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JORDAN DERIVATIONS ON PRIME RINGS AND
THEIR APPLICATIONS IN BANACH ALGEBRAS, II

Byung-Do Kim*

Abstract. The purpose of this paper is to prove that the non-
commutative version of the Singer-Wermer Conjecture is affirma-
tive under certain conditions. Let A be a noncommutative Banach
algebra. We show that if there exists a continuous linear Jordan
derivation D : A → A such that [D(x), x]D(x)3 ∈ rad(A) for all
x ∈ A, then D(A) ⊆ rad(A).

1. Introduction

Throughout, R represents an associative ring and A will be a complex
Banach algebra. We write [x, y] for the commutator xy−yx for x, y in a
ring. Let rad(R) denote the (Jacobson) radical of a ring R. And a ring
R is said to be (Jacobson ) semisimple if its Jacobson radical rad(R) is
zero.

A ring R is called n-torsion free if nx = 0 implies x = 0. Recall
that R is prime if aRb = (0) implies that either a = 0 or b = 0, and is
semiprime if aRa = (0) implies a = 0. And an additive mapping D from
R to R is called a derivation if D(xy) = D(x)y + xD(y) holds for all
x, y ∈ R. And an additive mapping D from R to R is called a Jordan
derivation if D(x2) = D(x)x + xD(x) holds for all x ∈ R.

Johnson and Sinclair[5] have proved that any linear derivation on
a semisimple Banach algebra is continuous. Singer and Wermer[13](or
Theorem 16 in [1]) states that every continuous linear derivation on a
commutative Banach algebra maps the algebra into its radical. From
these two results, we can conclude that there are no nonzero linear
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derivations on a commutative semisimple Banach algebra.
Thomas[14] has proved that any linear derivation on a commutative
Banach algebra maps the algebra into its radical.

A noncommutative version of Singer and Wermer’s Conjecture states
that every continuous linear derivation on a noncommutative Banach
algebra maps the algebra into its radical.

Vukman[16] has proved the following: Let R be a 2-torsion free prime
ring. If D : R −→ R is a derivation such that [D(x), x]D(x) = 0 for all
x ∈ R, then D = 0.

Moreover, using the above result, he has proved that the following
holds: let A be a noncommutative semisimple Banach algebra. Suppose
that [D(x), x]D(x) = 0 holds for all x ∈ A. In this case, D = 0.

Kim[6] has showed that the following result holds: Let R be a 3!-
torsion free semiprime ring. Suppose there exists a Jordan derivation
D : R → R such that

[D(x), x]D(x)[D(x), x] = 0

for all x ∈ R. In this case, we have [D(x), x]5 = 0 for all x ∈ R.
Kim[7] has showed that the following result holds: Let A be a non-

commutative Banach algebra. Suppose there exists a continuous linear
Jordan derivation D : A → A such that D(x)[D(x), x]D(x) ∈ rad(A) for
all x ∈ A. In this case, we have D(A) ⊆ rad(A).

For furthermore results, see the references [2, 8, 11, 15].
Kim[9] has proved the following result in the ring theory in order to

apply it to the Banach algebra theory:
Let R be a 3!-torsion free semiprime ring, and suppose there exists a

Jordan derivation D : R −→ R such that

D(x)2[D(x), x] = 0

for all x ∈ R. In this case, we obtain [D(x), x] = 0 for all x ∈ R. In
particular, if R is a 3!-torsionfree noncommutative and prime ring, then
we get D = 0. And using the above result, we generalize Vukman’s
result[16] as follows: let A be a noncommutative Banach algebra and
let D : A −→ A be a continuous linear Jordan derivation, and suppose
that D(x)2[D(x), x] ∈ rad(A) holds for all x ∈ A. Then we have D(A) ⊆
rad(A).

Kim[10] show that the following results hold:
Let R be a 7!-torsionfree prime ring, and if there exists a Jordan

derivation D : R −→ R such that

D(x)3[D(x), x] = 0
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for all x ∈ R, then D(x) = 0 for all x ∈ R. Moreover, we show that if
there exists a continuous linear Jordan derivation D on a a noncommu-
tative Banach Algebra A such that

D(x)3[D(x), x] ∈ rad(A)

for all x ∈ A, then D(A) ⊆ rad(A).
In this paper, our first aim is to prove the following result in the ring

theory in order to apply it to the Banach algebra theory:
Let R be a 7!-torsionfree prime ring, and suppose there exists a Jordan

derivation D : R −→ R such that

[D(x), x]D(x)3 = 0

for all x ∈ R. In this case, we obtain D(x) = 0 for all x ∈ R. We apply the
above result to the Banach algebra theory. Let A be a noncommutative
Banach Algebra, and suppose there exists a continuous linear Jordan
derivation D : A −→ A such that

[D(x), x]D(x)3 ∈ rad(A)

for all x ∈ A. Then we obtain D(A) ⊆ rad(A).

2. Preliminaries

The following lemma is due to Chung and Luh[4].

Lemma 2.1. ([4] Lemma 1.) Let R be a n!-torsion free ring. Suppose

there exist elements y1, y2, · · · , yn−1, yn in R such that
n∑

k=1

tkyk = 0 for

all t = 1, 2, · · · , n. Then we have yk = 0 for every positive integer k with
1 ≤ k ≤ n.

The following theorem is due to Bres̆ar[3].

Theorem 2.2. ([3] Theorem 1.) Let R be a 2-torsion free semiprime
ring and let D : R −→ R be a Jordan derivation. In this case, D is a
derivation.

3. Main results

The following lemmas are due to Kim[10].
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Lemma 3.1. ([10] Lemma 3.) Let R be a 2-torsion free noncommuta-
tive prime ring. Suppose there exists a Jordan derivation D : R −→ R
such that

[D(x), x] = 0
for all x ∈ R. Then we have D(x) = 0 for all x ∈ R.

Lemma 3.2. ([10] Lemma 1.) Let R be a 2-torsion free noncom-
mutative semiprime ring. Suppose there exists a Jordan derivation
D : R −→ R such that

[[D(x), x], x] = 0
for all x ∈ R. Then we have [D(x), x] = 0 for all x ∈ R.

Lemma 3.3. ([10] Lemma 4.) Let R be a 7!-torsionfree noncommuta-
tive prime ring. Suppose there exists a Jordan derivation D : R −→ R
such that

[[D(x), x], x]yD(x)5 = 0
for all x, y ∈ R. Then we have D(x) = 0 for all x ∈ R.

Proof. Let [[D(x), x], x]yD(x)5 = 0 for all x ∈ R. Then it is obvious
that D(x)5y[[D(x), x], x]zD(x)5y[[D(x), x], x] = 0 for all x, y, z ∈ R.
Then since R is a 7!-torsionfree noncommutative prime ring, it follows
that D(x)5y[[D(x), x], x] = 0. In fact, we see that D(x)5y[[D(x), x], x] =
0 ⇐⇒ [[D(x), x], x]yD(x)5 = 0 for all x, y ∈ R. Thus by Lemma 3.4 in
[10], since D(x)5y[[D(x), x], x] = 0 for all x ∈ R, we have D(x) = 0 for
all x ∈ R.

We need the following notations. After this, by Sm we denote the
set {k ∈ N | 1 ≤ k ≤ m} where m is a positive integer. when R is a
ring, we shall denote the maps B : R × R −→ R, f, g : R −→ R by
B(x, y) ≡ [D(x), y] + [D(y), x], f(x) ≡ [D(x), x], g(x) ≡ [f(x), x] for all
x, y ∈ R respectively. And we have the basic properties:

B(x, y) = B(y, x), B(x, x) = 2f(x), B(x, x2) = 2(f(x)x + xf(x)),
B(x, yz) = B(x, y)z + yB(x, z) + D(y)[z, x] + [y, x]D(z),
B(x, xy) = 2f(x)y + xB(x, y) + D(x)[y, x],
B(x, yx) = 2yf(x) + B(x, y)x + [y, x]D(x), x, y, z ∈ R.

Theorem 3.4. Let R be a 7!-torsionfree noncommutative prime ring.
Suppose there exists a Jordan derivation D : R −→ R such that

[D(x), x]D(x)3 = 0

for all x ∈ R. Then we have D(x) = 0 for all x ∈ R.
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Proof. By Theorem 2.2, we can see that D is a derivation on R.
Suppose

f(x)D(x)3 = 0, x ∈ R.(3.1)

Replacing x + ty for x in (3.1), we have

[D(x + ty), x + ty]D(x + ty)3(3.2)
≡ f(x)D(x)3 + t{B(x, y)D(x)3 + f(x)D(y)D(x)2

+f(x)D(x)D(y)D(x) + f(x)D(x)2D(y)}+ t2H1(x, y)
+t3H2(x, y) + t4H3(x, y) + t5f(y)D(y)3 = 0, x, y ∈ R, t ∈ S3

where Hi, 1 ≤ i ≤ 3, denotes the term satisfying the identity (3.2).
From (3.1) and (3.2), we obtain

t{B(x, y)D(x)3 + f(x)D(y)D(x)2 + f(x)D(x)D(y)D(x)(3.3)
+f(x)D(x)2D(y)}+ t2H1(x, y) + t3H2(x, y)
+t4H3(x, y) = 0, x, y ∈ R, t ∈ S3.

Since R is 3!-torsionfree, by Lemma 2.1 (3.3) yields

B(x, y)D(x)3 + f(x)D(y)D(x)2 + f(x)D(x)D(y)D(x)(3.4)
+f(x)D(x)2D(y) = 0, x, y ∈ R.

Letting y = x2 in (3.4), and using (3.1), we have

2(f(x)x + xf(x))D(x)3 + f(x)(D(x)x + xD(x))D(x)2(3.5)
+f(x)D(x)(D(x)x + xD(x))D(x) + f(x)D(x)2(D(x)x + xD(x))
= 2g(x)D(x)3 + 2xf(x)D(x)3 + (g(x)D(x) + f(x)2)D(x)2

+g(x)D(x)3 − f(x)D(x)2f(x) + (g(x)D(x) + f(x)2)D(x)2

+f(x)D(x)3x− f(x)D(x)2f(x)
= 2g(x)D(x)3 + g(x)D(x)3 + f(x)2D(x)2

+g(x)D(x)3 − f(x)D(x)2f(x) + g(x)D(x)3 + f(x)2D(x)2

−f(x)D(x)2f(x)
= 5g(x)D(x)3 + 2f(x)2D(x)2 − 2f(x)D(x)2f(x) = 0, x ∈ R.

Right multiplication of (3.5) by D(x)2 leads to

5g(x)D(x)5 + 2f(x)2D(x)4 − 2f(x)D(x)2f(x)D(x)2(3.6)
= 0, x ∈ R.

Comparing (3.1) with (3.6),

5g(x)D(x)5 − 2(f(x)D(x)2)2 = 0, x ∈ R.(3.7)
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On the other hand, we get from (3.1)

0 = [f(x)D(x)3, x](3.8)
= g(x)D(x)3 + f(x)2D(x)2 + f(x)D(x)f(x)D(x)

+f(x)D(x)2f(x), x ∈ R.

Right multiplication of (3.8) by D(x)2 leads to

g(x)D(x)5 + f(x)2D(x)4 + f(x)D(x)f(x)D(x)3(3.9)
+(f(x)D(x)2)2 = 0, x ∈ R.

Comparing (3.1), (3.7) with (3.9),

7(f(x)D(x)2)2 = 0, x ∈ R.

Since R is 7!-torsionfree, the above relation gives

(f(x)D(x)2)2 = 0, x ∈ R.(3.10)

From (3.7) and (3.10),

5g(x)D(x)5 = 0, x ∈ R.

Since R is 7!-torsionfree, the above relation yields

g(x)D(x)5 = 0, x ∈ R.(3.11)

From (3.5) and (3.8), we get

4f(x)D(x)2f(x) + 2f(x)D(x)f(x)D(x)− 3g(x)D(x)3(3.12)
= 0, x ∈ R.

Writing yx for y in (3.4), we obtain

f(x)D(x)2D(y)x + f(x)D(x)2yD(x) + f(x)D(x)D(y)xD(x)(3.13)
+f(x)D(x)yD(x)2 + f(x)D(y)xD(x)2 + f(x)yD(x)3

+(2yf(x) + B(x, y)x + [y, x]D(x))D(x)3 = 0, x, y ∈ R.

Right multiplication of (3.4) by x leads to

f(x)D(x)2D(y)x + f(x)D(x)D(y)D(x)x + f(x)D(y)D(x)2x(3.14)
+B(x, y)D(x)3x = 0, x, y ∈ R.

From (3.13) and (3.14), we arrive at

f(x)D(x)2yD(x)− f(x)D(x)D(y)f(x) + f(x)D(x)yD(x)2(3.15)
−f(x)D(y)f(x)D(x)− f(x)D(y)D(x)f(x) + f(x)yD(x)3

+2yf(x)D(x)3 −B(x, y)f(x)D(x)2 −B(x, y)D(x)f(x)D(x)
−B(x, y)D(x)2f(x) + [y, x]D(x)4 = 0, x, y ∈ R.
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By (3.1) and (3.15), it is obvious that

f(x)D(x)2yD(x)− f(x)D(x)D(y)f(x) + f(x)D(x)yD(x)2(3.16)
−f(x)D(y)f(x)D(x)− f(x)D(y)D(x)f(x) + f(x)yD(x)3

−B(x, y)f(x)D(x)2 −B(x, y)D(x)f(x)D(x)
−B(x, y)D(x)2f(x) + [y, x]D(x)4 = 0, x, y ∈ R.

Right multiplication of (3.16) by D(x)3 leads to

f(x)D(x)2yD(x)4 − f(x)D(x)D(y)f(x)D(x)3(3.17)
+f(x)D(x)yD(x)5 − f(x)D(y)D(x)f(x)D(x)3

−f(x)D(y)f(x)D(x)4 + f(x)yD(x)6 −B(x, y)D(x)2f(x)D(x)3

−B(x, y)D(x)f(x)D(x)4 −B(x, y)f(x)D(x)5 + [y, x]D(x)7

= 0, x, y ∈ R.

Combining (3.1) with (3.17), we see that

f(x)D(x)2yD(x)4 + f(x)D(x)yD(x)5 + f(x)yD(x)6(3.18)
+[y, x]D(x)7 = 0, x, y ∈ R.

Replacing xy for y in (3.18), it follows that

f(x)D(x)2xyD(x)4 + f(x)D(x)xyD(x)5 + f(x)xyD(x)6(3.19)
+x[y, x]D(x)7 = 0, x, y ∈ R.

Left multiplication of (3.18) by x leads to

xf(x)D(x)2yD(x)4 + xf(x)D(x)yD(x)5 + xf(x)yD(x)6(3.20)
+x[y, x]D(x)7 = 0, x, y ∈ R.

Combining (3.19) with (3.20),

(g(x)D(x)2 + f(x)2D(x) + f(x)D(x)f(x))yD(x)4(3.21)
+(g(x)D(x) + f(x)2)yD(x)5 + g(x)yD(x)6 = 0, x, y ∈ R.

Writing D(x)4y for y in (3.21), we get

(g(x)D(x)6 + f(x)2D(x)5 + f(x)D(x)f(x)D(x)4)yD(x)4(3.22)
+(g(x)D(x)5 + f(x)2D(x)4)yD(x)5 + g(x)D(x)4yD(x)6

= 0, x, y ∈ R.

Left multiplication of (3.18) by f(x) leads to

f(x)2D(x)2yD(x)4 + f(x)2D(x)yD(x)5 + f(x)2yD(x)6(3.23)
+f(x)[y, x]D(x)7 = 0, x, y ∈ R.
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Putting f(x)y instead of y in (3.18),

f(x)D(x)2f(x)yD(x)4 + f(x)D(x)f(x)yD(x)5 + f(x)2yD(x)6(3.24)
+f(x)[y, x]D(x)7 + g(x)yD(x)7 = 0, x, y ∈ R.

Combining (3.23) with (3.24), we have

(f(x)D(x)2f(x)− f(x)2D(x)2)yD(x)4(3.25)
+(f(x)D(x)f(x)− f(x)2D(x))yD(x)5 + g(x)yD(x)7

= 0, x, y ∈ R.

Right multiplication of (3.12) by D(x) leads to

4f(x)D(x)2f(x)D(x) + 2f(x)D(x)f(x)D(x)2 − 3g(x)D(x)4(3.26)
= 0, x ∈ R.

Right multiplication of (3.5) by D(x) leads to

2f(x)D(x)2f(x)D(x)− 2f(x)2D(x)3 − 5g(x)D(x)4(3.27)
= 0, x ∈ R.

From (3.1) and (3.27), we get

2f(x)D(x)2f(x)D(x)− 5g(x)D(x)4 = 0, x ∈ R.(3.28)

From (3.26) and (3.28), we get

2f(x)D(x)f(x)D(x)2 + 7g(x)D(x)4 = 0, x ∈ R.(3.29)

Writing D(x)2yg(x) for y in (3.21), we get

(g(x)D(x)4 + f(x)2D(x)3 + f(x)D(x)f(x)D(x)2)yg(x)D(x)4(3.30)
+(g(x)D(x)3 + f(x)2D(x)2)yg(x)D(x)5

+g(x)D(x)2yg(x)D(x)6 = 0, x, y ∈ R.

From (3.1), (3.11) and (3.30),

(f(x)D(x)f(x)D(x)2 + g(x)D(x)4)yg(x)D(x)4 = 0, x, y ∈ R.(3.31)

From (3.29), we obtain

(2f(x)D(x)f(x)D(x)2 + 7g(x)D(x)4)yg(x)D(x)4 = 0, x, y ∈ R.(3.32)

From (3.31) and (3.32),

5g(x)D(x)4yg(x)D(x)4 = 0, x, y ∈ R.(3.33)

Since R is 7!-torsion-free, (3.33) gives

g(x)D(x)4yg(x)D(x)4 = 0, x, y ∈ R.(3.34)
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By the semiprimeness of R, (3.34) yields

g(x)D(x)4 = 0, x ∈ R.(3.35)

From (3.28) and (3.35), we get

2f(x)D(x)2f(x)D(x) = 0, x ∈ R.

Since R is 7!-torsion-free, the above relation gives

f(x)D(x)2f(x)D(x) = 0, x ∈ R.(3.36)

From (3.29) and (3.35),

2f(x)D(x)f(x)D(x)2 = 0, x ∈ R.

Since R is 7!-torsion-free, the above relation gives

f(x)D(x)f(x)D(x)2 = 0, x ∈ R.(3.37)

Substituting D(x)2y for y in (3.21), it follows that

(g(x)D(x)4 + f(x)2D(x)3 + f(x)D(x)f(x)D(x)2)yD(x)4(3.38)
+(g(x)D(x)3 + f(x)2D(x)2)yD(x)5 + g(x)D(x)2yD(x)6

= 0, x, y ∈ R.

From (3.1), (3.35), (3.37) and (3.38),

(g(x)D(x)3 + f(x)2D(x)2)yD(x)5 + g(x)D(x)2yD(x)6(3.39)
= 0, x, y ∈ R.

Writing D(x)y for y in (3.39), we get

(g(x)D(x)4 + f(x)2D(x)3)yD(x)5 + g(x)D(x)3yD(x)6(3.40)
= 0, x, y ∈ R.

Combining (3.1), (3.35) with (3.40),

g(x)D(x)3yD(x)6 = 0, x, y ∈ R.(3.41)

Writing zg(x)D(x)3y for y in (3.39), we get

(g(x)D(x)3 + f(x)2D(x)2)zg(x)D(x)3yD(x)5(3.42)
+g(x)D(x)2zg(x)D(x)3yD(x)6 = 0, x, y, z ∈ R.

Combining (3.41) with (3.42),

(g(x)D(x)3 + f(x)2D(x)2)zg(x)D(x)3yD(x)5(3.43)
= 0, x, y, z ∈ R.
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Writing D(x)zg(x)D(x)3y for y in (3.25), we get

(f(x)D(x)2f(x)D(x)− f(x)2D(x)3)zg(x)D(x)3yD(x)4(3.44)
+(f(x)D(x)f(x)D(x)− f(x)2D(x)2)zg(x)D(x)3yD(x)5

+g(x)D(x)zg(x)D(x)3yD(x)7 = 0, x, y, z ∈ R.

From (3.1), (3.36), (3.41) and (3.44),

(f(x)D(x)f(x)D(x)− f(x)2D(x)2)zg(x)D(x)3yD(x)5(3.45)
= 0, x, y, z ∈ R.

Comparing (3.43) and (3.45),

(g(x)D(x)3 + f(x)D(x)f(x)D(x))zg(x)D(x)3yD(x)5(3.46)
= 0, x, y, z ∈ R.

From (3.8) and (3.46),

(g(x)D(x)3 + 2f(x)2D(x)2(3.47)
+f(x)D(x)2f(x))zg(x)D(x)3yD(x)5 = 0, x, y, z ∈ R.

Combining (3.5) with (3.47),

(7g(x)D(x)3 + 6f(x)2D(x)2)zg(x)D(x)3yD(x)5(3.48)
= 0, x, y, z ∈ R.

From (3.43) and (3.48),

g(x)D(x)3zg(x)D(x)3yD(x)5 = 0, x, y, z ∈ R.(3.49)

Letting yD(x)5z for z in (3.49),

g(x)D(x)3yD(x)5zg(x)D(x)3yD(x)5 = 0, x, y, z ∈ R.(3.50)

Hence by the semiprimeness of R, (3.50) yields

g(x)D(x)3yD(x)5 = 0, x, y ∈ R.(3.51)

Left multiplication of (3.18) by g(x)D(x)3z leads to

g(x)D(x)3zf(x)D(x)2yD(x)4 + g(x)D(x)3zf(x)D(x)yD(x)5(3.52)
+g(x)D(x)3zf(x)yD(x)6 + g(x)D(x)3z[y, x]D(x)7

= 0, x, y, z ∈ R.

From (3.51) and (3.52),

g(x)D(x)3zf(x)D(x)2yD(x)4 = 0, x, y, z ∈ R.(3.53)
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From (3.53), we get

f(x)D(x)2zg(x)D(x)3yD(x)4wf(x)D(x)2zg(x)D(x)3yD(x)4(3.54)
= 0, w, x, y, z ∈ R.

By the semiprimeness of R, (3.54) yields

f(x)D(x)2zg(x)D(x)3yD(x)4 = 0, x, y, z ∈ R.(3.55)

Replacing f(x)z for z in (3.55),

f(x)D(x)2f(x)zg(x)D(x)3yD(x)4 = 0, x, y, z ∈ R.(3.56)

From (3.5) and (3.56),

(5g(x)D(x)3 + 2f(x)2D(x)2)zg(x)D(x)3yD(x)4(3.57)
= 0, x, y, z ∈ R.

From (3.55) and (3.57),

5g(x)D(x)3zg(x)D(x)3yD(x)4 = 0, x, y, z ∈ R.(3.58)

Replacing 5yD(x)4z for z in (3.58),

5g(x)D(x)3yD(x)4z(5g(x)D(x)3yD(x)4) = 0, x, y, z ∈ R.(3.59)

By the semiprimeness of R, (3.59) yields

5g(x)D(x)3yD(x)4 = 0, x, y ∈ R.(3.60)

Since R is 7!-torsion free, (3.60) gives

g(x)D(x)3yD(x)4 = 0, x, y ∈ R.(3.61)

From (3.5) and (3.61),

2(f(x)D(x)2f(x)− f(x)2D(x)2)yD(x)4 = 0, x, y ∈ R.(3.62)

Since R is 7!-torsion free, (3.62) yields

(f(x)D(x)2f(x)− f(x)2D(x)2)yD(x)4 = 0, x, y ∈ R.(3.63)

From (3.25) and (3.63),

(f(x)D(x)f(x)− f(x)2D(x))yD(x)5 + g(x)yD(x)7(3.64)
= 0, x, y ∈ R.

Replacing D(x)2y for y in (3.25),

(f(x)D(x)2f(x)D(x)2 − f(x)2D(x)4)yD(x)4(3.65)
+(f(x)D(x)f(x)D(x)2 − f(x)2D(x)3)yD(x)5

+g(x)D(x)2yD(x)7 = 0, x, y ∈ R.
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From (3.1), and (3.36), (3.37) and (3.65),

g(x)D(x)2yD(x)7 = 0, x, y ∈ R.(3.66)

Replacing zg(x)D(x)2y for y in (3.64),

(f(x)D(x)f(x)− f(x)2D(x))zg(x)D(x)2yD(x)5(3.67)
+g(x)zg(x)D(x)2yD(x)7 = 0, x, y, z ∈ R.

From (3.66) and (3.67),

(f(x)D(x)f(x)− f(x)2D(x))zg(x)D(x)2yD(x)5(3.68)
= 0, x, y, z ∈ R.

Replacing D(x)z for z in (3.68),

(f(x)D(x)f(x)D(x)− f(x)2D(x)2)zg(x)D(x)2yD(x)5(3.69)
= 0, x, y, z ∈ R.

From (3.8) and (3.69),

(g(x)D(x)3 + 2f(x)2D(x)2(3.70)
+f(x)D(x)2f(x))zg(x)D(x)2yD(x)5 = 0, x, y, z ∈ R.

From (3.61) and (3.70),

(2f(x)2D(x)2 + f(x)D(x)2f(x))zg(x)D(x)2yD(x)5(3.71)
= 0, x, y, z ∈ R.

From (3.5) and (3.71),

(3f(x)D(x)2f(x)− 5g(x)D(x)3)zg(x)D(x)2yD(x)5(3.72)
= 0, x, y, z ∈ R.

From (3.61) and (3.72),

3f(x)D(x)2f(x))zg(x)D(x)2yD(x)5 = 0, x, y, z ∈ R.(3.73)

Since R is 7!-torsion free, (3.73) yields

f(x)D(x)2f(x)zg(x)D(x)2yD(x)5 = 0, x, y, z ∈ R.(3.74)

From (3.71) and (3.74),

2f(x)2D(x)2zg(x)D(x)2yD(x)5 = 0, x, y, z ∈ R.(3.75)

Since R is 7!-torsion free, (3.75) yields

f(x)2D(x)2zg(x)D(x)2yD(x)5 = 0, x, y, z ∈ R.(3.76)
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Replacing zg(x)D(x)2y for y in (3.21),

f(x)2D(x)2zg(x)D(x)2yD(x)5 + g(x)D(x)2z(3.77)
×g(x)D(x)2yD(x)6 = 0, x, y, z ∈ R.

From (3.76) with (3.77), we get

g(x)D(x)2zg(x)D(x)2yD(x)6 = 0, x, y, z ∈ R.(3.78)

Replacing yD(x)6z for z in (3.78),

g(x)D(x)2yD(x)6zg(x)D(x)2yD(x)6 = 0, x, y, z ∈ R.(3.79)

By the semiprimeness of R, we obtain from (3.79),

g(x)D(x)2yD(x)6 = 0, x, y ∈ R.(3.80)

From (3.1), (3.35), (3.37), (3.38), and (3.80), one obtains

f(x)2D(x)2yD(x)5 = 0, x, y ∈ R.(3.81)

Replacing zf(x)2D(x)2y for y in (3.21),

(g(x)D(x)3 + f(x)2D(x)2 + f(x)D(x)f(x)D(x))zf(x)2D(x)2(3.82)
×yD(x)4 + (g(x)D(x)2 + f(x)2D(x))zf(x)2D(x)2yD(x)5

+g(x)D(x)zf(x)2D(x)2yD(x)6 = 0, x, y, z ∈ R.

Combining (3.5) with (3.12),

7g(x)D(x)3 + 4f(x)2D(x)2 + 2f(x)D(x)f(x)D(x)(3.83)
= 0, x ∈ R.

Combining (3.82) with (3.83),

(f(x)2D(x)2 + f(x)D(x)f(x)D(x))z(−7g(x)D(x)3(3.84)
−2f(x)D(x)f(x)D(x))yD(x)4 = 0, x, y, z ∈ R.

Combining (3.61) with (3.84),

2(f(x)2D(x)2 + f(x)D(x)f(x)D(x))zf(x)D(x)f(x)D(x)yD(x)4

= 0, x, y, z ∈ R.

Since R is 7!-torsion-free, the above relation gives

(f(x)2D(x)2 + f(x)D(x)f(x)D(x))zf(x)D(x)f(x)D(x)yD(x)4(3.85)
= 0, x, y, z ∈ R.

Combining (3.81) with (3.85),

(f(x)2D(x)2 + f(x)D(x)f(x)D(x))z(f(x)2D(x)2(3.86)
+f(x)D(x)f(x)D(x))yD(x)4 = 0, x, y, z ∈ R.
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(3.86) yields

(f(x)2D(x)2 + f(x)D(x)f(x)D(x))yD(x)4z(f(x)2D(x)2(3.87)
+f(x)D(x)f(x)D(x))yD(x)4 = 0, x, y, z ∈ R.

By the semiprimeness of R, we obtain from (3.87),

(f(x)2D(x)2 + f(x)D(x)f(x)D(x))yD(x)4 = 0, x, y ∈ R.(3.88)

Combining (3.61) with (3.83),

(4f(x)2D(x)2 + 2f(x)D(x)f(x)D(x))yD(x)4 = 0, x, y ∈ R.(3.89)

Since R is 7!-torsion-free, (3.89) gives

(2f(x)2D(x)2 + f(x)D(x)f(x)D(x))yD(x)4 = 0, x, y ∈ R.(3.90)

Combining (3.88) with (3.90),

f(x)2D(x)2yD(x)4 = 0, x, y ∈ R.(3.91)

Combining (3.88) with (3.91),

f(x)D(x)f(x)D(x)yD(x)4 = 0, x, y ∈ R.(3.92)

Combining (3.8), (3.61), (3.91) with (3.92), we have

f(x)D(x)2f(x)yD(x)4 = 0, x, y ∈ R.(3.93)

Combining (3.25), (3.91) with (3.93),

(f(x)D(x)f(x)− f(x)2D(x))yD(x)5 + g(x)yD(x)7(3.94)
= 0, x, y ∈ R.

Replacing D(x)y for y in (3.94),

(f(x)D(x)f(x)D(x)− f(x)2D(x)2)yD(x)5 + g(x)D(x)yD(x)7(3.95)
= 0, x, y ∈ R.

Combining (3.91), (3.92) with (3.93),

g(x)D(x)yD(x)7 = 0, x, y ∈ R.(3.96)

Right multiplication of (3.21) by D(x) leads to

(g(x)D(x)2 + f(x)2D(x) + f(x)D(x)f(x))yD(x)5(3.97)
+(g(x)D(x) + f(x)2)yD(x)6 + g(x)yD(x)7

= 0, x, y ∈ R.

Combining (3.80) with (3.97),

(g(x)D(x)2 + f(x)2D(x) + f(x)D(x)f(x))yD(x)5(3.98)
+f(x)2yD(x)6 + g(x)yD(x)7 = 0, x, y ∈ R.
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Replacing D(x)y for y in (3.98),

(g(x)D(x)3 + f(x)2D(x)2 + f(x)D(x)f(x)D(x))yD(x)5(3.99)
+f(x)2D(x)yD(x)6 + g(x)D(x)yD(x)7 = 0, x, y ∈ R.

Combining (3.61), (3.91), (3.92), (3.96) with (3.99),

f(x)2D(x)yD(x)6 = 0, x, y ∈ R.(3.100)

Left multiplication of (3.18) by f(x)2D(x)z leads to

f(x)2D(x)zf(x)2D(x)yD(x)4 + f(x)2D(x)zf(x)D(x)yD(x)5(3.101)
+f(x)2D(x)zf(x)yD(x)6 + f(x)2D(x)z[y, x]D(x)7

= 0, x, y, z ∈ R.

Combining (3.100) with (3.101),

f(x)2D(x)zf(x)2D(x)yD(x)4 + f(x)2D(x)zf(x)D(x)yD(x)5(3.102)
= 0, x, y, z ∈ R.

Right multiplication of (3.102) by D(x) leads to

f(x)2D(x)zf(x)2D(x)yD(x)5 + f(x)2D(x)zf(x)D(x)yD(x)6(3.103)
= 0, x, y, z ∈ R.

Combining (3.100) with (3.103),

f(x)2D(x)zf(x)2D(x)yD(x)5 = 0, x, y, z ∈ R.(3.104)

Replacing yD(x)5z for z in (3.104),

f(x)2D(x)yD(x)5zf(x)2D(x)yD(x)5 = 0, x, y, z ∈ R.(3.105)

Thus by the primeness of R, (3.105) gives

f(x)2D(x)yD(x)5 = 0, x, y ∈ R.(3.106)

Combining (3.94) with (3.106),

f(x)D(x)f(x)yD(x)5 + g(x)yD(x)7 = 0, x, y ∈ R.(3.107)

Combining (3.98) with (3.106),

(g(x)D(x)2 + f(x)D(x)f(x))yD(x)5 + f(x)2yD(x)6(3.108)
+g(x)yD(x)7 = 0, x, y ∈ R.

Replacing yD(x) for y in (3.21),

(g(x)D(x)2 + f(x)2D(x) + f(x)D(x)f(x))yD(x)5(3.109)
+(g(x)D(x) + f(x)2)yD(x)6 + g(x)yD(x)7 = 0, x, y ∈ R.
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Combining (3.106) with (3.109),

(g(x)D(x)2 + f(x)D(x)f(x))yD(x)5(3.110)
+(g(x)D(x) + f(x)2)yD(x)6 + g(x)yD(x)7 = 0, x, y ∈ R.

Combining (3.108) with (3.110),

g(x)D(x)yD(x)6 = 0, x, y ∈ R.(3.111)

Combining (3.111) with (3.111),

(g(x)D(x)2 + f(x)D(x)f(x))yD(x)5(3.112)
+f(x)2yD(x)6 + g(x)yD(x)7 = 0, x, y ∈ R.

Combining (3.107) with (3.112),

g(x)D(x)2yD(x)5 + f(x)2yD(x)6 = 0, x, y ∈ R.(3.113)

Replacing zg(x)D(x)2y for y in (3.113),

g(x)D(x)2zg(x)D(x)2yD(x)5 + f(x)2zg(x)D(x)2yD(x)6(3.114)
= 0, x, y, z ∈ R.

Combining (3.111) with (3.114),

g(x)D(x)2zg(x)D(x)2yD(x)5 = 0, x, y, z ∈ R.(3.115)

Replacing yD(x)5z for z in (3.115),

g(x)D(x)2yD(x)5zg(x)D(x)2yD(x)5 = 0, x, y, z ∈ R.(3.116)

Thus by the primeness of R, (3.116) gives

g(x)D(x)2yD(x)5 = 0, x, y ∈ R.(3.117)

Combining (3.113) with (3.117),

f(x)2yD(x)6 = 0, x, y ∈ R.(3.118)

On the other hand, left multiplication of (3.110) by g(x)D(x)2z leads to

g(x)D(x)z(g(x)D(x)2 + f(x)D(x)f(x))yD(x)5(3.119)
+g(x)D(x)2z(g(x)D(x) + f(x)2)yD(x)6

+g(x)D(x)2zg(x)yD(x)7 = 0, x, y, z ∈ R.

From (3.111), (3.117) and (3.119), we obtain

g(x)D(x)2z(g(x)D(x)2 + f(x)D(x)f(x))yD(x)5(3.120)
= 0, x, y, z ∈ R.
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From (3.118) and (3.120), we have

(f(x)D(x)f(x) + g(x)D(x)2)z(f(x)D(x)f(x)(3.121)
+g(x)D(x)2)yD(x)5 = 0, x, y, z ∈ R.

From (3.121), we obtain

(f(x)D(x)f(x) + g(x)D(x)2)yD(x)5z(f(x)D(x)f(x)(3.122)
+g(x)D(x)2)yD(x)5 = 0, x, y, z ∈ R.

Since R is prime, we obtain (3.122)

(f(x)D(x)f(x) + g(x)D(x)2)yD(x)5 = 0, x, y ∈ R.(3.123)

Replacing z(f(x)D(x)f(x) + f(x)2D(x) + g(x)D(x)2)y for y in (3.21),

(f(x)D(x)f(x) + f(x)2D(x) + g(x)D(x)2)z(f(x)D(x)f(x)(3.124)
+f(x)2D(x) + g(x)D(x)2)yD(x)4 + (f(x)2 + g(x)D(x))z
×(f(x)D(x)f(x) + f(x)2D(x) + g(x)D(x)2)yD(x)5

+g(x)z(f(x)D(x)f(x) + f(x)2D(x) + g(x)D(x)2)yD(x)6

= 0, x, y, z ∈ R.

From (3.106), (3.123) and (3.124), we get

(f(x)D(x)f(x) + f(x)2D(x) + g(x)D(x)2)z(f(x)D(x)f(x)(3.125)
+f(x)2D(x) + g(x)D(x)2)yD(x)4 = 0, x, y, z ∈ R.

From (3.125), we get

(f(x)D(x)f(x) + f(x)2D(x) + g(x)D(x)2)yD(x)4z(3.126)
×(f(x)D(x)f(x) + f(x)2D(x) + g(x)D(x)2)yD(x)4

= 0, x, y, z ∈ R.

Since R is prime, we obtain (3.126)

(f(x)D(x)f(x) + f(x)2D(x) + g(x)D(x)2)yD(x)4(3.127)
= 0, x, y ∈ R.

From (3.21) and (3.127),

(f(x)2 + g(x)D(x))yD(x)5 + g(x)yD(x)6 = 0, x, y ∈ R.(3.128)

Replacing zg(x)D(x)y for y in (3.128),

(f(x)2 + g(x)D(x))zg(x)D(x)yD(x)5(3.129)
+g(x)zg(x)D(x)yD(x)6 = 0, x, y, z ∈ R.
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From (3.111) and (3.129), we get

(f(x)2 + g(x)D(x))zg(x)D(x)yD(x)5 = 0, x, y, z ∈ R.(3.130)

Replacing zf(x)2y for y in (3.128),

(f(x)2 + g(x)D(x))zf(x)2yD(x)5 + g(x)zf(x)2yD(x)6(3.131)
= 0, x, y, z ∈ R.

From (3.118) and (3.131),

(f(x)2 + g(x)D(x))zf(x)2yD(x)5 = 0, x, y, z ∈ R.(3.132)

From (3.130) and (3.132), we obtain

(f(x)2 + g(x)D(x))z(f(x)2 + D(x)g(x))yD(x)5(3.133)
= 0, x, y, z ∈ R.

From (3.133),

(f(x)2 + D(x)g(x))yD(x)5z(f(x)2 + D(x)g(x))yD(x)5(3.134)
= 0, x, y, z ∈ R.

Since R is prime, (3.134) yields

(f(x)2 + D(x)g(x))yD(x)5 = 0, x, y ∈ R.(3.135)

From (3.128) and (3.135),

g(x)yD(x)6 = 0, x, y ∈ R.(3.136)

Right multiplication of (3.17) by D(x)2 leads to

f(x)D(x)2yD(x)3 − f(x)D(x)D(y)f(x)D(x)2(3.137)
+f(x)D(x)yD(x)4 − f(x)D(y)D(x)f(x)D(x)3

−f(x)D(y)D(x)f(x)D(x)2 + f(x)yD(x)5

−B(x, y)f(x)D(x)4 −B(x, y)D(x)2f(x)D(x)2

−B(x, y)D(x)f(x)D(x)3 + [y, x]D(x)6 = 0, x, y ∈ R.

From (3.1) and (3.137), we get

f(x)D(x)2yD(x)3 − f(x)D(x)D(y)f(x)D(x)2(3.138)
+f(x)D(x)yD(x)4 − f(x)D(y)D(x)f(x)D(x)2 + f(x)yD(x)5

−B(x, y)D(x)2f(x)D(x)2 + [y, x]D(x)6 = 0, x, y ∈ R.
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Left multiplication of (3.138) by g(x)z leads to

g(x)zf(x)D(x)2yD(x)3 − g(x)zf(x)D(x)D(y)f(x)D(x)2(3.139)
+g(x)zf(x)D(x)yD(x)4 − g(x)zf(x)D(y)D(x)f(x)D(x)2

+g(x)zf(x)yD(x)5 − g(x)zB(x, y)D(x)2f(x)D(x)2

+g(x)z[y, x]D(x)6 = 0, x, y, z ∈ R.

From (3.136) and (3.139), we get

g(x)zf(x)D(x)2yD(x)3 − g(x)zf(x)D(x)D(y)f(x)D(x)2(3.140)
+g(x)zf(x)D(x)yD(x)4 − g(x)zf(x)D(y)D(x)f(x)D(x)2

+g(x)zf(x)yD(x)5 − g(x)zB(x, y)D(x)2f(x)D(x)2

= 0, x, y, z ∈ R.

Right multiplication of (3.140) by D(x) leads to

g(x)zf(x)D(x)2yD(x)4 + g(x)zf(x)D(x)D(y)f(x)D(x)3(3.141)
+g(x)zf(x)D(x)yD(x)5 + g(x)zf(x)D(y)D(x)f(x)D(x)3

+g(x)zf(x)yD(x)6 + g(x)zB(x, y)D(x)2f(x)D(x)3

= 0, x, y, z ∈ R.

From (3.1), (3.136) and (3.141), we have

g(x)zf(x)D(x)2yD(x)4 + g(x)zf(x)D(x)yD(x)5(3.142)
= 0, x, y, z ∈ R.

Replacing D(x)y for y in (3.142),

g(x)zf(x)D(x)3yD(x)4 + g(x)zf(x)D(x)2yD(x)5(3.143)
= 0, x, y, z ∈ R.

From (3.1) and (3.143), we get

g(x)zf(x)D(x)2yD(x)5 = 0, x, y, z ∈ R.(3.144)

Replacing wf(x)D(x)2y for y in (3.142),

g(x)zf(x)D(x)2wf(x)D(x)2yD(x)4 + g(x)zf(x)D(x)w(3.145)
×f(x)D(x)2yD(x)5 = 0, w, x, y, z ∈ R.

From (3.144) and (3.145), we have

g(x)zf(x)D(x)2wf(x)D(x)2yD(x)4 = 0, w, x, y, z ∈ R.(3.146)
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From (3.146),

g(x)zf(x)D(x)2yD(x)4wg(x)zf(x)D(x)2yD(x)4(3.147)
= 0, w, x, y, z ∈ R.

Since R is prime, we obtain from (3.147)

g(x)zf(x)D(x)2yD(x)4 = 0, x, y, z ∈ R.(3.148)

From (3.142) and (3.148),

g(x)zf(x)D(x)yD(x)5 = 0, x, y, z ∈ R.(3.149)

Right multiplication of (3.140) by wD(x)5 leads to

g(x)zf(x)D(x)2yD(x)3wD(x)5 + g(x)zf(x)D(x)D(y)(3.150)
×f(x)D(x)2wD(x)5 + g(x)zf(x)D(x)yD(x)4wD(x)5

+g(x)zf(x)D(y)D(x)f(x)D(x)2wD(x)5 + g(x)zf(x)y
×D(x)5wD(x)5 + g(x)zB(x, y)D(x)2f(x)D(x)2wD(x)5

= 0, w, x, y, z ∈ R.

From (3.149) and (3.150), we have

g(x)zf(x)yD(x)5wD(x)5 = 0, w, x, y, z ∈ R.(3.151)

From (3.151) and the semiprimeness of R,

g(x)zf(x)yD(x)5 = 0, x, y, z ∈ R.(3.152)

From (3.152) and simple calculations,

g(x)yD(x)5zg(x)yD(x)5 = 0, x, y, z ∈ R.(3.153)

Since R is prime, by the semiprimeness of R, (3.153) gives

g(x)yD(x)5 = 0, x, y ∈ R.(3.154)

By Lemma 3.3, (3.154) gives

D(x) = 0, x ∈ R.

4. Applications in Banach algebra theory

The following theorem is proved by the same arguments as in the
proof of J. Vukman’s theorem [16], but it generalizes his result.
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Theorem 4.1. Let A be a Banach algebra. Suppose there exists a
continuous linear Jordan derivation D : A −→ A such that

[D(x), x]D(x)3 ∈ rad(A)

for all x ∈ A. Then we have D(A) ⊆ rad(A).

Proof. It suffices to prove the case that A is noncommutative. By
the result of B.E. Johnson and A.M. Sinclair[5] any linear derivation on
a semisimple Banach algebra is continuous. Sinclair[12] has proved that
every continuous linear Jordan derivation on a Banach algebra leaves
the primitive ideals of A invariant. Hence for any primitive ideal P ⊆ A
one can introduce a derivation DP : A/P −→ A/P, where A/P is a
prime and factor Banach algebra, by DP (x̂) = D(x) + P, x̂ = x + P.
By the assumption that [D(x), x]D(x)3 ∈ rad(A), x ∈ A, we obtain
[DP (x̂), x̂](DP (x̂))3 = 0, x̂ ∈ A/P, since all the assumptions of The-
orem 3.4 are fulfilled. Let the factor prime Banach algebra A/P be
noncommutative. Then we have DP (x̂) = 0, x̂ ∈ A/P. Thus we ob-
tain D(x) ∈ P for all x ∈ A and all primitive ideals of A. Hence
D(A) ⊆ rad(A). And we consider the case that A/P is commutative.
Then since A/P is a commutative Banach semisimple Banach algebra,
from the result of B.E. Johnson and A.M. Sinclair[5], it follows that
DP (x̂) = 0, x̂ ∈ A/P. And so, D(x) ∈ P for all x ∈ A and all primitive
ideals of A. Hence D(A) ⊆ rad(A). Therefore in any case we obtain
D(A) ⊆ rad(A).

Theorem 4.2. Let A be a semisimple Banach algebra. Suppose there
exists a linear Jordan derivation D : A −→ A such that

[D(x), x]D(x)3 = 0

for all x ∈ A. Then we have D = 0.

Proof. It suffices to prove the case that A is noncommutative. Ac-
cording to the result of B.E. Johnson and A.M. Sinclair[5] every lin-
ear derivation on a semisimple Banach algebra is continuous. A.M.
Sinclair[12] has proved that any continuous linear derivation on a Banach
algebra leaves the primitive ideals of A invariant. Hence for any primitive
ideal P ⊆ A one can introduce a derivation DP : A/P −→ A/P, where
A/P is a prime and factor Banach algebra, by DP (x̂) = D(x) + P, x̂ =
x + P. From the given assumptions [D(x), x]D(x)3 = 0, x ∈ A, it fol-
lows that [DP (x̂), x̂](DP (x̂))3 = 0, x̂ ∈ A/P, since all the assumptions of
Theorem 3.4 are fulfilled. The factor algebra A/P is noncommutative,
by Theorem 3.4 we have DP (x̂) = 0, x̂ ∈ A/P. Hence we get D(A) ⊆ P
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for all primitive ideals P of A. Thus D(A) ⊆ rad(A.) And since A is
semisimple, D = 0.

As a special case of Theorem 4.2 we get the following result which
characterizes commutative semisimple Banach algebras.

Corollary 4.3. Let A be a semisimple Banach algebra. Suppose

[[x, y], x][x, y]3 = 0

for all x, y ∈ A. In this case, A is commutative.
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