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SUMS OF (pr + 1)-TH POWERS

IN THE POLYNOMIAL RING Fpm[T ]

Mireille Car

Abstract. Let p be an odd prime number and let F be a finite field
with pm elements. We study representations and strict representations of
polynomials M ∈ F [T ] by sums of (pr + 1)-th powers. A representation

M = Mk
1 + · · ·+Mk

s

of M ∈ F [T ] as a sum of k-th powers of polynomials is strict if k degMi <

k + degM .

1. Introduction

Let F be a finite field of characteristic p with pm elements and let k > 1
be an integer. The similarity between the ring Z of rational integers and the
polynomial ring F [T ] had led to investigations of an analogue of the Waring
problem for F [T ] (See [2], [6], [11], [14], [17], [19], [20], [21], [22] for general
exponent k or [4], [5], [8], [9], [10] for some particular exponents). Roughly
speaking, Waring’s problem over F [T ] is that of the representation of polyno-
mials M ∈ F [T ] as sums

(1.1) M =Mk
1 + · · ·+Mk

s

with M1, . . . ,Ms ∈ F [T ]. Some obstructions to that may occur which led to
considering Waring’s problem over the subring S(F, k) formed by the polyno-
mials of F [T ] which are sums of k-th powers. Two variants of Waring’s problem
over S(F, k) have been considered. The unrestricted Waring’s problem is the
problem of proving the existence of an integer w = w(pm, k), with the property
that whenever M ∈ S(F, k) and s ≥ w(pm, k), the equation (1.1) is solvable.
This problem is close to the so called easy Waring’s problem for Z ([17], [18],
[19], [20]). In order to have an analogue for the non easy Waring problem, the
degree conditions

(1.2) degMi ≤ n
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are required with n defined by the condition

(1.3) k(n− 1) < degM ≤ kn.

With such degree conditions, the representation (1.1) is strict in opposition
to representations without degree conditions. For the strict Waring’s problem,
analogues to the classical Waring’s numbers gN(k) and GN(k) have been defined
as follows. Let g(pm, k), respectively, G(pm, k), denote the least integer s, if
it exists, such that every polynomial M ∈ S(F, k), respectively, every polyno-
mial M ∈ S(F, k) of sufficiently large degree, may be written as a sum (1.1)
satisfying the degree conditions (1.2) and (1.3). Otherwise, g(pm, k), respec-
tively, G(pm, k) is equal to ∞. This notation is possible since these numbers
depend only on pm and k. Waring’s problem consists of determining or, at
least, bounding the numbers g(pm, k) and G(pm, k).

Gallardo’s method introduced in [8] and performed in [5] to deal with War-
ing’s problem for cubes was generalized in [2] and [11] where bounds for g(pm, k)
and G(pm, k) were established when pm and k satisfy some conditions. For in-
stance, Theorem 1.2 in [2] and Theorem 1.4 in [11] require that every a ∈ F is
a sum of k-th powers and pm > k. Theorem 1.3 in [2] gives a bound for the
numbers g(pm, k) in the case where p > k or in the case k = hpν − 1 < pm for
some positive integers ν and h ≤ p.

The case of the exponent k = pr + 1 is not covered by these theorems.
The object of this paper is the study of Waring’s problem in the case where
k = pr + 1 for odd p. It can be seen as a generalisation of [4] where sums of
biquadrates over a field of characteristic 3 were studied. The easier case p = 2
has been studied in [3].

Some notations and definitions are necessary before stating the main results
proved in this work.

The set S(F, k) and the numbers g(pm, k) and G(pm, k) are not sufficient
to describe every possible case. Proposition 4.5 in [2] and Proposition 3.7 in
[3] give examples of polynomials in S(F, k) which are not strict sums of k-th
powers. Thus, we introduce new parameters.

Let S×(F, k) denote the set of polynomials in F [T ] which are strict sums of
k-th powers. Let g×(pm, k), respectively G×(pm, k), denote the least integer
s, if it exists, such that every polynomial M ∈ S×(F, k) respectively, every
polynomial M ∈ S×(F, k) of sufficiently large degree, may be written as a
strict sum

M =Mk
1 + · · ·+Mk

s .

From now on, F is a finite field with pm elements. The main results proved
in this work are summarized in the following theorems.

Theorem 1.1. Let k = pr+1, where p is an odd prime number and r a positive

integer.
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(1) If m/ gcd(m, r) ≥ 3, then the set S(F, k) is equal to the whole ring F [T ]
and

S×(F, k) = A∞ ∪

(
k−3⋃

N=0

AN

)
,

where

A∞ = {A ∈ F [T ] | degA > k(k − 3)} , A0 = F,

and for N = 1, . . . , k − 3,

AN =

{
A ∈ F [T ] | A =

N∑

n=0

N∑

i=0

xn,iT
i+npr

}

with xn,i ∈ F .
(2) If m divides r,

S×(F, k) = S(F, k) =
{
A ∈ F [T ] | Apr

−A ≡ 0 (mod T p2r

− T )
}
.

(3) If m/ gcd(m, r) = 2,

S(F, k) =
{
A ∈ F [T ] | Apr

−A ≡ 0 (mod T p2r

− T )
}
,

and S×(F, k) is the set formed by the A ∈ S(F, k) such that, either

degA is not multiple of k, or degA is multiple of k and the leading

coefficient of A is in the subfield of F of order pgcd(m,r).

This theorem is a consequence of Corollary 3.3, Proposition 5.1, and Corol-
laries 5.4 and 5.6 below.

Theorem 1.2. Let k = pr+1, where p is an odd prime number and r a positive

integer.

(1) (a) If m/ gcd(m, r) ≥ 3, m/ gcd(m, r) 6= 4, and if pm is congruent to

1 modulo 4,

G(pm, k) = G×(pm, k) ≤ min(
log k

log (k/(k − 1))
+ 5, 2k + 3);

g×(pm, k) ≤ 5k − 4.

(b) If m/ gcd(m, r) ≥ 3, and if pm is congruent to 3 modulo 4,

G(pm, k) = G×(pm, k) ≤ min(
log k

log (k/(k − 1))
+ 6, 3k + 3);

g×(pm, k) ≤ 6k − 4.

(c) If m/ gcd(m, r) = 4,

G(pm, k) = G×(pm, k) ≤ min(
log k

log (k/(k − 1))
+ 6, 2k + 4);

g×(pm, k) ≤ 6k − 6.

(d) If m/ gcd(m, r) ≥ 3, then g(pm, k) = ∞.
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(2) (a) If m divides r and if pm is congruent to 1 modulo 4,

G(pm, k) = G×(pm, k) ≤ 2k;

g(pm, k) = g×(pm, k) ≤ 3k − 6.

(b) If m divides r and if pm is congruent to 3 modulo 4,

G(pm, k) = G×(pm, k) ≤ 3k;

g(pm, k) = g×(pm, k) ≤ 3k.

(3) If m/ gcd(m, r) = 2,

G(pm, k) = g(pm, k) = ∞,

G×(pm, k) ≤ g×(pm, k) ≤ 2k.

This theorem is a consequence of Corollaries 3.5, 5.4 and 5.6 below. It shows
that the analogy with the rational integers does not work completely since the
following bounds hold for large exponents k:

GN(k) ≤ k(log k + log(log k) +O(1));

see [23] and

2k + [(3/2)k]− 2 ≤ gN(k) ≤ 2k + [(3/2)k] + [(4/3)k]− 2

(see [7], [12, Chap. 21], [23]).
With the necessary adaptations, the proof follows the method used in [3]

where we dealt with the case of characteristic 2. We omit the proofs in [3].
Let v(pm, k) denote the least integer v, if it exists, such that T may be

written as a sum (a1T + b1)
k + · · ·+(avT + bv)

k with ai, bi ∈ F. Otherwise, let
v(pm, k) = ∞. If v(pm, k) is finite, every P ∈ F [T ] may be written as a sum

P = (a1P + b1)
k
+ · · ·+ (av(F,k)P + bv(F,k))

k

so that S(F, k) = F [T ] and F is a k-Waring field.
As in the case p = 2, it is possible to compute the exact value of v(pm, pr+1).

This improves a theorem of Paley [15].
The paper is organized as follows. In order to get the exact value of v(pm, k)

we have to prove that some algebraic equations have solutions in F . This is
done in Section 2. In Section 3, we compute the numbers v(pm, k). This yields
a characterization of the fields F for which the equality S(F, k) = F [T ] holds.
Some bounds for the Waring numbers G(pm, k) follow. In Section 4, we prove
some key identities and we classify strict sums of degree ≤ k(k− 2). In Section
5, we describe a descent process and we conclude the proof. We shall use two
types of numbering. Pairs (X.Y ) will be used to number formulae occurring
in definitions, propositions and theorems, single numbers (z) will be used for
formulae only used in the course of a proof.

If every a ∈ F is a sum of k-th powers, the field F is called a Waring field
for the exponent k or briefly, a k-Waring field. If F is a k-Waring field, let
ℓ(pm, k) denote the least integer ℓ such that every element of F is a sum of ℓ
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k-th powers. We shall denote by λ(pm, k) the least integer s such that −1 is a
sum of s k-th powers. We write ∆(pm, k) for gcd(pm − 1, k).

We fix an algebraic closure F of the field F . For a positive integer n, we
denote by Fpn the subfield of F with pn elements, so that F = Fpm . The proofs
will often use the following facts:

• the field F contains exactly ∆(pm, k) = gcd(pm − 1, k) = gcd(pm −
1, pr + 1) k-th roots of 1;

• a k-th power in F is a gcd(pm − 1, k)-th power.

We introduce the notations

(1.4) Q = pr = k − 1, q = pgcd(m,r),

(1.5) d = gcd(m, r),

so that

(1.6) q = pd.

If x is a real number, we denote by [x] its integral part and by ⌈x⌉ its ceiling,
that is the least integer n ≥ x.

2. Sums of k-th powers in the finite field F

Since a k-th power in F is a gcd(pm − 1, k)-th power, we begin this section
by computing ∆ = ∆(pm, k). We continue by a study of a sum of characters
which will be useful to compute numbers of solutions of some equations.

The following proposition completes Lemma 4 in [15]. It is a special case of
exercise 125 in De Koninck and Mercier’s book. See [13, exercise 125, p. 23,
solution p. 125].

Proposition 2.1. One has

(2.1) gcd(pm − 1, pr − 1) = pd − 1.

The greatest common divisor of pm−1 and pr+1 is an even number. Moreover,

gcd(pm − 1, pr + 1) 6= 2 if and only if m/d is even and, in that case,

(2.2) gcd(pm − 1, pr + 1) = pd + 1.

2.1. The systems E(u, v, a, b) and S(a, b, c)

Lemma 2.2. Let (u, v) ∈ F 2 be such that uv 6= 0 and uQ
2−1 6= vQ

2−1. For

every ordered pair (a, b) ∈ F 2, the system E(u, v, a, b) :

(2.3)

{
a = uQx+ vQy,
b = uxQ + vyQ,

admits a unique solution in F 2.

Proof. Immediate. �
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Lemma 2.3. Let (a, b, c) ∈ F 3. Then, the system S(a, b, c) :

(2.4)





a = x2 + y2 + z2,
b = xξ + yη + zζ,
c = ξ2 + η2 + ζ2,

has a solution (x, y, z, ξ, η, ζ) in F 6.

Proof. Serre’s theorem asserts that with the exceptions of polynomials of degree
3 and 4 in the case q = 3, every polynomial in F [T ] is a strict sum of 3 squares
([6, Theorem 1.14, p. 7]). Applied to P = aT 2+2bT + c, Serre’s theorem gives
the existence of (x, y, z, ξ, η, ζ) ∈ F 6 such that

aT 2 + 2bT + c = (xT + ξ)2 + (yT + η)2 + (zT + ζ)2,

so that (x, y, z, ξ, η, ζ) is a solution of S(a, b, c). �

When m/d is odd, gcd(2m− 1, k) = 2, and the set of k-th powers in F is the
set of squares, so that the numbers νi(a) of representations of a ∈ F as sums
of i k-th powers are well known (see e.g. [1]). We compute the numbers νi(a)
in the case where m/d is even. For that we introduce some character sums.

2.2. Sums of characters

In this subsection, we suppose that m/d is even, so that Fq2 ⊂ F . From
Proposition 2.1, the set of k-th powers in F , resp. in Fq2 is the set of (q+1)-th
powers in F , resp. in Fq2 . Let

(2.5). n = m/2d.

Let θ be a generator of the cyclic group F
×
q2 and let

(2.6) α = θ(q+1)/2.

Let tr: F 7→ Fp be the absolute trace on F and let ψ be the character of the
additive group of F defined by

(2.7) ψ(x) = exp(
2πitr(x)

p
).

Then ψ is not trivial. For t ∈ F let

(2.8) f(t) =
∑

x∈F

ψ(txq+1).

Let B denote the set of non-zero k-th powers in F or, equivalently, the set
of non-zero (q + 1)-th powers in F .

Proposition 2.4. (1) If u ∈ Fq2 , then u
q+1 ∈ Fq.

(2) For every u ∈ Fq, there is v ∈ Fq2 such that u = vq+1.

(3) One has

(2.9) f(0) = pm.

(4) Let t ∈ F×.
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(a) If t ∈ αB, then

(2.10) f(t) = f(α) = (−q)n+1.

(b) If t /∈ αB, then

(2.11) qf(t) + f(α) = 0.

Proof. (1) If u ∈ Fq2 , then (uq+1)q−1 = uq
2−1 = 1, so that uq+1 ∈ Fq.

(2) Since θ generates F×
q2 , the cyclic group F

×
q is generated by θq+1, so that

every u ∈ F×
q is a power of θq+1.

(3) Obvious.
(4) It is a generalization of [4, Proposition 2.2]. See the proof of [3, Propo-

sition 2.4(i)] and [3, Proposition 2.5] for the proof of (2.10); see the proof of [3,
Proposition 2.4(iii)] for the proof of (2.11). �

2.3. Sums of k-th powers in F

Let i be a positive integer. For a ∈ F , let νi(a) denote the number of
solutions (x1, . . . , xi) ∈ F i of the equation

(2.12) a = xk1 + · · ·+ xki .

Proposition 2.5. Suppose m/d odd.

• If q ≡ 1 (mod 4), then,

ν2(0) = 2pm − 1,

ν3(0) = p2m

and for a ∈ F×, one has

ν2(a) = pm − 1,

ν3(a) =

{
p2m + pm if a ∈ B,
p2m − pm if a /∈ B.

• If q ≡ 3 (mod 4), then,

ν2(0) = 1,

ν3(0) = p2m

and for a ∈ F×, one has

ν2(a) = pm + 1,

ν3(a) =

{
p2m − pm if a ∈ B,
p2m + pm if a /∈ B.

Proof. Observe that a ∈ F is a k-th power if and only if a is a square. Apply the
well-known results on sums of squares in a finite field, [1, exercise 5, pp. 175–
176]. �
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Proposition 2.6. Suppose m/d even. Then,

ν2(0) = (q + 1)pm − q,

ν3(0) = p2m + f(α)(q − 1)(pm − 1)

and for a ∈ F×, one has

ν1(a) =

{
q + 1 if a ∈ B,
0 if a /∈ B,

ν2(a) = pm − q + (q − 1)f(aα),

ν3(a) = p2m − pm + pmν1(a)− (q − 1)f(α) + (q − 1)f(α)f(aα).

Proof. Similar to that of Proposition 2.7 in [3]. �

Proposition 2.7. • F is a Waring field for the exponent k = pr + 1 if

and only if m
d 6= 2.

• If m
d 6= 2, then ℓ(pm, k) = 2.

Proof. From Proposition 2.1, if m/d is odd, then ∆(pm, k) = 2. From [2,
Proposition 3.1], F is a k-Waring field with ℓ(pm, k) = 2. Now, suppose m

d even.

Setm = 2nd. From Proposition 2.1, ∆(pm, k) = 1+pd. Since ∆(pm, k) > 1, we
have ℓ(2m, k) ≥ 2. We prove that, with the exception n = 1, F is a k-Waring
field with ℓ(pm, k) ≤ 2. Let a ∈ F be different from a k-th power. From
Proposition 2.6, then Proposition 2.4,

ν2(a) = pm − q + (q − 1)f(aα) ≥ pm − q − (q − 1)pm/2 = q2n − q − qn+1 + qn.

If n > 1, then ν2(a) > 0 and a is the sum of two k-th powers. Thus, if
a ∈ F , either a is a k-th power or a is a sum of two k-th powers. Hence,
ℓ(pm, k) = ℓ(F, k) ≤ 2 (Note that Small had already established this bound in
the case where m > 4r, [16]). �

Remark 2.8. We have λ(pm, k) = 1 if and only if pm is congruent to 1 modulo
4.

Proof. If λ(pm, k) = 1, then −1 is a k-th power in F , so that −1 is a square in
F . Now, we suppose that −1 is a square in F . Firstly, we suppose m/d odd.
From Proposition 2.1, the set of k-th powers in F is the set of squares in F , so
that −1 is a k-th power in F . Secondly, suppose m/d even. Then, Fq2 ⊂ F .
Since θ generates the cyclic group Fq2 , we have

−1 = θ(q
2−1)/2 = (θ(q−1)/2)q+1

with θ ∈ Fq2 ⊂ F . From Proposition 2.1, the set of k-th powers in F is the set
of (q + 1)-th powers in F . Therefore −1 is a k-th power in F . �
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Proposition 2.9. For a ∈ F , let N3(a) denote the number of (x, y, z) ∈ F 3

such that

(F(a))





xk + yk + zk = a, (e1)
xy 6= 0, (e2)

xQ
2−1 6= yQ

2−1. (e3)

• Suppose m/d even. Then,

N3(0) = p2m − pm(q3 + 1) + q3 + (q − 1)(pm − 1)f(α)

and for a ∈ F×, one has

N3(a)=

{
p2m + pm(q3 − 3q2 − 1) + 2q3 − (q − 1)(q2 − q + 1)f(α) if a ∈ B,

p2m − pm(2q2 − 2q + 1) + q3 − q2 + (q − 1)(q − 2)f(α) if a /∈ B,

where α is as in (2.6) and f as in (2.8).
• Suppose m/d odd. Then,

N3(0) = (pm − 1)(pm − q)

and for a ∈ F×,

N3(a) =

{
(pm − 2)(pm − q) if a ∈ B,
pm(pm − q) if a /∈ B.

Proof. The proof is a generalization of the proof of Proposition 2.6 in [4]. In
the case of [4], p = 3 and k = 4, so that the proof only needs to distinguish two
cases depending on the parity of m . In the present general setting we have
to distinguish different cases according to whether or not F contains Fq2 , and
according to whether or not −1 is a k-th power in F . �

Corollary 2.10. Let a ∈ F .

(1) If a 6= 0 and m/d ≥ 3, or if a = 0 and m/d ≥ 3 with m/d 6= 4, then
(F(a)) has solutions in F 3.

(2) If m/d ≤ 2, for any a ∈ F ,(F(a)) has no solutions in F 3.

(3) Suppose m = 4d. Then (F(0)) has no solutions in F 3. Let a ∈ F .
Then, there exists (x, y, z, u) ∈ F 4 such that

(G(a))





xk + yk + zk + uk = a, (e1)
xy 6= 0, (e2)

xQ
2−1 6= yQ

2−1. (e3)

Proof. If m/d ≤ 2, then F ⊂ Fq2 , so that (e3) is not satisfied in F . This proves
the second claim. We prove the other claims.

(A) Suppose m/d even, say m = 2nd with n > 1. From Proposition 2.9,

N3(0) = q4n − q2n(q3 + 1) + q3 + (q − 1)(q2n − 1)f(α).

By (2.10),

N3(0) = q4n − q2n(q3 + 1) + q3 + (q − 1)(q2n − 1)(−q)n+1.
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If n > 2, then N3(0) > 0, so that (F(0)) has a solution. If n = 2, then
N3(0) = 0, so that (F(0)) has no solutions. Let a ∈ B. From Propositions 2.9
and 2.4,

N3(a) ≥ p2m + pm(q3 − 3q2 − 1) + 2q3 − (q − 1)(q2 − q + 1)qpm/2

> p2m + pm(q3 − 3q2 − 1− q(q − 1)(q2 − q + 1))

= p2m − pm(q4 − 3q3 + 5q2 + q − 1)

> q4n − q2n+4 ≥ 0.

Thus, (F(a)) has a solution. Let a ∈ F× \B. From Propositions 2.4 and 2.9,

N3(a) ≥ p2m − pm(2q2 − 2q + 1) + q3 − q2 − (q − 1)(q − 2)qpm/2

> p2m − pm(q3 − q2 + 1)

> p2m − pmq3 = q4n − q2n+3 > 0.

If n ≥ 2, then N3(a) > 0. Thus, (F(a)) has a solution. Suppose n = 2. If
a 6= 0, for every (x, y, z) solution of (F(a)), (x, y, z, 0) is a solution of (G(a)); if
a = 0, for every (x, y, z) solution of (F(−1)), (x, y, z, 1) is a solution of (G(a)).

(B) Suppose m/d odd. From Proposition 2.9, N3(a) > 0 ⇔ m > d. Thus
(F(a)) has a solution if and only if m/d > 1. �

3. The numbers v(pm, k)

Proposition 3.1. We have v(pm, k) ≥ 3. Moreover, if m divides 2r, then

v(2m, k) = ∞.

Proof. Similar to the proof of Proposition 3.1 in [3]. �

Proposition 3.2. (1) If m/d /∈ {1, 2, 4}, then v(pm, k) = 3.
(2) If m/d = 4, then v(pm, k) = 4.

Proof. If m/d /∈ {1, 2, 4}, Corollary 2.10 implies the existence of (a1, a2, a3) ∈
F 3 solution of (F(0)). If m/d = 4, Corollary 2.10 implies the existence of
(a1, a2, a3, a4) ∈ F 4 solution of (G(0)). Let (b1, b2) ∈ F 2 be a solution of
(E(a1, a2, 0, 1)), with (E) defined by (2.3). As for the proof of Proposition 3.2
in [3], we get:

(1) If m/d /∈ {1, 2, 4}, then

(a1T + b1)
k + (a2T + b2)

k + (a3T )
k = T + (b1)

k + (b2)
k,

so that T is a sum of three k-th powers of linear polynomials.
(2) If m/d = 4, then

(a1T + b1)
k + (a2T + b2)

k + (a3T )
k + (a4T )

k = T + (b1)
k + (b2)

k,

so that T is a sum of four k-th powers of linear polynomials.
In the first case, Proposition 3.1 gives v(pm, k) = 3. In the second case, we

have v(pm, k) ≤ 4. We end the proof by proving that v(pm, k) > 3 as we did
in the proof of Proposition 3.2 in [3]. �
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Corollary 3.3. We have S(F, k) = F [T ] if and only if m/d ≥ 3. More

precisely, if either, m/d is odd and m 6= d, or, if m/d is even and m/d > 4, then
every A ∈ F [T ] is sum of three k-th powers; if m = 4d, then every A ∈ F [T ] is
a sum of four k-th powers.

We are ready to present our first result.

Proposition 3.4. Assume that m does not divide 2r. Let

(3.1) γ(m) =

{
2 if pm ≡ 1 (mod 4),
3 if pm ≡ 3 (mod 4).

(1) Let s ≥ [ log k
log(k/(k−1)) ]. Then, every P ∈ F [T ] of degree ≥ δ(s, k) =

k⌈
k2−2k−k2(1− 1

k
)s+1

1−k(1− 1

k
)s+1

⌉ − k + 1 is the strict sum of s + γ(m) + v(pm, k)

k-th powers.

Moreover, if s ≥ log k
log(k/(k−1)) , then δ(s, k) ≤ k4 − 3k3+2k2− 2k+1.

(2) Let s ≥ log(k(k−1)/2)
log(k/(k−1)) . Then, every P ∈ F [T ] of degree ≥ k3 − 3k+ 1 is

a strict sum of s+ γ(m) + v(pm, k) k-th powers.

(3) Let s ≥ 3 log k
log(k/(k−1)) − 1. Then, every P ∈ F [T ] such that k3 − 2k2 −

k + 1 ≤ degP ≤ k3 − 3k is the strict sum of s+ γ(m) + v(pm, k) k-th
powers.

Proof. From Propositions 2.7 and 3.2, F is a k-Waring field and v(pm, k) is
finite. Let w(m, k) = v(pm, k) + max(ℓ(pm, k), 1 + λ(pm, k)). From [2, Propo-
sition 5.3], we have the following facts:

(1) Let s ≥ [ log k
log(k/(k−1)) ]. Then every P ∈ F [T ] of degree ≥ δ(s, k) =

k⌈
k2−2k−k2(1− 1

k
)s+1

1−k(1− 1

k
)s+1

⌉− k+1 is a strict sum of s+w(m, k)) k-th powers. More-

over, if s ≥ log k
log(k/(k−1)) , then δ(s, k) ≤ k4 − 3k3 + 2k2 − 2k + 1.

(2) Let s ≥ log(k(k−1)/2)
log(k/(k−1)) . Then every P ∈ F [T ] of degree ≥ k3 − 3k + 1 is

the strict sum of s+ w(m, k) k-th powers.

(3) Let s ≥ 3 log k
log(k/(k−1)) − 1. Then every P ∈ F [T ] such that

k3 − 2k2 − k + 1 ≤ degP ≤ k3 − 3k

is the strict sum of s+ w(m, k) k-th powers.
From Proposition 2.7, ℓ(2m, k) = 2. From Remark 2.8, λ(pm, k) = 1 or 2

according as pm ≡ 1 or 3 (mod 4), so that, with (3.1), w(m, k) = v(pm, k) +
γ(m). �

Corollary 3.5. (1) Suppose pm ≡ 1 (mod 4).
(a) If either, m/d is odd and m /∈ {1, r}, or, if m/d is even and m/d > 4,

then G(pm, k) ≤ [ log k
log(k/(k−1)) ] + 5 ≤ k log k + 5.

(b) If m/d = 4, then G(pm, k) ≤ [ log k
log(k/(k−1)) ] + 6 ≤ k log k + 6.

(2) Suppose pm ≡ 3 (mod 4). If m /∈ {1, r}, then G(pm, k) ≤ [ log k
log(k/(k−1)) ]+

6 ≤ k log k + 6.
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Proof. Apply the first of part of the previous proposition. �

The following proposition gives an example of an infinite sequence of poly-
nomials which are sums of k-th powers and not strict sums of k-th powers.

Proposition 3.6. Suppose m = 2d. Let a ∈ F be such that a /∈ Fq. Let b ∈ F
be such that bQ = a. For n ≥ Q, let

Bn = aT nk + bT nk+1−Q2

.

Then Bn is a sum of three k-th powers and is not a strict sum of k-th powers.

Proof. Similar to the proof of Proposition 3.7 in [3]. �

Corollary 3.7. If m/d = 2, then G(pm, k) = ∞.

4. Strict sums of degree ≤ k(k − 2)

The two following propositions form the key of the proof.

Proposition 4.1. For i ∈ {0, . . . , Q− 1} and X ∈ F [T ] let

(4.1) Li(X) = XQT i +XTQi.

Then, the map X 7→ Li(X) is additive and the following identities are satisfied:

(4.2) Li(X) = (X +
1

2
T i)Q+1 − (X −

1

2
T i)Q+1.

For every b ∈ F ,

(4.3) Li(X + bT i) = Li(X) + (bQ + b)T i(Q+1).

Moreover, if F ⊂ FQ2 , then, for every c ∈ F×,

(4.4) Li(X) + cQ+1T (Q+1)i =

(
1

cQ
X + cT i

)Q+1

−

(
1

cQ
X

)Q+1

.

Proof. The proof of (4.2) and (4.3) is immediate. We get (4.4) from observing

that cQ
2

= c. �

Proposition 4.2. Suppose F = Fq.

(1) For every (a, b, c) ∈ F 3, the polynomial c+ bT + bTQ+ aTQ+1 is a strict

sum of three k-th powers.

(2) Let c ∈ F . There exists (α1, α2, α3, β1, β2, β3) ∈ F 6 such that for i ∈
{0, . . . , Q− 1} and X ∈ F [T ],

(4.5) Li(X) + cT (Q+1)i = (α1X + β1T
i)k + (α2X + β2T

i)k + (α3X + β3T
i)k.

Proof. (1) Let (a, b, c) ∈ F 3 and let

A = a+ bT + bTQ + cTQ+1.
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From Lemma 2.3, there is (x, y, z, ξ, η, ζ) ∈ F 6 such that

(†)





a = x2 + y2 + z2,
b = xξ + yη + zζ,
c = ξ2 + η2 + ζ2.

Since F ⊂ FQ, for every u ∈ F , we have uQ = u, so that,




a = xQ+1 + yQ+1 + zQ+1,
b = xQξ + yQη + zQζ,
c = ξQ+1 + ηQ+1 + ζQ+1.

Hence,

a+ bT + bTQ + cTQ+1 = (x+ ξT )Q+1 + (y + ηT )Q+1 + (z + ζT )Q+1,

so that A is a strict sum of three k-th powers.
(2) Apply (†) with a = 0, b = 1. There exists (α1, α2, α3, β1, β2, β3) ∈ F 6

such that 



αk
1 + αk

2 + αk
3 = 0,

αQ
1 β1 + αQ

2 β2 + αQ
3 β3 = α1β

Q
1 + α2β

Q
2 + α3β

Q
3 = 1,

βk
1 + βk

2 + βk
3 = c.

Thus,

(α1X+β1T
i)k +(α2X+β2T

i)k +(α3X+β3T
i)k = cT (Q+1)i+XQT i+XTQi.

�

Proposition 4.3. Suppose that m/d ≥ 3.

• Let 0 < N < k − 2 and let

A =

kN∑

n=0

anT
n

be a polynomial of F [T ] such that

k(N − 1) < degA ≤ kN.

Then, A is a strict sum of k-th powers if and only if an = 0 for each

n ∈
N−1⋃
i=0

[iQ + N + 1, (i + 1)Q − 1]. Thus, S(F, k) 6= S×(F, k) and

g(pm, k) = ∞.
• Let A ∈ F [T ] be such that

k(k − 3) < degA ≤ k(k − 2).

Then, A is a strict sum of k-th powers.

• Let A ∈ F [T ] of degree ≤ k(k−2) be a strict sum of k-th powers. Then,

A is a strict sum of v(pm, k)⌈degA
k ⌉+ 2 k-th powers of polynomials of

degree ≤ k − 2.



1152 MIREILLE CAR

• Let A ∈ F [T ] of degree ≤ k(k − 2). Then,

A =

s∑

i=1

(Xi)
k

with s = v(2m, k)(k − 2) + 2 and degXi ≤ k − 2 for i = 1, . . . , s.

Proof. The proof is similar to that of Proposition 4.3 in [3]. It makes use of
Lemma 2.2 and Corollary 2.10 as the proof of Proposition 4.3 in [3] makes use
of Lemma 2.2 and Corollary 2.10 in [3]. �

Lemma 4.4. Suppose F ⊂ FQ2 . Let A ∈ F [T ] be a sum of k-th powers. Then

TQ2

− T divides AQ −A.

Proof. As for Lemma 4.4 in [3]. �

Proposition 4.5. Suppose F ⊂ FQ2 . Let

A =

Q2−1∑

n=0

anT
n

be a polynomial of F [T ] with degA < Q2 and such that TQ2

−T divides AQ−A.

• For every n = Qj + i with 0 ≤ j < Q, 0 ≤ i < Q, one has

an = (an̄)
Q,

where n̄ = Qi+ j.
• For every n = kj with 0 ≤ j ≤ Q− 1, an ∈ F ∩ FQ.

• If degA ≤ Q+ 1, then A is a strict sum of three k-th powers.

• (A) If F ⊂ FQ and Q + 1 < degA < Q2, then A is a strict sum of

3k − 6 k-th powers.

(B) If F 6⊂ FQ and Q+1 < degA < Q2, then A is a strict sum of 2k−3
k-th powers (If, in addition, k divides degA, then adegA ∈ Fq).

Proof. Making use of Lemma 4.4, the proof of the first part is similar to that
of Proposition 4.5-(I) in [3]. Let n = kj with 0 ≤ j ≤ Q − 1. Then n̄ = n, so
that an ∈ FQ. Let 0 ≤ i, j < Q and let n = Qj + i ≤ Q2 − 2 be non divisible
by Q+ 1. Then

anT
n + an̄T

n̄ = Li(aQi+jT
j) = Lj(aQj+iT

i),

so that,

(1)

A =

Q−1∑

i=0

a(Q+1)iT
(Q+1)i +

Q−2∑

i=0

Q−1∑

j=i+1

Li(aQi+jT
j)

=

Q−1∑

i=0

a(Q+1)iT
(Q+1)i +

Q−1∑

j=1

j−1∑

i=0

Lj(aQj+iT
i).
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(A) Suppose F ⊂ FQ, that is F = Fq. Firstly, we suppose degA ≤ Q + 1.
Then,

A = a+ bT + bTQ + cTQ+1

with a, b, c ∈ F . From Proposition 4.2, A is a strict sum of three k-th powers.
This proves the second part.

Now, we suppose Q+ 1 < degA ≤ Q2 − 1. By (1),

A = a0 + L1(aQ) + aQ+1T
Q+1 +

Q−1∑

j=2

(a(Q+1)jT
(Q+1)j + Lj(Bj))

with

(2) Bj =

j−1∑

i=0

aQj+iT
i.

From Proposition 4.2, for every j = 2, . . . , Q − 1, there exist (αj,1, αj,2, αj,3,
βj,1, βj,2, βj,3) ∈ F 6 such that

(3) a(Q+1)jT
(Q+1)j + Lj(Bj) =

3∑

ν=1

(αj,νBj + βj,ν)
k.

Thus, B = A− (a0 + L1(aQ) + aQ+1T
Q+1) is a sum of 3(Q − 2) k-th powers.

From Lemma 4.4, BQ − B is divisible by TQ2

− T , so that, (a0 + L1(aQ) +

aQ+1T
Q+1)Q − (a0 + L1(aQ) + aQ+1T

Q+1) is divisible by TQ2

− T . Since
deg(a0 + L1(aQ) + aQ+1T

Q+1) ≤ Q + 1, a0 + L1(aQ) + aQ+1T
Q+1 is a strict

sum of three k-th powers. Thus, by (3), A is a sum of 3+3(Q−2) k-th powers.
We consider the degrees. Suppose that

(4) degA = (Q + 1)N − ρ.

with

(5) 0 ≤ ρ ≤ Q.

Observe that

(6) N < Q.

Let j ∈ {2, . . . , Q− 1} be such that j > N . Then, (Q+1)j > (Q+1)N − ρ, so
that a(Q+1)j = 0. We have Qj + i ≥ (Q + 1)N +Q − N + i > (Q + 1)N − ρ,
so that aQj+i = 0. Hence, Bj = 0. Thus, the (αj,νBj + βj,ν) occurring in (3)
are zero polynomials. If 2 ≤ j ≤ N , then by (2), degBj ≤ N . Thus, the sum
(3) is a strict one.

(B) Suppose F 6⊂ FQ. Since F ⊂ FQ2 , we have F = Fq2 . Thus, m = 2d
and r/d is odd. For every j = 0, . . . , Q − 1, a(Q+1)j ∈ F ∩ FQ = Fq. Thus, if
k = Q + 1 divides degA, then adegA ∈ Fq. The trace map x 7→ xq + x from
F = Fq2 to Fq is onto. For every j = 0, . . . , Q− 1, there is bj ∈ F such that

a(Q+1)j = bqj + bj .
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For every y ∈ Fq2 , we have yq
2

= y, so that, by induction, for every positive

integer s, we have yq
2s

= y and yq
2s+1

= yq. Since Q = qr/d with r/d odd, for
every j = 0, . . . , Q− 1, we have

a(Q+1)j = bQj + bj .

Moreover, from Proposition 2.4, each x ∈ Fq is a (q+1)-th power, so that there
is cj ∈ F such that a(Q+1)j = (cj)

k = (cj)
Q+1.

Suppose degA ≤ Q+ 1. Then

A = b0 + bQ0 + L0(a1T ) + (c1T )
Q+1.

By (4.3),

A = L0(a1T + b0) + (c1T )
Q+1,

then by (4.2),

(7) A = (a1T + b0 +
1

2
)Q+1 − (a1T + b0 −

1

2
)Q+1 + (c1T )

Q+1.

Suppose degA > Q+ 1. Then,

A = cQ+1
0 +

Q−1∑

j=1

((
bQj + bj

)
T j(Q+1) +

j−1∑

i=0

Lj(aQj+iT
i)

)

= cQ+1
0 +

Q−1∑

j=1

((
bQj + bj

)
T j(Q+1) + Lj(Bj)

)
,

with Bj defined by (2). By (4.3),

A = cQ+1
0 +

Q−1∑

j=1

Lj

(
Bj + bjT

j
)
.

Then, by (4.2),

(8) A = ck0 +

Q−1∑

j=1

(
(Bj + bjT

j +
1

2
T j)k − (Bj + bjT

j −
1

2
T j)k

)
.

From Remark 2.8, −1 is a k-th power, so that (7) is a sum of three k-th powers
and (8) is a sum of (1 + 2(Q− 1)) k-th powers. We observe that (7) is a strict
sum and we finish the proof, proving as above that (8) is a strict sum. �

5. The descent process

In this section, we use the descent process already used in [3] and [4].

Proposition 5.1. Suppose F ⊂ FQ2 . Then S(F, k) is the subset of F [T ]

formed by the polynomials A such that TQ2

− T divides AQ −A.

Proof. The proof is similar to those of Proposition 5.1 and Corollary 5.2 in
[3]. �
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Lemma 5.2. Let n be a positive integer and let H ∈ F [T ] be such that

(5.1) k(n− 1) < degH ≤ kn.

In addition, in the case when m = 2d and degH = kn, we suppose that the

leading coefficient of H is a k-th power. Then, we have

(5.2) H =

1+λ∑

i=1

Bk
i +

Q−1∑

i=0

Li(Yi) +R,

with λ = λ(pm, k) and where B1, . . . , Bλ+1, Y0, . . . , YQ−1, R ∈ F [T ] with

(5.3) degB1, . . . , degBλ+1 ≤ n,

(5.4) deg Y0, . . . , deg YQ−1 < n,

(5.5) degR < Q2,

(5.6) R =

Q−1∑

i=0

i∑

j=0

xQj+iT
Qj+i,

with xQj+i ∈ F for all i and j. Moreover, if λ(pm, k) = 2 and degH = kn, or
if m = 2d and degH = kn, then B1 = 0.

Proof. (I) Suppose m 6= 2d. From Proposition 2.7, F is a k-Waring field with
ℓ(pm, k) = 2, so that max(ℓ(pm, k) − 1, λ(pm, k)) = λ(pm, k) = λ. From [2,
Lemma 5.1], there exist B1, . . . , Bλ, P ∈ F [T ] such that

(1) H = Bk
1 + · · ·+Bk

λ + P,

with

degB1, . . . , degBλ ≤ n, degP = kn,

the leading coefficient of P being a k-th power. Observe that in the case when
degH = kn, the leading coefficient of H is a sum of two k-th powers, so that,
when λ = 2 and degH = kn, in (1), we can take B1 = 0.

(II) Suppose m = 2d. From Remark 2.8, −1 is a k-th power in Fq2 = F , say

−1 = bk. Thus λ = 1. If degH < kn, then

H = −T kn + P,

with P monic of degree kn, so that (1) is true with λ = 1 and B1 = bT n. If
degH = kn, the hypothesis insures that (1) is true with B1 = 0.

Ending the proof as for Lemma 5.3 in [3], we get the identity (5.2) with
degree conditions (5.3)-(5.5). �

We are now ready to present our second result.

Proposition 5.3. Suppose that m/d ≥ 3. Then:

• Every polynomial H ∈ F [T ] with degree ≥ k3 − 2k2− k+1 is the strict

sum of k(λ(pm, k) + 1) + v(pm, k) k-th powers.
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• Every polynomial H ∈ F [T ] with degree ≥ k2 − 3k + 1 is the strict

sum of (k− 2)v(pm, k) + k(λ(pm, k) + 1) + 2 k-th powers. Moreover, if

H ∈ F [T ] is such that k2 − 3k + 1 ≤ degH ≤ k2 − 2k, then H is the

strict sum of (k − 2)v(pm, k) + 2 k-th powers.

Proof. The last claim is given by the third part of Proposition 4.3. We prove
the other ones. Set λ = λ(pm, k). Let H ∈ F [T ] and let n be the integer such
that

(1) k(n− 1) < degH ≤ kn.

From Lemma 5.2,

(2) H =

1+λ∑

i=1

Bk
i +

Q−1∑

i=0

Li(Yi) +R,

where B1, . . . , B1+λ, Y0, . . . , YQ−1, R ∈ F [T ] with

(3) degB1, . . . , degB1+λ ≤ n,

(4) deg Y0, . . . , deg YQ−1 < n,

(5) degR < Q2.

By (4.2),

Li(Yi) = (Yi +
1

2
T i)k − (Yi −

1

2
T i)k.

Since −1 is a sum of λ k-th powers, for each index i = 0, . . . , Q − 1, there is
Zi,1, . . . , Zi,1+λ ∈ F [T ], such that

(6) Li(Yi) = (Zi,1)
k + (Zi,2)

k + · · ·+ (Zi,1+λ)
k,

and such that

(7) degZi,j ≤ max(i, n− 1).

Set v = v(pm, k). Then, there exist a1, b1, . . . , av, bv in F such that

(8) R = (a1R+ b1)
k + · · ·+ (avR+ bv)

k.

By (2), (6) and (8),

H =

1+λ∑

i=1

Bk
i +

Q−1∑

i=0

(
(Zi,1)

k + · · ·+ (Zi,1+λ)
k
)

+(a1R+ b1)
k + · · ·+ (avR+ bv)

k,

so that H is a sum of ((λ + 1)(Q + 1) + v) k-th powers of polynomials. By
(3), (4), (5), (7) and (8), these polynomials have their degrees bounded by
max(n,Q2 − 1). In view of (1), if n ≥ Q2 − 1, the above sum is a strict one.
This proves the first part.
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We have degR < Q2. From the fourth part of Proposition 4.3, R is a sum
of

s = (k − 2)v(pm, k) + 2

k-th powers of polynomials of degree ≤ Q−1. Thus by (2) and (6), H is a sum
of

k(λ+ 1) + s = (k − 2)v(pm, k) + k(λ+ 1) + 2

k-th powers of polynomials of degree ≤ max(n,Q − 1). In view of (1), if
n ≥ Q− 1, the sum is a strict representation. This proves the second part. �

Corollary 5.4. Suppose that m/d ≥ 3. Then,

S×(pm, k) = A∞ ∪

(
k−3⋃

N=0

AN

)
,

where

A∞ = {A ∈ F [T ] | degA > k(k − 3)} ,

A0 = F,

and for N = 1, . . . , k − 3,

AN =

{
A ∈ F [T ] | A =

N∑

n=0

N∑

i=0

xn,iT
i+nQ

}

with xn,i ∈ F. Moreover,

(1) if pm is congruent to 1 modulo 4 and m/d 6= 4,

G(pm, k) = G×(pm, k) ≤ 2k + 3;

(2) if pm is congruent to 3 modulo 4,

G(pm, k) = G×(pm, k) ≤ 3k + 3;

(3) if m/d = 4,

G(pm, k) = G×(pm, k) ≤ 2k + 4;

(4) if pm is congruent to 1 modulo 4 and m/d 6= 4,

g(pm, k) = ∞, g×(pm, k) ≤ 5k − 4;

(5) if pm is congruent to 3 modulo 4,

g(pm, k) = ∞, g×(pm, k) ≤ 6k − 4;

(6) if m/d = 4,

g(pm, k) = ∞, g×(pm, k) ≤ 6k − 6.
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Proof. The first assertion is given by Propositions 4.3 and 5.3. From Corollary
3.3, S×(pm, k) 6= S(pm, k), so that g(pm, k) = ∞. The bounds for G(pm, k)
are obtained by noting that from Proposition 2.7, λ(pm, k) ∈ {1, 2} and from
Remark 2.8, λ(pm, k) = 1 when pm is congruent to 1 modulo 4. We deduce
from Propositions 4.3 and 5.3 that

g×(pm, k) ≤ (k − 2)v(pm, k) + k(λ(pm, k) + 1) + 2.

Bounds for g×(pm, k) in parts 4 − 6 are given by Propositions 3.4, 4.3 and
5.3. �

Remark 5.5. If k ≥ 20, or if k = 18, 14, for all m, the bounds for the numbers
G(pm, k) given by this corollary are better than those given by Corollary 3.5; if
k = 4, 6, the old bounds are better in all cases. If k = 12, 10, 8, the new bounds
are better when m/d is even.

Proposition 5.6. Suppose m/d ≤ 2.

(A) (a) If m = d and if pm is congruent to 1 modulo 4, every H ∈ S(F, k)
with degree ≥ k2 − 3k + 1 is a strict sum of 2k k-th powers.

(b) If m = d and if pm is congruent to 3 modulo 4, every H ∈ S(F, k)
with degree multiple of k is a strict sum of 3k − 1 k-th powers;
every H ∈ S(F, k) with degree non multiple of k is a strict sum of

3k k-th powers.

(B) If m = 2d, every H ∈ S(F, k) with degree multiple of k and whose

leading coefficient is a k-th power in the field F is a strict sum of

2k − 1 k-th powers; every H ∈ S(F, k) of degree non multiple of k is a

strict sum of 2k k-th powers.

Proof. Let H ∈ S(F, k) be such that

(1) k(n− 1) < degH ≤ kn.

In addition, in the case when m = 2d and degH = kn, we suppose that the
leading coefficient of H is a k-th power.

We have

(2) H =

1+λ∑

i=1

Bk
i +

Q−1∑

i=0

Li(Yi) +R,

where B1, . . . , B1+λ, Y0, . . . , YQ−1, R ∈ F [T ] are as in Lemma 5.2, so that

(3) R =

Q−1∑

i=0

i∑

j=0

xQj+iT
Qj+i.

In view of (4.2), H − R is a sum of k-th powers. Since H ∈ S(F, k), R
is also a sum of k-th powers. From (3), Lemma 4.4 and Proposition 4.5, if
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n ∈ {0, . . . , Q2−1} is not a multiple of Q+1, then xn = 0; if n ∈ {0, . . . , Q2−1}
is a multiple of Q+ 1 = k, then xn ∈ F ∩ FQ = Fq. Thus,

(4) H =

1+λ∑

i=1

Bk
i +

Q−1∑

i=0

(
Li(Yi) + xkiT

ki
)
,

with

xki ∈ Fq for 0 ≤ i ≤ Q− 1.

(A) Suppose that m divides r so that F = Fq. From (4.2) or (4.4), every
Li(Yi)+xkiT

ki in (4) is a sum of 1+λ k-th powers. By (2), (5.3), (5.4), (3) and
(4), H is a sum of (θ(q,H) + (1 + λ)Q) k-th powers of polynomials of degree
≤ µ = max(n,Q− 1) with

θ(q,H) =





2 if degH = kn,
2 if degH < kn and q ≡ 1 (mod 4),
3 if degH < kn and q ≡ 3 (mod 4).

In view of (1), if n ≥ Q − 1, the sum is a strict one. Suppose pm ≡
3 (mod 4). If n < Q− 1, then degH < Q2 − 1. From Proposition 4.5, H is a
strict sum of 3k − 6 ≤ (θ(q,H) + (1 + λ)Q) k-th powers.

(B) Suppose m = 2d. In this case, −1 is a k-th power in F , Fq2 ⊂ F and
xki ∈ Fq for each i = 0, . . . , Q − 1, so that, for each i = 0, . . . , Q − 1, there
exists yi ∈ Fq2 such that xki = yki . From (4.2) or (4.4), Li(Yi) + (xki)T

ki =

Li(Yi) + (yki)
Q+1T ki is a sum of two k-th powers. Moreover, if degH = kn,

then, in (4) we have B1 = 0, so that H is a sum of (η(H) + 2Q) k-th powers,
where

η(H) =

{
1 if degH = kn,
2 if degH < kn.

As above, if n ≥ Q − 1, the sum is strict. In the case when n < Q − 1 we
conclude with Proposition 4.5. �

Corollary 5.7. • Suppose that m divides r. Then,

S×(pm, k) = S(pm, k) =
{
A ∈ F [T ] | AQ −A ≡ 0 (mod TQ2

− T )
}
.

Moreover,

(1) if pm is congruent to 1 modulo 4,

G(pm, k) = G×(pm, k) ≤ 2k,

g(pm, k) = g×(pm, k) ≤ 3k − 6;

(2) if pm is congruent to 3 modulo 4,

G(pm, k) = G×(pm, k) ≤ 3k,

g(pm, k) = g×(pm, k) ≤ 3k.
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• Suppose that m/d = 2. Then,

S(pm, k) =
{
A ∈ F [T ] | AQ −A ≡ 0 (mod TQ2

− T )
}
,

S×(pm, k) is the set of A ∈ S(pm, k) such that either degA is not a

multiple of k, or degA is a multiple of k and the leading coefficient of

A is in the field Fq. Moreover, we have

G(pm, k) = g(pm, k) = ∞, G×(pm, k) ≤ g×(pm, k) ≤ 2k.

Proof. With Propositions 4.3, 4.5, Propositions 5.1, 5.3 and 5.5. In the case
where m divides r and pm is congruent to 1 modulo 4, we get

g(pm, k) = g×(pm, k) ≤ max(2k, 3k − 6).

Observe that max(2k, 3k − 6) = 3k − 6 since 2k > 3k − 6 implies k = 4, p =
3,m = 1, a contradiction. �

Remark 5.8. (1) In the case k = 4, we have p = 3, r = d = 1. Corollaries
3.5 and 5.4 give G(3m, 4) = G×(3m, 4) ≤ 9 for even m > 4 and G(3m, 4) =
G×(3m, 4) ≤ 10 for odd m > 1 or for m = 4. These bounds were proved in [4].
It also gives g×(3m, 4) ≤ 16 for even m > 4, g×(3m, 4) ≤ 20 for odd m > 1 and
g×(81, 4) ≤ 18. In the case of even m, this improves the bounds obtained in
[4].

(2) In the case k = 4, Corollary 5.6 gives the following bounds:

G(3, 4) = G×(3, 4) ≤ 12, g(3, 4) = g×(3, 4) ≤ 12;

G(9, 4) = ∞, G×(9, 4) ≤ 8, g(9, 4) ≤ ∞, g×(9, 4) ≤ 8;

which are the bounds given in [4].
(3) For k = pr + 1 tending to ∞, we have G×(pm, k) << k as well as

g×(pm, k) << k unlike to the classical Waring numbers GN(k) and gN(k).
Indeed, from [7], gN(k) >> 2k when from [23], GN(k) << k log k.

Acknowledgements. I thank an unknown referee for useful remarks, specially
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