) k$-th powers.
- Every polynomial $H \in F[T]$ with degree $\geq k^{2}-3 k+1$ is the strict sum of $(k-2) v\left(p^{m}, k\right)+k\left(\lambda\left(p^{m}, k\right)+1\right)+2 k$-th powers. Moreover, if $H \in F[T]$ is such that $k^{2}-3 k+1 \leq \operatorname{deg} H \leq k^{2}-2 k$, then H is the strict sum of $(k-2) v\left(p^{m}, k\right)+2 k$-th powers.

Proof. The last claim is given by the third part of Proposition 4.3. We prove the other ones. Set $\lambda=\lambda\left(p^{m}, k\right)$. Let $H \in F[T]$ and let n be the integer such that

$$
\begin{equation*}
k(n-1)<\operatorname{deg} H \leq k n . \tag{1}
\end{equation*}
$$

From Lemma 5.2,

$$
\begin{equation*}
H=\sum_{i=1}^{1+\lambda} B_{i}^{k}+\sum_{i=0}^{Q-1} L_{i}\left(Y_{i}\right)+R \tag{2}
\end{equation*}
$$

where $B_{1}, \ldots, B_{1+\lambda}, Y_{0}, \ldots, Y_{Q-1}, R \in F[T]$ with

$$
\begin{align*}
& \operatorname{deg} B_{1}, \ldots, \operatorname{deg} B_{1+\lambda} \leq n, \tag{3}\\
& \operatorname{deg} Y_{0}, \ldots, \operatorname{deg} Y_{Q-1}<n, \tag{4}
\end{align*}
$$

$$
\begin{equation*}
\operatorname{deg} R<Q^{2} \tag{5}
\end{equation*}
$$

By (4.2),

$$
L_{i}\left(Y_{i}\right)=\left(Y_{i}+\frac{1}{2} T^{i}\right)^{k}-\left(Y_{i}-\frac{1}{2} T^{i}\right)^{k} .
$$

Since -1 is a sum of λk-th powers, for each index $i=0, \ldots, Q-1$, there is $Z_{i, 1}, \ldots, Z_{i, 1+\lambda} \in F[T]$, such that

$$
\begin{equation*}
L_{i}\left(Y_{i}\right)=\left(Z_{i, 1}\right)^{k}+\left(Z_{i, 2}\right)^{k}+\cdots+\left(Z_{i, 1+\lambda}\right)^{k} \tag{6}
\end{equation*}
$$

and such that

$$
\begin{equation*}
\operatorname{deg} Z_{i, j} \leq \max (i, n-1) \tag{7}
\end{equation*}
$$

Set $v=v\left(p^{m}, k\right)$. Then, there exist $a_{1}, b_{1}, \ldots, a_{v}, b_{v}$ in F such that

$$
\begin{equation*}
R=\left(a_{1} R+b_{1}\right)^{k}+\cdots+\left(a_{v} R+b_{v}\right)^{k} . \tag{8}
\end{equation*}
$$

By (2), (6) and (8),

$$
\begin{aligned}
H= & \sum_{i=1}^{1+\lambda} B_{i}^{k}+\sum_{i=0}^{Q-1}\left(\left(Z_{i, 1}\right)^{k}+\cdots+\left(Z_{i, 1+\lambda}\right)^{k}\right) \\
& +\left(a_{1} R+b_{1}\right)^{k}+\cdots+\left(a_{v} R+b_{v}\right)^{k}
\end{aligned}
$$

so that H is a sum of $((\lambda+1)(Q+1)+v) k$-th powers of polynomials. By $(3),(4),(5),(7)$ and (8), these polynomials have their degrees bounded by $\max \left(n, Q^{2}-1\right)$. In view of (1), if $n \geq Q^{2}-1$, the above sum is a strict one. This proves the first part.

We have $\operatorname{deg} R<Q^{2}$. From the fourth part of Proposition $4.3, R$ is a sum of

$$
s=(k-2) v\left(p^{m}, k\right)+2
$$

k-th powers of polynomials of degree $\leq Q-1$. Thus by (2) and (6), H is a sum of

$$
k(\lambda+1)+s=(k-2) v\left(p^{m}, k\right)+k(\lambda+1)+2
$$

k-th powers of polynomials of degree $\leq \max (n, Q-1)$. In view of (1), if $n \geq Q-1$, the sum is a strict representation. This proves the second part.

Corollary 5.4. Suppose that $m / d \geq 3$. Then,

$$
\mathcal{S}^{\times}\left(p^{m}, k\right)=\mathcal{A}_{\infty} \cup\left(\bigcup_{N=0}^{k-3} \mathcal{A}_{N}\right),
$$

where

$$
\begin{aligned}
\mathcal{A}_{\infty} & =\{A \in F[T] \mid \operatorname{deg} A>k(k-3)\}, \\
\mathcal{A}_{0} & =F
\end{aligned}
$$

and for $N=1, \ldots, k-3$,

$$
\mathcal{A}_{N}=\left\{A \in F[T] \mid A=\sum_{n=0}^{N} \sum_{i=0}^{N} x_{n, i} T^{i+n Q}\right\}
$$

with $x_{n, i} \in F$. Moreover,
(1) if p^{m} is congruent to 1 modulo 4 and $m / d \neq 4$,

$$
G\left(p^{m}, k\right)=G^{\times}\left(p^{m}, k\right) \leq 2 k+3
$$

(2) if p^{m} is congruent to 3 modulo 4 ,

$$
G\left(p^{m}, k\right)=G^{\times}\left(p^{m}, k\right) \leq 3 k+3 ;
$$

(3) if $m / d=4$,

$$
G\left(p^{m}, k\right)=G^{\times}\left(p^{m}, k\right) \leq 2 k+4 ;
$$

(4) if p^{m} is congruent to 1 modulo 4 and $m / d \neq 4$,

$$
g\left(p^{m}, k\right)=\infty, \quad g^{\times}\left(p^{m}, k\right) \leq 5 k-4 ;
$$

(5) if p^{m} is congruent to 3 modulo 4 ,

$$
g\left(p^{m}, k\right)=\infty, \quad g^{\times}\left(p^{m}, k\right) \leq 6 k-4 ;
$$

(6) if $m / d=4$,

$$
g\left(p^{m}, k\right)=\infty, \quad g^{\times}\left(p^{m}, k\right) \leq 6 k-6 .
$$

Proof. The first assertion is given by Propositions 4.3 and 5.3. From Corollary $3.3, \mathcal{S}^{\times}\left(p^{m}, k\right) \neq \mathcal{S}\left(p^{m}, k\right)$, so that $g\left(p^{m}, k\right)=\infty$. The bounds for $G\left(p^{m}, k\right)$ are obtained by noting that from Proposition $2.7, \lambda\left(p^{m}, k\right) \in\{1,2\}$ and from Remark 2.8, $\lambda\left(p^{m}, k\right)=1$ when p^{m} is congruent to 1 modulo 4 . We deduce from Propositions 4.3 and 5.3 that

$$
g^{\times}\left(p^{m}, k\right) \leq(k-2) v\left(p^{m}, k\right)+k\left(\lambda\left(p^{m}, k\right)+1\right)+2 .
$$

Bounds for $g^{\times}\left(p^{m}, k\right)$ in parts $4-6$ are given by Propositions 3.4, 4.3 and 5.3.

Remark 5.5. If $k \geq 20$, or if $k=18,14$, for all m, the bounds for the numbers $G\left(p^{m}, k\right)$ given by this corollary are better than those given by Corollary 3.5; if $k=4,6$, the old bounds are better in all cases. If $k=12,10,8$, the new bounds are better when m / d is even.

Proposition 5.6. Suppose $m / d \leq 2$.
(A) (a) If $m=d$ and if p^{m} is congruent to 1 modulo 4 , every $H \in \mathcal{S}(F, k)$ with degree $\geq k^{2}-3 k+1$ is a strict sum of $2 k k$-th powers.
(b) If $m=d$ and if p^{m} is congruent to 3 modulo 4 , every $H \in \mathcal{S}(F, k)$ with degree multiple of k is a strict sum of $3 k-1 k$-th powers; every $H \in \mathcal{S}(F, k)$ with degree non multiple of k is a strict sum of $3 k k$-th powers.
(B) If $m=2 d$, every $H \in \mathcal{S}(F, k)$ with degree multiple of k and whose leading coefficient is a k-th power in the field F is a strict sum of $2 k-1 k$-th powers; every $H \in \mathcal{S}(F, k)$ of degree non multiple of k is a strict sum of $2 k k$-th powers.

Proof. Let $H \in \mathcal{S}(F, k)$ be such that

$$
\begin{equation*}
k(n-1)<\operatorname{deg} H \leq k n \tag{1}
\end{equation*}
$$

In addition, in the case when $m=2 d$ and $\operatorname{deg} H=k n$, we suppose that the leading coefficient of H is a k-th power.

We have

$$
\begin{equation*}
H=\sum_{i=1}^{1+\lambda} B_{i}^{k}+\sum_{i=0}^{Q-1} L_{i}\left(Y_{i}\right)+R \tag{2}
\end{equation*}
$$

where $B_{1}, \ldots, B_{1+\lambda}, Y_{0}, \ldots, Y_{Q-1}, R \in F[T]$ are as in Lemma 5.2 , so that

$$
\begin{equation*}
R=\sum_{i=0}^{Q-1} \sum_{j=0}^{i} x_{Q j+i} T^{Q j+i} \tag{3}
\end{equation*}
$$

In view of (4.2), $H-R$ is a sum of k-th powers. Since $H \in \mathcal{S}(F, k), R$ is also a sum of k-th powers. From (3), Lemma 4.4 and Proposition 4.5, if
$n \in\left\{0, \ldots, Q^{2}-1\right\}$ is not a multiple of $Q+1$, then $x_{n}=0$; if $n \in\left\{0, \ldots, Q^{2}-1\right\}$ is a multiple of $Q+1=k$, then $x_{n} \in F \cap \mathbb{F}_{Q}=\mathbb{F}_{q}$. Thus,

$$
\begin{equation*}
H=\sum_{i=1}^{1+\lambda} B_{i}^{k}+\sum_{i=0}^{Q-1}\left(L_{i}\left(Y_{i}\right)+x_{k i} T^{k i}\right) \tag{4}
\end{equation*}
$$

with

$$
x_{k i} \in \mathbb{F}_{q} \quad \text { for } \quad 0 \leq i \leq Q-1 .
$$

(A) Suppose that m divides r so that $F=\mathbb{F}_{q}$. From (4.2) or (4.4), every $L_{i}\left(Y_{i}\right)+x_{k i} T^{k i}$ in (4) is a sum of $1+\lambda k$-th powers. By (2), (5.3), (5.4), (3) and (4), H is a sum of $(\theta(q, H)+(1+\lambda) Q) k$-th powers of polynomials of degree $\leq \mu=\max (n, Q-1)$ with

$$
\theta(q, H)=\left\{\begin{array}{lllll}
2 & \text { if } & \operatorname{deg} H=k n, & & \\
2 & \text { if } & \operatorname{deg} H<k n & \text { and } & q \equiv 1 \\
3 & \text { if } & \operatorname{deg} H<k n & \text { and } 4), \\
q \equiv 3 & (\bmod 4) .
\end{array}\right.
$$

In view of (1), if $n \geq Q-1$, the sum is a strict one. Suppose $p^{m} \equiv$ $3(\bmod 4)$. If $n<Q-1$, then $\operatorname{deg} H<Q^{2}-1$. From Proposition 4.5, H is a strict sum of $3 k-6 \leq(\theta(q, H)+(1+\lambda) Q) k$-th powers.
(B) Suppose $m=2 d$. In this case, -1 is a k-th power in $F, \mathbb{F}_{q^{2}} \subset F$ and $x_{k i} \in \mathbb{F}_{q}$ for each $i=0, \ldots, Q-1$, so that, for each $i=0, \ldots, Q-1$, there exists $y_{i} \in \mathbb{F}_{q^{2}}$ such that $x_{k i}=y_{i}^{k}$. From (4.2) or (4.4), $L_{i}\left(Y_{i}\right)+\left(x_{k i}\right) T^{k i}=$ $L_{i}\left(Y_{i}\right)+\left(y_{k i}\right)^{Q+1} T^{k i}$ is a sum of two k-th powers. Moreover, if $\operatorname{deg} H=k n$, then, in (4) we have $B_{1}=0$, so that H is a sum of $(\eta(H)+2 Q) k$-th powers, where

$$
\eta(H)= \begin{cases}1 & \text { if } \quad \operatorname{deg} H=k n \\ 2 & \text { if } \\ \operatorname{deg} H<k n\end{cases}
$$

As above, if $n \geq Q-1$, the sum is strict. In the case when $n<Q-1$ we conclude with Proposition 4.5.

Corollary 5.7. - Suppose that m divides r. Then,

$$
\mathcal{S}^{\times}\left(p^{m}, k\right)=\mathcal{S}\left(p^{m}, k\right)=\left\{A \in F[T] \mid A^{Q}-A \equiv 0 \quad\left(\bmod \quad T^{Q^{2}}-T\right)\right\} .
$$

Moreover,
(1) if p^{m} is congruent to 1 modulo 4 ,

$$
\begin{aligned}
G\left(p^{m}, k\right) & =G^{\times}\left(p^{m}, k\right) \leq 2 k \\
g\left(p^{m}, k\right) & =g^{\times}\left(p^{m}, k\right) \leq 3 k-6
\end{aligned}
$$

(2) if p^{m} is congruent to 3 modulo 4 ,

$$
\begin{aligned}
G\left(p^{m}, k\right) & =G^{\times}\left(p^{m}, k\right) \leq 3 k \\
g\left(p^{m}, k\right) & =g^{\times}\left(p^{m}, k\right) \leq 3 k .
\end{aligned}
$$

- Suppose that $m / d=2$. Then,

$$
\mathcal{S}\left(p^{m}, k\right)=\left\{A \in F[T] \mid A^{Q}-A \equiv 0 \quad\left(\bmod \quad T^{Q^{2}}-T\right)\right\}
$$

$\mathcal{S}^{\times}\left(p^{m}, k\right)$ is the set of $A \in \mathcal{S}\left(p^{m}, k\right)$ such that either $\operatorname{deg} A$ is not a multiple of k, or $\operatorname{deg} A$ is a multiple of k and the leading coefficient of A is in the field \mathbb{F}_{q}. Moreover, we have

$$
G\left(p^{m}, k\right)=g\left(p^{m}, k\right)=\infty, \quad G^{\times}\left(p^{m}, k\right) \leq g^{\times}\left(p^{m}, k\right) \leq 2 k
$$

Proof. With Propositions 4.3, 4.5, Propositions 5.1, 5.3 and 5.5. In the case where m divides r and p^{m} is congruent to 1 modulo 4 , we get

$$
g\left(p^{m}, k\right)=g^{\times}\left(p^{m}, k\right) \leq \max (2 k, 3 k-6) .
$$

Observe that $\max (2 k, 3 k-6)=3 k-6$ since $2 k>3 k-6$ implies $k=4, p=$ $3, m=1$, a contradiction.

Remark 5.8. (1) In the case $k=4$, we have $p=3, r=d=1$. Corollaries 3.5 and 5.4 give $G\left(3^{m}, 4\right)=G^{\times}\left(3^{m}, 4\right) \leq 9$ for even $m>4$ and $G\left(3^{m}, 4\right)=$ $G^{\times}\left(3^{m}, 4\right) \leq 10$ for odd $m>1$ or for $m=4$. These bounds were proved in [4]. It also gives $g^{\times}\left(3^{m}, 4\right) \leq 16$ for even $m>4, g^{\times}\left(3^{m}, 4\right) \leq 20$ for odd $m>1$ and $g^{\times}(81,4) \leq 18$. In the case of even m, this improves the bounds obtained in [4].
(2) In the case $k=4$, Corollary 5.6 gives the following bounds:

$$
\begin{array}{cl}
G(3,4)=G^{\times}(3,4) \leq 12, & g(3,4)=g^{\times}(3,4) \leq 12 \\
G(9,4)=\infty, \quad G^{\times}(9,4) \leq 8, & g(9,4) \leq \infty, \quad g^{\times}(9,4) \leq 8
\end{array}
$$

which are the bounds given in [4].
(3) For $k=p^{r}+1$ tending to ∞, we have $G^{\times}\left(p^{m}, k\right) \ll k$ as well as $g^{\times}\left(p^{m}, k\right) \ll k$ unlike to the classical Waring numbers $G_{\mathbb{N}}(k)$ and $g_{\mathbb{N}}(k)$. Indeed, from [7], $g_{\mathbb{N}}(k) \gg 2^{k}$ when from [23], $G_{\mathbb{N}}(k) \ll k \log k$.
Acknowledgements. I thank an unknown referee for useful remarks, specially for the information concerning the existence of De Konninck and A. Mercier's book

References

[1] N. Bourbaki, Éléments de mathématique, Fasc. XXIII, Livre II: Algébre. Chapitre 8: Modules et anneaux semi-simples. Nouveau tirage de l'édition de 1958. Actualités Scientifiques et Industrielles, No. 1261. Hermann, Paris, 1973.
[2] M. Car, New bounds on some parameters in the Waring problem for polynomials over a finite field, Finite fields and applications, 59-77, Contemp. Math., 461, Amer. Math. Soc., Providence, RI, 2008.
[3] , Sums of $\left(2^{r}+1\right)$-th powers of polynomials over a finite field of characteristic two, Port. Math., to appear.
[4] , Sums of fourth powers of polynomials over a finite field of characteristic 3, Funct. Approx. Comment. Math. 38 (2008), part 2, 195-220.
[5] M. Car and L. Gallardo, Sums of cubes of polynomials, Acta Arith. 112 (2004), no. 1, 41-50.
[6] G. Effinger and D. R. Hayes, Additive Number Theory of Polynomials over a Finite Field, Oxford Mathematical Monographs, Clarendon Pres, Oxford, 1991.
[7] W. J. Ellison, Waring's problem, Amer. Math. Monthly 78 (1971), no. 1, 10-36.
[8] L. H. Gallardo, On the restricted Waring problem over $\mathbb{F}_{2^{n}}[t]$, Acta Arith. 42 (2000), no. 2, 109-113.
[9] , Every strict sum of cubes in $\mathbb{F}_{4}[t]$ is a strict sum of 6 cubes, Port. Math. 65 (2008), no. 2, 227-236.
[10] L. H. Gallardo and D. R. Heath-Brown, Every sum of cubes in $\mathbb{F}_{2}[t]$ is a strict sum of 6 cubes, Finite Fields Appl. 13 (2007), no. 4, 981-987.
[11] L. H. Gallardo and L. N. Vaserstein, The strict Waring problem for polynomials rings, J. Number Theory 128 (2008), no. 12, 2963-2972.
[12] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Oxford University Press, 4th. Ed., 1960.
[13] J.-M. De Konninck and A. Mercier, 1001 problems in classical number theory, Trans. from the French by J.-M. De Konninck, (English), Providence, RI: (AMS) xii, (2007).
[14] R. M. Kubota, Waring's problem for $\mathbb{F}_{q}[x]$, Dissertationes Math. (Rozprawy Mat.) 117 (1974), 60 pp.
[15] R. E. A. C. Paley, Theorems on polynomials in a Galois field, The Quarterly Journal of Mathematics. 4 (1933), 52-63.
[16] C. Small, Sums of powers in large finite fields, Proc. Amer. Math. Soc. 65 (1977), no. 1, 35-36.
[17] L. N. Vaserstein, Waring's problem for algebras over fields, J. Number Theory 26 (1987), no. 3, 286-298.
[18], Waring's problem for commutative rings, J. Number Theory 26 (1987), no. 3, 299-307.
[19] , Sums of cubes in polynomial rings, Math. Comput. 56 (1991), no. 193, 349-357.
[20] _ , Ramsey's theorem and Waring's problem for algebras over fields, The arithmetic of function fields (Columbus, OH, 1991), 435-441, Ohio State Univ. Math. Res. Inst. Publ., 2, de Gruyter, Berlin, 1992.
[21] Y.-R. Yu and T. Wooley, The unrestricted variant of Waring's problem in function fields, Funct. Approx. Comment. Math. 37 (2007), part 2, 285-291.
[22] W. A. Webb, Waring's problem in $G F[q, x]$, Acta Arith. 22 (1973), 207-220.
[23] T. Wooley, Large improvements in Waring's problem, Ann. of Math. (2) 135 (1992), no. 1, 131-164.

LATP-UMR CNRS 6632

Amu, Case Cour A
Avenue Escadrille Normandie-Niemen
F-13397 Marseille Cedex 20, France
E-mail address: mireille.car@univ-amu.fr

