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Nil∗-COHERENT RINGS

Yueming Xiang and Lunqun Ouyang

Abstract. Let R be a ring and Nil∗(R) be the prime radical of R. In
this paper, we say that a ringR is leftNil∗-coherent ifNil∗(R) is coherent
as a left R-module. The concept is introduced as the generalization of left
J-coherent rings and semiprime rings. Some properties of Nil∗-coherent
rings are also studied in terms of N-injective modules and N-flat modules.

1. Introduction

Throughout R is an associative ring with identity and all modules are uni-
tary. RM(MR) stands for the category of all left (right) R-modules.
Hom(M,N) (resp. Extn(M,N)) means HomR(M,N) (resp. ExtnR(M,N)),

and similarlyM⊗N (resp. Torn(M,N)) denotes M⊗RN (resp. TorRn (M,N)).
The character module M+ is defined by M+ = HomZ(M,Q/Z). The Jacobson
radical of R is denoted by J(R). If X is a subset of R, the right (left) anni-
hilator of X in R is denoted by r(X) (l(X)). We will use the usual notations
from [1, 8, 9, 13, 14, 22].

We first recall some known notions needed in the sequel.
Let C be the class of R-modules. For an R-module M , C ∈ C is called a C-

cover [8] of M if there is a homomorphism g : C → M such that the following
hold: (1) For any homomorphism g′ : C′ → M with C′ ∈ C, there exists a
homomorphism f : C′ → C with g′ = gf . (2) If f is an endomorphism of
C with gf = g, then f must be an automorphism. If (1) holds but (2) may
not, g : C → M is called a C-precover. Dually we have the definition of a
C-(pre)envelope. C-covers and C-envelopes may not exist in general, but if they
exist, they are unique up to isomorphism. A homomorphism g : M → C with
C ∈ C is said to a C-envelope with the unique mapping property (see [6]) if for
any homomorphism g′ : M → C′ with C′ ∈ C, there is a unique homomorphism
f : C → C′ such that fg = g′. Dually, we have the definition of C-cover with
the unique mapping property.
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Let M be a left R-module. A right C-resolution of M is a complex (need
not be exact) 0 → M → F 0 → F 1 → · · · with each F i ∈ C. Write

L0 = M, L1 = Coker(M → F 0), Li = Coker(F i−2 → F i−1) for i ≥ 2.

Here M → F 0, L1 → F 1, Li → F i for i ≥ 2 are C-preenvelopes. The nth
cokernel Ln(n ≥ 0) is called the nth C-cosyzygy of M .

A left C-resolution of M is a complex · · · → I1 → I0 → M → 0 with each
Ii ∈ C. Write

K0 = M, K1 = Ker(I0 → M), Ki = Ker(Ii−1 → Ii−2) for i ≥ 2.

Here I0 → M, I1 → K1, Ii → Ki for i ≥ 2 are C-precovers. The nth kernel
Kn(n ≥ 0) is called the nth C-syzygy of M .

A left C-resolution · · · → I1 → I0 → M → 0 is called minimal if every
Ii → Ki is C-cover for any i ≥ 0.

Let R be a ring. A left R-module M is coherent if every finitely generated
submodule of M is finitely presented. The ring R is said to be left coherent if
R is a coherent as a left R-module. Since coherence of rings and modules first
appeared in [2], their generalizations have been studied extensively by many
authors (see, [3, 4, 7, 9, 11, 15, 17]). A ring R is called left J-coherent [7] if the
Jacobson radical J(R) of R is a coherent left R-module. R is said to be left
P -coherent [17] (resp. left min-coherent [15]) if every principal (resp. minimal)
left ideal of R is finitely presented.

Recall that the prime radical Nil∗(R) [14] (N(R) for short) of R is the
intersection of all prime ideals of R. N(R) contains all nilpotent one-side
ideal of R. A ring R is semiprime if N(R) = 0. We say that a ring R is
left Nil∗-coherent if the prime radical N(R) of R is a coherent left R-module,
or equivalently, any finitely generated left ideal in N(R) is finitely presented.
Nil∗-coherent rings are introduced, in this paper, as the generalization of J-
coherent rings and semiprime rings. Some examples of left Nil∗-coherent rings
are given, and some properties of left Nil∗-coherent rings are studied. We prove
that if R is right perfect, then R is left Nil∗-coherent if and only if R is left
coherent. To characterize left Nil∗-coherent rings, we introduce left N -injective
modules and right N -flat modules. The class of left N -injective (resp. right
N -flat) R-modules is denoted NI (resp. NF). We also show that if R is left
Nil∗-coherent, then every right R-module has an NF -preenvelope and every
left R-module has an NI-cover.

In [8], Enochs and Jenda investigated the global dimension of a left Noe-
therian ring using the left injective resolutions of left R-modules. Mao recently
generalized their results to left coherent rings (see [16]). In the third section of
this paper, left strongly Nil∗-coherent rings and the N -injective dimensions are
defined. We study the N -injective dimensions of modules and rings in terms
of left NI-resolutions and right NF -resolutions of modules.
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2. Nil∗-coherent rings

Definition 2.1. A ring R is said to be left Nil∗-coherent if the prime radical
N(R) of R is coherent left R-module, or equivalently, every finitely generated
left ideal in N(R) is finitely presented. Similarly, we have the concept of right
Nil∗-coherent rings.

Remark 2.2. Here give some examples of Nil∗-coherent rings.
(1) Obviously, left J-coherent rings are left Nil∗-coherent because N(R) ⊆

J(R).
(2) A semiprime ring is right and left Nil∗-coherent. Moreover, a domain is

right and left Nil∗-coherent.

The following examples show that Nil∗-coherent rings are non-trivial gen-
eralizations of J-coherent rings and semiprime rings.

Example 1. Let R be a valuation ring of rankR > 1. Then R[[x]], the ring
of power series in one variable x, is a commutative domain, and so it is Nil∗-
coherent. But R[[x]] is not a J-coherent ring by [7, Example 3.16].

Example 2. Let R =
(

Z Z

0 Z

)

. Then R is a coherent ring, and hence it is a
Nil∗-coherent ring. However, R is not semiprime because there is a nilpotent
ideal ( 0 Z

0 0 ) 6= 0.

From the next example, we can see that the definition of Nil∗-coherent rings
is not left-right symmetric.

Example 3. Let L = Q(x2, x3, . . .) be a subfield of K = Q(x1, x2, . . .) with Q

the field of rational numbers, and there exists a field isomorphism ϕ : K → L.
We define a ring by taking R = K ×K with multiplication

(x, y)(x′, y′) = (xx′, ϕ(x)y′ + yx′),where x, y, x′, y′ ∈ K.

It is easy to see that R has exactly three right ideals, (0), R, and (0,K) =
(0, 1)R. So R is right Nil∗-coherent. Let a = (0, 1). Note that Ra ⊆ N(R)
and l(a) is not finitely generated. Then R is not left Nil∗-coherent.

Similar to [7, Proposition 2.10, Corollary 2.11 and Corollary 2.12], we have
the following results.

Proposition 2.3. Let ϕ : R → S be a ring homomorphism such that S is a

finitely generated left R-module and N(S) is a coherent left R-module. If R is

a left Nil∗-coherent ring, then so is S.

Proof. Let M be a finitely generated submodule of the left S-module N(S). By
assumption, M is a finitely generated submodule of the left R-module N(S),
and hence M is a finitely presented left R-module. So M is a finitely presented
left S-module by [11, Theorem 1]. Therefore, S is a left Nil∗-coherent ring. �

Corollary 2.4. Let R be a left Nil∗-coherent ring. Then Mn(R), the ring

of n × n matrices over R, is also a left Nil∗-coherent ring for every positive

integer n.
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Proof. By [14, Theorem 10.21], N(Mn(R)) = Mn(N(R)) ∼= N(R)n
2

. N(R)n
2

is a coherent left R-module by assumption, so is N(Mn(R)). Then the result
comes from Proposition 2.3. �

Corollary 2.5. If R is a left Nil∗-coherent ring and a finitely generated left

ideal I ⊆ N(R), then the quotient ring R/I is also left Nil∗-coherent.

Proof. We have N(R/I) = N(R)/I in terms of [14, Exercise 10.20]. Now let X
be a finitely generated submodule of the left R-module N(R/I). Then there is
a finitely generated left R-module J with I ⊆ J ⊆ N(R) and X = J/I. Since
R is left Nil∗-coherent, J is a finitely presented left R-module, so is X by [13,
Lemma 4.54]. Thus N(R/I) is a coherent left R-module. Therefore, R/I is a
left Nil∗-coherent ring by Proposition 2.3. �

Proposition 2.6. A direct product of rings R = R1 × R2 × · · · × Rn is left

Nil∗-coherent if and only if Ri is left Nil∗-coherent for i = 1, . . . , n.

Proof. Note that N(R) = N(R1) × N(R2) × · · · × N(Rn). If R is left Nil∗-
coherent, then N(R) is coherent left R-module, so is N(Ri) for all i. By
Proposition 2.3, Ri is left Nil∗-coherent.

Conversely, it is enough to prove the assertion for n = 2. There exists
an exact sequence 0 → N(R1) → N(R) → N(R2) → 0. Hence N(R2) ∼=
N(R)/N(R1) is a coherent R2-module, thus, a coherent R-module by [9, Theo-
rem 2.4.1]. Similarly, N(R1) is a coherent R-module. By [9, Theorem 2.2.1(2)],
N(R) is a coherent R-module, and hence R is left Nil∗-coherent. �

If R is the direct product of R1 and R2, where R1 is a left J-coherent ring
that is not semiprime and R2 is a semiprime ring that is not left J-coherent,
then R is a left Nil∗-coherent ring that is neither left J-coherent nor semiprime.

Let M be a bimodule over R. The trivial extension of R and M is R ∝ M =
{(a, x)|a ∈ R, x ∈ M} with addition defined componentwise and multiplication
defined by (a, x)(b, y) = (ab, ay + xb). For convenience, we write I ∝ X =
{(a, x)|a ∈ I, x ∈ X}, where I is a subset of R and X is a subset of M . The
below result is a generalization of [4, Theorem 12].

Proposition 2.7. A ring R is left coherent if and only if R ∝ R is left Nil∗-
coherent.

Proof. (⇒). It follows from [4, Theorem 12] and Remark 2.2(1).
(⇐). Set S = R ∝ R. We first prove that R is left P -coherent. For any

a ∈ R, S(0, a) ⊆ N(S) and lS(0, a) = lR(a) ∝ R. Since S is left Nil∗-coherent,
lR(a) ∝ R is a finitely generated left ideal of S. Write lR(a) ∝ R = S(a1, b1) +
· · · + S(an, bn) with all (ai, bi) ∈ S. It follows that lR(a) = Ra1 + · · · + Ran.
So R is left P -coherent.

Now since R ∝ R is left Nil∗-coherent, Mn(R) ∝ Mn(R) ∼= Mn(R ∝ R)
is left Nil∗-coherent (for all n > 0) by Corollary 2.4. Thus, Mn(R) is left
P -coherent, and so R is left coherent by [17, Proposition 2.4]. �
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Left Nil∗-coherent rings are left min-coherent. In fact, if Ra is a minimal
left ideal of R, then we have either (Ra)2 = 0, or Ra = Re for some idempotent
e2 = e ∈ R (see [14, Lemma 10.22]). The following example is constructed to
show that min-coherent rings need not be Nil∗-coherent.

Example 4. Let R be a countable direct product of the polynomial ring Q[y, z]
(see [13, Example 4.61(a)]). Then R[x] is not a coherent ring. Note that
R[x] ∝ R[x] ∼= (R ∝ R)[x], so (R ∝ R)[x] is not Nil∗-coherent by Proposition
2.7. But (R ∝ R)[x] is min-coherent because both socles are zero.

In order to characterize Nil∗-coherent rings, we introduce N -injective mod-
ules and N -flat modules as the following.

Definition 2.8. A leftR-moduleM is said to beN -injective if Ext1(R/I,M) =
0 for every finitely generated left ideal I in N(R). A right R-module F is called
N -flat if Tor1(F,R/I) = 0 for every finitely generated left ideal I in N(R). Du-
ally, we can define right N -injective modules and left N -flat modules.

Remark 2.9. (1) In what follows, NI (resp. NF) stands for the class of all
N -injective left R-modules (resp. N -flat right R-modules). By the definition,
it is clear that NI (resp. NF) is closed under direct sums, direct summands,
direct products (resp. direct limits) and extensions.

(2) A right R-module F is N -flat if and only if F+ is N -injective by the
standard isomorphism Ext1(N,F+) ∼= Tor1(F,N)+ for every finitely generated
left ideal I in N(R).

(3) Recall that a left R-module M (resp. right R-module F ) is J-injective
(resp. J-flat) if Ext1(R/I,M) = 0 (resp. Tor1(F,R/I) = 0) for any finitely
generated ideal I in J(R) (see [7]). It is easy to see that left J-injective (resp.
right J-flat) R-modules are left N -injective (resp. right N -flat). If R is left
Artinian, then left J-injective (resp. right J-flat) R-modules coincide with left
N -injective (resp. right N -flat).

Proposition 2.10. Let R be a ring. Then the following are equivalent:

(1) R is a semiprime ring.

(2) Every left (or right) R-module is N -injective.

(3) Every left (or right) simple R-module is N -injective.

(4) Every principle left (or right) ideal in N(R) is N -injective.

(5) Every right (or left) R-module is N -flat.

(6) Every finitely generated left (or right) ideal in N(R) is a pure submodule

of R.

Proof. (1)⇒(2) is trivial since N(R) = 0. (2)⇒(3) and (2)⇒(4) are clear.
(2)⇒(5) holds by Remark 2.9(2).
(3)⇒(1). Let a ∈ N(R). If N(R) + l(a) 6= R, then we take a maximal left

ideal M of R such that N(R) + l(a) ⊆ M . Then R/M is N -injective by (3).
Note that the homomorphism f : Ra → R/M given by f(xa) = x+M, x ∈ R
is well-defined. So there exists c ∈ R such that f = ·(c+M). Then 1 +M =
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f(a) = a(c+M) = ac+M , which implies that 1−ac ∈ M . But ac ∈ M , which
yields 1 ∈ M , a contradiction. Therefore N(R) + l(a) = R and so l(a) = R
because N(R) is a small ideal of R. So a = 0. Hence N(R) = 0.

(5)⇒(6). For any finitely generated left ideal I in N(R) and any right R-
module M , Tor1(M,R/I) = 0 since M is N -flat. Then R/I is flat, and hence
I is a pure submodule of R.

(6)⇒(2). Let I be a finitely generated left ideal in N(R). Then R/I is flat
by (6), and so it is projective. Thus every left R-module is N -injective.

(4)⇒(1). Suppose that N(R) 6= 0, then there exists an non-zero superfluous
submodule Ra in N(R). Thus Ext1(R/Ra,Ra) = 0 by (3), and so the exact
sequence 0 → Ra → R → R/Ra → 0 splits. Therefore Ra is a direct summand
of R. Since Ra is superfluous, Ra = 0, a contradiction. Hence R is a semiprime
ring. �

Let R = Z, the integer ring. By the proposition above, any R-module is
N -injective and N -flat. However, Z is not injective and Z/2Z is not flat as
R-module.

Similar to [7, Theorem 2.13], [15, Theorem 4.5] and [17, Theorem 2.7], we
have the following theorem which characterize Nil∗-coherent rings in terms of,
among others, N -injective modules, N -flat modules and N -flat preenvelope.

Theorem 2.11. Let R be a ring. Then the following are equivalent:

(1) R is a left Nil∗-coherent ring.
(2) Any direct product of copies of RR is N -flat.

(3) Any direct product of N -flat right R-modules is N -flat.

(4) Any direct limit of N -injective left R-modules is N -injective.

(5) For any finitely generated left ideal I in N(R) and any family {Mi} of

right R-modules, Tor1(
∏

Mi, R/I) ∼=
∏

Tor1(Mi, R/I) .
(6) A left R-module M is N -injective if and only if M+ is N -flat.

(7) A left R-module M is N -injective if and only if M++ is N -injective.

(8) A right R-module P is N -flat if and only if P++ is N -flat.

(9) Every right R-module has an NF-preenvelope.

Corollary 2.12. The following statements hold for any ring R :

(1) NI and NF are closed under pure submodules.

(2) If R is left Nil∗-coherent, then NI and NF are closed under pure

quotient modules.

Proof. (1). The proof is similar to that of [7, Lemma 2.4].
(2). For a pure exact sequence 0 → A → B → C → 0 of left R-modules

with B N -injective, there is a split exact sequence 0 → C+ → B+ → A+ → 0.
By Theorem 2.11, B+ is N -flat, so is C+. Thus C is N -injective by Theorem
2.11 again. The NF case is similar. �

The following result will consider the existence of NI-covers over a left
Nil∗-coherent ring.
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Proposition 2.13. Let R be a left Nil∗-coherent ring. Then every left R-

module has an NI-cover.

Proof. By Corollary 2.12(2), NI is closed under pure quotient modules. By
Remark 2.9(1), NI is closed under direct sums. Then, in view of [12, Theorem
2.5], every left R-module has an NI-cover. �

Remark 2.14. If R is a left Nil∗-coherent ring, then every right R-module has
a right NF -resolution by Theorem 2.11, and every right R-module has a left
NI-resolution by Proposition 2.13.

In general, anNI-cover need not be an epimorphism and anNF -preenvelope
need not be a monomorphism. Now we consider when every left R-module has
an epicNI-cover and when every rightR-module has a monicNF -preenvelope.

Proposition 2.15. Let R be left Nil∗-coherent. Then the following are equi-

valent:

(1) R is N -injective as left R-module.

(2) For any left R-module, there is an epimorphic NI-cover.
(3) For any right R-module, there is a monomorphic NF -preenvelope.

(4) Every (FP -)injective right R-module is N -flat.

(5) Every flat left R-module is N -injective.

Proof. (1) ⇒ (3). Let M be any right R-module. Then M has an NF -
preenvelope f : M → F by Theorem 2.11. Since (RR)+ is a cogenerator in the

category of right R-modules, there is an exact sequence 0 → M
i
−→

∏

(RR)+.
By Theorem 2.11,

∏

(RR)+ is N -flat. So there exists a homomorphism g : F →
∏

(RR)+ such that gf = i. Since i is a monomorphism, so is f .
(3) ⇒ (4). Note that the FP -injective right R-module E embeds in a N -flat

right R-module by (3). Thus E is N -flat by Corollary 2.12.
(4) ⇒ (5). For any flat left R-module F , F+ is injective. Then F+ is N -flat

by assumption, and hence F is N -injective by Theorem 2.11.
(5) ⇒ (2). For any left R-module M , in view of Proposition 2.13, there is

an NI-cover f : C → M . Note that R is also N -injective by hypothesis, so f
is an epimorphic.

(2) ⇒ (1). By assumption, R has an epimorphic NI-cover ϕ : D → R,

then we have an exact sequence 0 → K → D
ϕ
−→ R → 0 with K = Kerϕ and

D N -injective. Note that R is projective, so the sequence is split, then R is
N -injective as left R-module by Remark 2.9 (1). �

Corollary 2.16. The following are equivalent for a ring R.

(1) R is semiprime.

(2) R is left N -injective and every finitely generated left ideal in N(R) is

projective.

Proof. (1) ⇒ (2) is clear.
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(2) ⇒ (1). We firstly prove that every quotient module of a N -injective
left R-module is N -injective. Let B be any N -injective left R-module and
A ⊆ B. For any finitely generated left ideal I in N(R) and a homomorphism
f : I → B/A, I is projective, so there is a homomorphism g : I → B such
that πg = f , where π : B → B/A is the canonical epimorphism. Then there
is a homomorphism h : R → B such that hi = g since B is N -injective, where
i : I → R is an inclusion. Thus, f = πhi, and hence B/A is N -injective.
Thus, for any left R-module M , there is a monomorphic N -injective cover
α : E → M by [20, Proposition 4]. Since R is left N -injective, then α is
epimorphic by Proposition 2.15, whence M is left N -injective. By Proposition
2.10, R is semiprime. �

Remark 2.17. The ring R in Example 2 is left hereditary, and hence every
finitely generated left ideal in N(R) is projective. But it is not semiprime, so
R is not leftN -injective by Corollary 2.16. Thus, there exists a ring whose every
left R-module has an NI- cover but need not be an epimorphism and every
right R-module has an NF -preenvelope but need not be a monomorphism.

Recall that a ring R is right perfect [18] if R/J(R) is semisimple and J(R)
is right T -nilpotent. It was shown that if R is right perfect, then R is left
J-coherent if and only if R is left coherent (see [7]). At the end of this section,
we extend this result onto left Nil∗-coherent rings.

Proposition 2.18. If R is right perfect, then R is left Nil∗-coherent if and

only if R is left coherent.

Proof. (⇐) is clear.
(⇒). We first prove that every N -flat right R-module is flat. Let F be right

N -flat. Note that N(R) ∼= lim−→Ii, where Ii range over all finitely generated

submodules of N(R). Then

Tor1(F,R/N(R)) = Tor1(F, lim−→R/Ii) = lim−→Tor1(F,R/Ii) = 0.

Since N(R) ⊆ J(R) is also right T -nilpotent, F is right flat by [23, Theorem
5.2].

Now let M be any N -injective left R-module. Then M+ is N -flat by The-
orem 2.11, and hence M+ is flat by the preceding result. Thus M++ is FP -
injective, whence M is FP -injective because M is a pure submodule of M++.
By Theorem 2.11 again, any direct limit of FP -injective left R-modules is
FP -injective, which implies R is left coherent. �

3. Strongly Nil∗-coherent rings

A class C of left R-modules is said to be coresolving [19] if E ∈ C for all
injective left R-modules E, if C is closed under extensions, and if given an
exact sequence of left R-modules 0 → A → B → C → 0, C ∈ C whenever
A,B ∈ C. Dually, we have the definition of resolving.

In the present section, we study the ring that NI is coresolving.
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Lemma 3.1. Let R be a ring. Then the following are equivalent:

(1) NI is coresolving.

(2) Extk(R/I,M) = 0 for any N -injective left R-module M and any finitely

generated left ideal I in N(R), k ≥ 1.
(3) R is left Nil∗-coherent and NF is resolving.

(4) R is left Nil∗-coherent and Tork(N,R/I) = 0 for any N -flat right R-

module N and any finitely generated left ideal I in N(R), k ≥ 1.

Proof. The proof is similar to that of [7, Lemma 3.4]. �

Definition 3.2. We call the ring satisfying the equivalent conditions in Lemma
3.1 left strongly Nil∗-coherent. Dually, the notion of right strongly Nil∗-
coherent rings can be defined.

Example 5. (1) By Proposition 2.10, a semiprime ring is left and right strongly
Nil∗-coherent.

(2) If a ring R satisfies the condition that every finitely generated left ideal
in N(R) is projective, then R is left strongly Nil∗-coherent by the proof of
Corollary 2.16.

(3) A right perfect and left Nil∗-coherent ring is left strongly Nil∗-coherent
by Proposition 2.18 and Lemma 3.1.

Remark 3.3. We claim that the definition of strongly Nil∗-coherent rings is
also not left-right symmetric. Indeed, the ring R in Example 3 is right Nil∗-
coherent but not left Nil∗-coherent. Note that it has only three right ideals, 0,
(0,K) = (0, 1)R and R. Thus R is left prefect by [18, Theorem B.39], and hence
R is right strongly Nil∗-coherent ring but not left strongly Nil∗-coherent.

Definition 3.4. The left N -injective dimension of a left R-module M , de-
noted by l.N − Id(M), is defined as the least nonnegative integer n such that
Extn+1(R/I,M) = 0 for any finitely generated left ideal I in N(R). If no such
n exists, then l.N − Id(M) = ∞. Set l.N − I.dim(R) = sup{l.N − Id(M) :
M ∈R M} and call l.N − I.dim(R) the left N -injective dimension of R.

By Proposition 2.10, l.N − I.dim(R) = 0 if and only if R is a semiprime
ring. Then the N -injective dimension of R can measure how far away a ring is
from being a semiprime ring.

Proposition 3.5. Let R be a left strongly Nil∗-coherent ring. Then the fol-

lowing are equivalent for a left R-module M :

(1) l.N − Id(M) ≤ n.
(2) Extn+1(R/I,M) = 0 for every finitely generated left ideal I in N(R).

(3) Extn+k(R/I,M) = 0 for every finitely generated left ideal I in N(R),
and k ≥ 1.

(4) For every exact sequence 0 → M → E0 → E1 → · · · → En−1 → Ln →
0 with each Ei N -injective, Ln is N -injective.

Proof. The proof is similar to that of [7, Lemma 3.6]. �
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Proposition 3.6. Let R be a strongly Nil∗-coherent ring and 0 → A → B →
C → 0 be an exact sequence of left R-modules. Then:

(1) l.N − Id(B) ≤ sup{l.N − Id(A), l.N − Id(C)}.
(2) l.N − Id(A) ≤ sup{l.N − Id(B), l.N − Id(C) + 1}.
(3) l.N − Id(C) ≤ sup{l.N − Id(B), l.N − Id(A)− 1}.

Proof. (1). For any finitely generated left ideal I inN(R), we have the following
exact sequence

Extn(R/I,A) → Extn(R/I,B) → Extn(R/I, C)

→ Extn+1(R/I,A) → Extn+1(R/I,B).

Let l.N−Id(B) = n. If l.N−Id(C) ≤ n−1, by Proposition 3.5, Extn(R/I, C) =
Extn+1(R/I,B) = 0. Then Extn+1(R/I,A) = 0, and hence l.N − Id(A) ≤ n
by Proposition 3.5 again. If l.N − Id(A) < n, then Extn(R/I,A) = 0, so
Extn(R/I,B) = 0, and hence l.N−Id(B) < n, contradicting with assumption.
Thus l.N − Id(A) = n, and (1) follows. If l.N − Id(C) ≥ n, it is clear that (1)
hold.

Similarly, we can prove (2) and (3). �

By Proposition 3.6, we immediately deduce the following corollary.

Corollary 3.7. Let R be a strongly Nil∗-coherent ring and 0 → A → B →
C → 0 be an exact sequence of left R-modules with B N -injective. If 0 <
l.N − Id(A) < ∞, then l.N − Id(A) = l.N − Id(C) + 1.

Lemma 3.8. Let R be a ring and M a left R-module. There is an exact

sequence 0 → M → I → N → 0 with I N -injective and Ext1(N, I ′) = 0 for all

N -injective left R-modules I ′. Moreover, Tor1(F,N) = 0 for all N -flat right

R-modules F .

Proof. In view of [10, Theorem 4.1.6] and [21, Corollary 3.5], left R-module M
has a special NI-preenvelope f : M → I, that is, there is an exact sequence
0 → M → I → N → 0, where I is N -injective and Ext1(N, I ′) = 0 for all
N -injective left R-modules I ′.

For any N -flat right R-module F , F+ is N -injective by Remark 2.9(2). Thus
(Tor1(F,N))+ ≃ Ext1(N,F+) = 0, and hence Tor1(F,N) = 0. �

Proposition 3.9. Let R be a left strongly Nil∗-coherent ring and M a left

R-module. Then l.N − Id(M) ≤ n(n ≥ 0) if and only if for every left NI-
resolution · · · → In → In−1 → · · · → I1 → I0 → N → 0 of any right R-module

N , Hom(M, In) → Hom(M,Kn) is an epimorphism, where Kn is the nth NI-
syzygy of N .

Proof. We proceed by induction on n. For n ≥ 1, by Lemma 3.8, there is an ex-
act sequence 0 → M → I → N → 0, where I is N -injective and Ext1(N, I ′) = 0
for all N -injective left R-modules I ′. Then we have the following commutative
diagram
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Hom(I, In) → Hom(I,Kn) → 0
↓ ↓

Hom(M, In) → Hom(M,Kn)
↓
0.

Since In → Kn is an NI-precover of Kn, the first arrow is exact. In ad-
dition, the first column is exact since Ext1(N, In) = 0. Furthermore, there is
commutative diagram

0 0 0
↓ ↓ ↓

0 → Hom(N,Kn) → Hom(N, In−1) → Hom(N,Kn−1)
↓ ↓ ↓

0 → Hom(I,Kn) → Hom(I, In−1) → Hom(I,Kn−1) → 0
↓ ↓ ↓

0 → Hom(M,Kn) → Hom(M, In−1) → Hom(M,Kn−1)
↓
0.

l.N − Id(M) ≤ n if and only if l.N − Id(N) ≤ n − 1 by Corollary 3.7 if
and only if Hom(N, In−1) → Hom(N,Kn−1) is an epimorphism by induction
if and only if Hom(I,Kn) → Hom(M,Kn) is an epimorphism by the second
diagram if and only if Hom(M, In) → Hom(M,Kn) is an epimorphism by the
first diagram.

For n = 0, let K0 = M . Then Hom(M, I0) → Hom(M,M) is an epimor-
phism means Hom(I,M) → Hom(M,M) is an epimorphism. Thus 0 → M →
I → N → 0 splits, and hence M is N -injective. Conversely, if M is N -injective,
then it is clear that Hom(M, I0) → Hom(M,K0) is an epimorphism. �

Let C,D and E be categories of modules and T : C×D → E be an additive
functor contravariant in the first variable and covariant in the second. Let I
and F be the classes of modules of C and D respectively. Then T is said to be
right balanced by I × F if for each module M of C, there is a T (−,F) exact
complex · · · → I1 → I0 → M → 0 with each Ii ∈ I, and for each module
N of D, there is a T (I,−) exact complex 0 → N → F 0 → F 1 → · · · with
F i ∈ F . Similarly, we have the definition of left balance. If T is covariant in
both variables, then we would postulate the existence of complexes · · · → I1 →
I0 → M → 0 and · · · → F1 → F0 → N → 0 or 0 → M → I0 → I1 → · · · and
0 → N → F 0 → F 1 → · · · to define the left or right balance functors relative
to I × F , respectively.

Lemma 3.10. If R is left strongly Nil∗-coherent, then − ⊗− on MR ×R M
is right balanced by NF ×NI.

Proof. Let M be any right R-module. By Remark 2.14, there is a right NF -
resolution 0 → M → F 0 → F 1 → · · · . For any N -injective left R-module N ,
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N+ is N -flat by Theorem 2.11. Thus we have an exact sequence

· · · → Hom(F 1, N+) → Hom(F 0, N+) → Hom(M,N+) → 0.

Hence
· · · → (N ⊗ F 1)+ → (N ⊗ F 0)+ → (N ⊗M)+ → 0

is exact. Then 0 → N ⊗M → N ⊗ F 0 → N ⊗ F 1 → · · · is exact. In addition,
by Lemma 3.8, the right NI-resolution 0 → G → I0 → I1 → · · · of any left
R-module G is exact, so the sequence 0 → G ⊗ F → I0 ⊗ F → I1 ⊗ F → · · ·
is exact for any F ∈ NF by Lemma 3.8 again, as desired. �

Remark 3.11. (1) Torn(−,−) denotes the nth right derived functor of − ⊗ −
with respect to the pair NF ×NI. If R is a left strongly Nil∗-coherent ring,
for any right R-module M and left R-module N , Torn(M,N) can be computed
using either the right NF -resolution of M or the right NI-resolution of N by
Lemma 3.10.

(2) If R is a left strongly Nil∗-coherent ring, by the proof of Lemma 3.8,
every left R-module has a right NI-resolution. So Hom(−,−) is left balanced
on RM×RM by NI ×NI. Let Extn(−,−) be the nth left derived functor of
Hom(−,−) with respect to the pair NI × NI. Then, for two left R-modules
M and N , Extn(M,N) can be computed using the right NI-resolution of M
or the left NI-resolution of N .

We are now in a position to prove the following theorem.

Theorem 3.12. If R is left strongly Nil∗-coherent and n ≥ 0, then the follow-

ing are equivalent:

(1) l.N − Id(R) ≤ n.
(2) If 0 → M → F 0 → F 1 → · · · is a right NF -resolution of right R-

module M , then the sequence is exact at F k for k ≥ n − 1, where

F−1 = M .

(3) For every flat left R-module F , there is an exact sequence 0 → F →
A0 → A1 → · · · → An → 0 with each Ai ∈ NI.

(4) For every injective right R-module A, there is an exact sequence 0 →
Fn → · · · → F1 → F0 → A → 0 with each Fi ∈ NF .

(5) If · · · → I1 → I0 → M → 0 is a left NI-resolution of a left R-module

M , then the sequence is exact at Ik for k ≥ n− 1, where I−1 = M .

Proof. (3)⇒(1) is trivial.
(1)⇒(2). By Remark 3.11 (1), the right derived functor Torn(R,M) can be

computed using either a right NF -resolution of M or a right NI-resolution of
R.

If n ≥ 2, we have the exact sequence 0 → R → A0 → · · · → An → 0 with
Ai ∈ NI, so Tork(R,M) = 0 for k ≥ n− 1. Computing using 0 → M → F 0 →
F 1 → · · · in (2), we see that the sequence · · · → R ⊗ Fn−2 → R ⊗ Fn−1 →
R⊗ Fn → · · · is exact at R⊗ F k for k ≥ n− 1, so 0 → M → F 0 → F 1 → · · ·
is exact at F k for k ≥ n− 1.
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If n = 1, 0 → R → A0 → A1 → 0 is exact, where Ai is N -injective. So
Tor1(R,M) = 0 as above, F 0 → F 1 → F 2 is exact and R ⊗M → Tor0(R,M)
is epic. Computing the latter morphism using 0 → M → F 0 → F 1, we have
M → F 0 → F 1 → · · · is exact.

If n = 0, then R is N -injective as a right R-module. But the balance of
− ⊗ − then gives 0 → R ⊗ M → R ⊗ F 0 → R ⊗ F 1 → · · · is exact. Thus
0 → M → F 0 → F 1 → · · · is exact.

(2)⇒(3). Let 0 → M → F 0 → F 1 → · · · be a right NF -resolution of a
finitely presented left R-module M . By assumption, the sequence is exact at
F k for k ≥ n− 1. Let 0 → F → A0 → A1 → · · · be exact with F flat and each
Ai N -injective. If n ≥ 2, we get Tork(F,M) = 0 for k ≥ n− 1 since F is flat.
Computing using 0 → F → A0 → A1 → · · · , then An−2 ⊗M → An−1 ⊗M →
An⊗M → An+1⊗M is exact. By [8, Lemma 8.4.23], K = Ker(An → An+1) is
a pure submodule of An, hence K is also N -injective by Corollary 2.12. Then
0 → F → A0 → A1 → · · · → An−1 → K → 0 gives the desired exact sequence.

If n = 1, then M → F 0 → F 1 → · · · is exact. Thus Tork(F,M) = 0 for
k ≥ 1 and F ⊗M → Tor0(F,M) is epic. So F ⊗M → A0 ⊗M → A1 ⊗M →
A2 ⊗ M is exact. By [8, Lemma 8.4.23] again, we get the exact sequence
0 → F → A0 → K → 0 with K = Ker(A1 → A2) N -injective.

If n = 0, then 0 → M → F 0 → F 1 → · · · is exact, so Tork(F,M) = 0
for k ≥ 0 and F ⊗ M → Tor0(F,M) is an isomorphism. This gives that
0 → F ⊗ M → A0 ⊗ M → A1 ⊗ M is exact, which implies F is a pure
submodule of A0, hence F is N -injective.

(5)⇒(1). By assumption, In → In−1 → In−2 is exact at In−1. Thus In →
Kn is epic, where Kn = Ker(In−1 → In−2). Hence Hom(R, In) → Hom(R,Kn)
is epic. By Proposition 3.9, l.N − Id(R) ≤ n.

(1)⇒(5). If n ≥ 2. Let 0 → R → A0 → · · · → An → 0 be a right NI-
resolution of a right R-module M , then Extk(R,M) = 0 for k ≥ n − 1. By
Remark 3.11 (2), we can compute Extk(R,M) = 0 using a left NI-resolution
of M · · · → I1 → I0 → M → 0, so · · · → Hom(R, In) → Hom(R, In−1) →
· · · → Hom(R, I1) → Hom(R, I0) → Hom(R,M) → 0 is exact at Hom(R, Ik)
for k ≥ n− 1. Hence · · · → I1 → I0 → M → 0 is exact at Ik for k ≥ n− 1.

If n = 1, then there is an exact sequence 0 → R → A0 → A1 → 0 with
Ai ∈ NI. So 0 → Hom(A1,M) → Hom(A0,M) → Hom(R,M) is exact. Thus
Extk(R,M) = 0 for k ≥ 1 and Ext0(R,M) → Hom(R,M) is a monomorphism.
But computing Ext0(R,M) using a left NI-resolution of M , we see that I1 →
I0 → M is exact at I0, so · · · → I1 → I0 → M → 0 is exact at Ik for k ≥ 0.

If n = 0, then R is N -injective as a left R-module. So every NI-precover is
epic, and hence · · · → I1 → I0 → M → 0 is exact.

The proof of (4)⇔(5) is dual to that of (2)⇔(3). �

Proposition 3.13. Let R be a left strongly Nil∗-coherent ring and wD(R) <
∞, where wD(R) is the weak global dimension of R. Then l.N − Id(R) =
l.N − I.dim(R) ≤ wD(R).
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Proof. We first prove the right inequality. By the definitions of left N -injective
dimensions of modules and rings, we have

l.N − I.dim(R) = sup{l.pd(R/I) | I is finitely generated left ideal in N(R)},

where l.pd(R/I) is the left projective dimension ofR/I. Then l.N−I.dim(R) ≤
wD(R). We suppose that l.N − I.dim(R) = n < ∞.

For the left equality, it suffices to prove l.N − I.dim(R) ≤ l.N − Id(R).
Assume that l.N − Id(R) = m < ∞. By the similar proof of [7, Proposition
3.10], it can be proven that l.N − Id(F ) ≤ m for any free left R-module
F . Note that, for any left R-module M , there exists an exact sequence 0 →
Kn → Fn−1 → Fn−2 → · · · → F0 → M → 0 with each Fi free. Then l.N −
Id(Kn) = n and l.N − Id(Fi) ≤ m. By Proposition 3.5, Extm+1(R/I,M) ∼=
Extm+n+1(R/I,Kn) = 0 for every finitely generated left ideal I in N(R), and
hence l.N − Id(M) ≤ m. Therefore, l.N − Id(R) = l.N − I.dim(R). �

Example 6. Let F[x] be a polynomial ring over a field F. Then F[x] is
semiprime, and hence l.N − Id(R) = l.N − I.dim(R) = 0. It is easy to verify
that wD(R) = 1.

Lemma 3.14. Let R be a left strongly Nil∗-coherent ring and M a left R-

module. If Ext1(E,M) = 0 for all N -injective left R-modules E, then M has

an NI-cover L → M with L injective.

Proof. In view of Proposition 2.13, M has an NI-cover f : L → M . For the

exact sequence 0 → L
i
−→ E → L′ → 0 with E injective, L′ is N -injective. Thus

Hom(E,M) → Hom(L,M) → 0 is exact since Ext1(L′,M) = 0, and hence
there is g ∈ Hom(E,M) such that f = gi. Then there exists h : E → L such
that g = fh since f : L → M is an NI-cover of M . So f = fhi, implies hi is
isomorphism. Therefore, L is injective. �

Theorem 3.15. If R is left strongly Nil∗-coherent and n ≥ 1, then the follow-

ing are equivalent:

(1) l.N − I.dim(R) ≤ n.
(2) Every nth NI-syzygy of a left R-module is N -injective.

(3) Every (n−1)th NI-syzygy of a right R-module has an NI-cover which
is a monomorphism.

Moreover, if n ≥ 2, then the above conditions are equivalent to:

(4) Every (n − 2)th NI-syzygy in a minimal left NI-resolution of a left

R-module has an NI-cover with the unique mapping property.

Proof. (1)⇒(2). Let Kn be nth NI-syzygy of a left R-module. Then l.N −
Id(Kn) ≤ n. So Hom(Kn, In) → Hom(Kn,Kn) is an epimorphism by Proposi-
tion 3.9, whence Kn is N -injective.

(2)⇒(3). Let f : In−1 → Kn−1 be an NI-precover of the (n − 1)th NI-
syzygy Kn−1, and Kn = Ker(f). Then we have the exact sequence 0 → Kn →
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In−1 → im(f) → 0. By assumption, Kn is N -injective, so is im(f). Thus the
inclusion im(f) → Kn−1 is an NI-cover which is a monomorphism.

(3)⇒(2). Let · · · → In → In−1 → · · · → I1 → I0 → N → 0 be any
left NI-resolution of a left R-module N and Kn = Ker(In−1 → In−2),Kn−1 =
Ker(In−2 → In−3). Kn−1 has a monomorphic NI-cover I → Kn−1 by assump-
tion. Thus Kn ⊕ I ≃ In−1 in terms of [8, Lemma 8.6.3]. So Kn is N -injective
by Remark 2.9(1).

(2)⇒(1). Let M be a left R-module. For a left NI-resolution · · · → In →
In−1 → · · · → I1 → I0 → N → 0 of a left R-module N , In → Kn is a split
epimorphism since Kn is N -injective. Thus Hom(M, In) → Hom(M,Kn) is
epimorphic, hence l.N−Id(M) ≤ n by Proposition 3.9. Then l.N−I.dim(R) ≤
n.

(3)⇒(4). Let · · · → In−3 → In−4 → · · · → I1 → I0 → M → 0 be a
minimal NI-resolution of a left R-module M with Kn−2 = Ker(In−3 → In−4).
By assumption, Kn−1 = Ker(In−2 → In−3) has a monomorphic NI-cover
i : In−1 → Kn−1. Note Ext

1(I,Kn−1) = 0 for all N -injective right R-modules I
by Wakamatsu’s Lemma. Thus In−1 is injective by Lemma 3.14. But Kn−1 has
no nonzero injective submodule by [15, Corollary 1.2.8]. Thus In−1 = 0, and
hence Hom(I,Kn−1) = Hom(I, In−1) = 0 for any N -injective left R-module I.
So we have the exact sequence 0 → Hom(I, In−2) → Hom(I,Kn−2) → 0 for
any N -injective left R-module I, as desired.

(4)⇒(2). Let · · · → In → In−1 → · · · → I1 → I0 → M → 0 be an NI-
resolution of a left R-moduleM with Kn = Ker(In−1 → In−2). By assumption,
M has a minimal NI-resolution of the form 0 → I ′n−2 → I ′n−3 → · · · → I ′1 →
I ′0 → M → 0. In view of [8, Corollary 8.6.4], Kn ⊕ In−2 ⊕ I ′n−3 ⊕ · · · ∼=
In−1 ⊕ I ′n−2 ⊕ In−3 ⊕ · · · . Thus Kn is N -injective. �

Corollary 3.16. If R is left strongly Nil∗-coherent, then the following are

equivalent:

(1) l.N − I.dim(R) ≤ 2.
(2) Every left R-module has an NI-cover with the unique mapping prop-

erty.
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