• Title/Summary/Keyword: Prime(semiprime) *-ring

Search Result 47, Processing Time 0.017 seconds

JORDAN DERIVATIONS ON PRIME RINGS AND THEIR APPLICATIONS IN BANACH ALGEBRAS, II

  • Kim, Byung-Do
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.27 no.1
    • /
    • pp.65-87
    • /
    • 2014
  • The purpose of this paper is to prove that the noncommutative version of the Singer-Wermer Conjecture is affirmative under certain conditions. Let A be a noncommutative Banach algebra. We show that if there exists a continuous linear Jordan derivation D : A ${\rightarrow}$ A such that [D(x), x]$D(x)^3{\in}$ rad(A) for all $x{\in}A$, then D(A) ${\subseteq}$ rad(A).

JORDAN DERIVATIONS ON PRIME RINGS AND THEIR APPLICATIONS IN BANACH ALGEBRAS, I

  • Kim, Byung-Do
    • Communications of the Korean Mathematical Society
    • /
    • v.28 no.3
    • /
    • pp.535-558
    • /
    • 2013
  • The purpose of this paper is to prove that the noncommutative version of the Singer-Wermer Conjecture is affirmative under certain conditions. Let A be a noncommutative Banach algebra. Suppose there exists a continuous linear Jordan derivation $D:A{\rightarrow}A$ such that $D(x)^3[D(x),x]{\in}rad(A)$ for all $x{\in}A$. In this case, we show that $D(A){\subseteq}rad(A)$.

Nil-COHERENT RINGS

  • Xiang, Yueming;Ouyang, Lunqun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.2
    • /
    • pp.579-594
    • /
    • 2014
  • Let R be a ring and $Nil_*$(R) be the prime radical of R. In this paper, we say that a ring R is left $Nil_*$-coherent if $Nil_*$(R) is coherent as a left R-module. The concept is introduced as the generalization of left J-coherent rings and semiprime rings. Some properties of $Nil_*$-coherent rings are also studied in terms of N-injective modules and N-flat modules.

A GENERALIZED IDEAL BASED-ZERO DIVISOR GRAPHS OF NEAR-RINGS

  • Dheena, Patchirajulu;Elavarasan, Balasubramanian
    • Communications of the Korean Mathematical Society
    • /
    • v.24 no.2
    • /
    • pp.161-169
    • /
    • 2009
  • In this paper, we introduce the generalized ideal-based zero-divisor graph structure of near-ring N, denoted by $\widehat{{\Gamma}_I(N)}$. It is shown that if I is a completely reflexive ideal of N, then every two vertices in $\widehat{{\Gamma}_I(N)}$ are connected by a path of length at most 3, and if $\widehat{{\Gamma}_I(N)}$ contains a cycle, then the core K of $\widehat{{\Gamma}_I(N)}$ is a union of triangles and rectangles. We have shown that if $\widehat{{\Gamma}_I(N)}$ is a bipartite graph for a completely semiprime ideal I of N, then N has two prime ideals whose intersection is I.

Derivations on Semiprime Rings and Banach Algebras, I

  • Kim, Byung-Do;Lee, Yang-Hi
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.7 no.1
    • /
    • pp.165-182
    • /
    • 1994
  • The aim of this paper is to give the partial answer of Vukman's conjecture [2]. From the partial answer we also generalize a classical result of Posner. We prove the following result: Let R be a prime ring with char$(R){\neq}2,3$, and 5. Suppose there exists a nonzero derivation $D:R{\rightarrow}R$ such that the mapping $x{\longmapsto}$ [[[Dx,x],x],x] is centralizing on R. Then R is commutative. Using this result and some results of Sinclair and Johnson, we generalize Yood's noncom-mutative extension of the Singer-Wermer theorem.

  • PDF

SOME ASPECTS OF ZARISKI TOPOLOGY FOR MULTIPLICATION MODULES AND THEIR ATTACHED FRAMES AND QUANTALES

  • Castro, Jaime;Rios, Jose;Tapia, Gustavo
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.5
    • /
    • pp.1285-1307
    • /
    • 2019
  • For a multiplication R-module M we consider the Zariski topology in the set Spec (M) of prime submodules of M. We investigate the relationship between the algebraic properties of the submodules of M and the topological properties of some subspaces of Spec (M). We also consider some topological aspects of certain frames. We prove that if R is a commutative ring and M is a multiplication R-module, then the lattice Semp (M/N) of semiprime submodules of M/N is a spatial frame for every submodule N of M. When M is a quasi projective module, we obtain that the interval ${\uparrow}(N)^{Semp}(M)=\{P{\in}Semp(M){\mid}N{\subseteq}P\}$ and the lattice Semp (M/N) are isomorphic as frames. Finally, we obtain results about quantales and the classical Krull dimension of M.