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Nil,-COHERENT RINGS

YUEMING XIANG AND LUNQUN OUYANG

ABSTRACT. Let R be a ring and Nil«(R) be the prime radical of R. In
this paper, we say that a ring R is left Nil«-coherent if Nil.(R) is coherent
as a left R-module. The concept is introduced as the generalization of left
J-coherent rings and semiprime rings. Some properties of Nil.-coherent
rings are also studied in terms of N-injective modules and N-flat modules.

1. Introduction

Throughout R is an associative ring with identity and all modules are uni-
tary. pM(Mp) stands for the category of all left (right) R-modules.
Hom(M, N) (resp. Ext"(M,N)) means Hompr(M,N) (resp. Extg(M,N)),
and similarly M ® N (resp. Tor, (M, N)) denotes M @ N (resp. Tor,lf(M, N)).
The character module M is defined by M = Homg (M, Q/Z). The Jacobson
radical of R is denoted by J(R). If X is a subset of R, the right (left) anni-
hilator of X in R is denoted by 7(X) (I(X)). We will use the usual notations
from [1, 8, 9, 13, 14, 22].

We first recall some known notions needed in the sequel.

Let C be the class of R-modules. For an R-module M, C € C is called a C-
cover [8] of M if there is a homomorphism g : C — M such that the following
hold: (1) For any homomorphism ¢’ : ¢/ — M with C’ € C, there exists a
homomorphism f : ¢/ — C with ¢’ = gf. (2) If f is an endomorphism of
C with gf = g, then f must be an automorphism. If (1) holds but (2) may
not, g : C' — M is called a C-precover. Dually we have the definition of a
C-(pre)envelope. C-covers and C-envelopes may not exist in general, but if they
exist, they are unique up to isomorphism. A homomorphism g : M — C with
C € C is said to a C-envelope with the unique mapping property (see [6]) if for
any homomorphism ¢’ : M — C’ with C’ € C, there is a unique homomorphism
f: C — C' such that fg = ¢’. Dually, we have the definition of C-cover with
the unique mapping property.
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Let M be a left R-module. A right C-resolution of M is a complex (need
not be exact) 0 - M — F* — F! — ... with each F* € C. Write

L° = M, L' = Coker(M — F), L' = Coker(F""? — F'"') for i>2.

Here M — F°, L' — F' L' — F' for i > 2 are C-preenvelopes. The nth
cokernel L™(n > 0) is called the nth C-cosyzygy of M.

A left C-resolution of M is a complex --- — Iy — [y - M — 0 with each
I, € C. Write

Ky = M, K, = Ker([o — M), K, = Ker([i_l — Ii_g) for i > 2.

Here Iy —» M,I; — Ki,I; — K; for i > 2 are C-precovers. The nth kernel
K, (n > 0) is called the nth C-syzygy of M.

A left C-resolution --- — Iy — Iy — M — 0 is called minimal if every
I; — K; is C-cover for any i > 0.

Let R be a ring. A left R-module M is coherent if every finitely generated
submodule of M is finitely presented. The ring R is said to be left coherent if
R is a coherent as a left R-module. Since coherence of rings and modules first
appeared in [2], their generalizations have been studied extensively by many
authors (see, [3,4, 7,9, 11, 15, 17]). A ring R is called left J-coherent [7] if the
Jacobson radical J(R) of R is a coherent left R-module. R is said to be left
P-coherent [17] (resp. left min-coherent [15]) if every principal (resp. minimal)
left ideal of R is finitely presented.

Recall that the prime radical Nil.(R) [14] (N(R) for short) of R is the
intersection of all prime ideals of R. N(R) contains all nilpotent one-side
ideal of R. A ring R is semiprime if N(R) = 0. We say that a ring R is
left Nil.-coherent if the prime radical N(R) of R is a coherent left R-module,
or equivalently, any finitely generated left ideal in N(R) is finitely presented.
Nil,-coherent rings are introduced, in this paper, as the generalization of J-
coherent rings and semiprime rings. Some examples of left Nil,-coherent rings
are given, and some properties of left Nil.-coherent rings are studied. We prove
that if R is right perfect, then R is left Nil,-coherent if and only if R is left
coherent. To characterize left Nil.-coherent rings, we introduce left N-injective
modules and right N-flat modules. The class of left N-injective (resp. right
N-flat) R-modules is denoted NZ (resp. NF). We also show that if R is left
Nil,-coherent, then every right R-module has an N F-preenvelope and every
left R-module has an A'Z-cover.

In [8], Enochs and Jenda investigated the global dimension of a left Noe-
therian ring using the left injective resolutions of left R-modules. Mao recently
generalized their results to left coherent rings (see [16]). In the third section of
this paper, left strongly Nil.-coherent rings and the N-injective dimensions are
defined. We study the N-injective dimensions of modules and rings in terms
of left NZ-resolutions and right A/ F-resolutions of modules.
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2. Nil.-coherent rings

Definition 2.1. A ring R is said to be left Nil.-coherent if the prime radical
N(R) of R is coherent left R-module, or equivalently, every finitely generated
left ideal in N(R) is finitely presented. Similarly, we have the concept of right
Nil,-coherent rings.

Remark 2.2. Here give some examples of Nil,-coherent rings.

(1) Obviously, left J-coherent rings are left Nil.-coherent because N(R) C
J(R).

(2) A semiprime ring is right and left Nil.-coherent. Moreover, a domain is
right and left Nil.-coherent.

The following examples show that Nil.-coherent rings are non-trivial gen-
eralizations of J-coherent rings and semiprime rings.

Example 1. Let R be a valuation ring of rankR > 1. Then R[[z]], the ring
of power series in one variable z, is a commutative domain, and so it is Nil,-
coherent. But R[[z]] is not a J-coherent ring by [7, Example 3.16].

Example 2. Let R = (4%). Then R is a coherent ring, and hence it is a

Nil.-coherent ring. However, R is not semiprime because there is a nilpotent
ideal (§%) #0.

From the next example, we can see that the definition of Nil.-coherent rings
is not left-right symmetric.

Example 3. Let L = Q(z2,23,...) be a subfield of K = Q(z1, z2,...) with Q
the field of rational numbers, and there exists a field isomorphism ¢ : K — L.
We define a ring by taking R = K x K with multiplication

(z,y)(@",y) = (za’,p(2)y" +ya'), where .y, 2",y € K.

It is easy to see that R has exactly three right ideals, (0), R, and (0, K) =
(0,1)R. So R is right Nil,-coherent. Let a = (0,1). Note that Ra C N(R)
and [(a) is not finitely generated. Then R is not left Nil,-coherent.

Similar to [7, Proposition 2.10, Corollary 2.11 and Corollary 2.12], we have
the following results.

Proposition 2.3. Let ¢ : R — S be a ring homomorphism such that S is a
finitely generated left R-module and N(S) is a coherent left R-module. If R is
a left Nil.-coherent ring, then so is S.

Proof. Let M be a finitely generated submodule of the left S-module N(S). By
assumption, M is a finitely generated submodule of the left R-module N(S),
and hence M is a finitely presented left R-module. So M is a finitely presented
left S-module by [11, Theorem 1]. Therefore, S is a left Nil.-coherent ring. [

Corollary 2.4. Let R be a left Nil.-coherent ring. Then M, (R), the ring
of n X n matrices over R, is also a left Nil.-coherent ring for every positive
integer n.
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Proof. By [14, Theorem 10.21], N(M,(R)) = M,(N(R)) = N(R)"". N(R)"™
is a coherent left R-module by assumption, so is N (M, (R)). Then the result
comes from Proposition 2.3. O

Corollary 2.5. If R is a left Nil.-coherent ring and a finitely generated left
ideal I C N(R), then the quotient ring R/I is also left Nil.-coherent.

Proof. We have N(R/I) = N(R)/I in terms of [14, Exercise 10.20]. Now let X
be a finitely generated submodule of the left R-module N(R/I). Then there is
a finitely generated left R-module J with I C J C N(R) and X = J/I. Since
R is left Nil,-coherent, J is a finitely presented left R-module, so is X by [13,
Lemma 4.54]. Thus N(R/I) is a coherent left R-module. Therefore, R/I is a
left Nil.-coherent ring by Proposition 2.3. O

Proposition 2.6. A direct product of rings R = Ry X Ry X +-- X Ry, is left
Nily-coherent if and only if R; is left Nil.-coherent fori=1,...,n.

Proof. Note that N(R) = N(Ry) x N(Ra) x -+ x N(Ry). If R is left Nil,-
coherent, then N(R) is coherent left R-module, so is N(R;) for all i. By
Proposition 2.3, R; is left Nil,-coherent.

Conversely, it is enough to prove the assertion for n = 2. There exists
an exact sequence 0 — N(R;) — N(R) — N(R2) — 0. Hence N(Rz) =
N(R)/N(Ry) is a coherent Ro-module, thus, a coherent R-module by [9, Theo-
rem 2.4.1]. Similarly, N(R;) is a coherent R-module. By [9, Theorem 2.2.1(2)],
N(R) is a coherent R-module, and hence R is left Nil.-coherent. O

If R is the direct product of R; and Ry, where R; is a left J-coherent ring
that is not semiprime and R; is a semiprime ring that is not left J-coherent,
then R is a left Nil,-coherent ring that is neither left J-coherent nor semiprime.

Let M be a bimodule over R. The trivial extension of R and M is R x M =
{(a,x)]a € R,x € M} with addition defined componentwise and multiplication
defined by (a,z)(b,y) = (ab,ay + xb). For convenience, we write I o« X =
{(a,x)|a € I,z € X}, where I is a subset of R and X is a subset of M. The
below result is a generalization of [4, Theorem 12].

Proposition 2.7. A ring R is left coherent if and only if R < R is left Nil,-
coherent.

Proof. (=). It follows from [4, Theorem 12] and Remark 2.2(1).

(«<). Set S = R « R. We first prove that R is left P-coherent. For any
a € R, S(0,a) C N(S) and l5(0,a) = Ig(a) x R. Since S is left Nil.-coherent,
Ir(a) x R is a finitely generated left ideal of S. Write Ig(a) x R = S(a1,b1) +
-+ S(an, by) with all (a;,b;) € S. It follows that Ir(a) = Ray + -+ + Rap.
So R is left P-coherent.

Now since R o R is left Nil,-coherent, M, (R) x M,(R) = M,(R < R)
is left Nil.-coherent (for all n > 0) by Corollary 2.4. Thus, M,(R) is left
P-coherent, and so R is left coherent by [17, Proposition 2.4]. O
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Left Nil.-coherent rings are left min-coherent. In fact, if Ra is a minimal
left ideal of R, then we have either (Ra)? = 0, or Ra = Re for some idempotent
e? = e € R (see [14, Lemma 10.22]). The following example is constructed to
show that min-coherent rings need not be Nil.-coherent.

Example 4. Let R be a countable direct product of the polynomial ring Q[y, z]
(see [13, Example 4.61(a)]). Then R[z] is not a coherent ring. Note that
R[z] x R[x] = (R x R)[x], so (R x R)[x] is not Nil.-coherent by Proposition
2.7. But (R x R)[z] is min-coherent because both socles are zero.

In order to characterize Nil.-coherent rings, we introduce N-injective mod-
ules and N-flat modules as the following.

Definition 2.8. A left R-module M is said to be N-injective if Ext' (R/I, M) =
0 for every finitely generated left ideal I in N(R). A right R-module F' is called
N-flat if Tory (F, R/I) = 0 for every finitely generated left ideal I in N(R). Du-
ally, we can define right N-injective modules and left N-flat modules.

Remark 2.9. (1) In what follows, NZ (resp. N F) stands for the class of all
N-injective left R-modules (resp. N-flat right R-modules). By the definition,
it is clear that N'Z (resp. N'F) is closed under direct sums, direct summands,
direct products (resp. direct limits) and extensions.

(2) A right R-module F is N-flat if and only if F'* is N-injective by the
standard isomorphism Ext!(N, F*) 2 Tor; (F, N)* for every finitely generated
left ideal I in N(R).

(3) Recall that a left R-module M (resp. right R-module F) is J-injective
(resp. J-flat) if Ext'(R/I, M) = 0 (vesp. Tori(F,R/I) = 0) for any finitely
generated ideal I in J(R) (see [7]). It is easy to see that left J-injective (resp.
right J-flat) R-modules are left N-injective (resp. right N-flat). If R is left
Artinian, then left J-injective (resp. right J-flat) R-modules coincide with left
N-injective (resp. right N-flat).

Proposition 2.10. Let R be a ring. Then the following are equivalent:
(1) R is a semiprime ring.
(2) Ewvery left (or right) R-module is N -injective.
(3) Ewery left (or right) simple R-module is N -injective.
(4) Ewvery principle left (or right) ideal in N(R) is N -injective.
(5) Every right (or left) R-module is N-flat.
(6) Ewvery finitely generated left (or right) ideal in N (R) is a pure submodule
of R.

Proof. (1)=(2) is trivial since N(R) = 0. (2)=-(3) and (2)=-(4) are clear.

(2)=-(5) holds by Remark 2.9(2).

(3)=(1). Let a € N(R). If N(R) + l(a) # R, then we take a maximal left
ideal M of R such that N(R) + I(a) € M. Then R/M is N-injective by (3).
Note that the homomorphism f : Ra — R/M given by f(za) =2+ M, z € R
is well-defined. So there exists ¢ € R such that f = -(c+ M). Then 1+ M =
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fla) = a(lc+ M) = ac+ M, which implies that 1 —ac € M. But ac € M, which
yields 1 € M, a contradiction. Therefore N(R) 4+ l(a) = R and so l(a) = R
because N(R) is a small ideal of R. So a = 0. Hence N(R) = 0.

(5)=(6). For any finitely generated left ideal I in N(R) and any right R-
module M, Tor;(M,R/I) = 0 since M is N-flat. Then R/I is flat, and hence
I is a pure submodule of R.

(6)=(2). Let I be a finitely generated left ideal in N(R). Then R/I is flat
by (6), and so it is projective. Thus every left R-module is N-injective.

(4)=(1). Suppose that N(R) # 0, then there exists an non-zero superfluous
submodule Ra in N(R). Thus Ext'(R/Ra, Ra) = 0 by (3), and so the exact
sequence 0 - Ra — R — R/Ra — 0 splits. Therefore Ra is a direct summand
of R. Since Ra is superfluous, Ra = 0, a contradiction. Hence R is a semiprime
ring. (|

Let R = Z, the integer ring. By the proposition above, any R-module is
N-injective and N-flat. However, Z is not injective and Z/27Z is not flat as
R-module.

Similar to [7, Theorem 2.13], [15, Theorem 4.5] and [17, Theorem 2.7], we
have the following theorem which characterize Nil.-coherent rings in terms of,
among others, N-injective modules, N-flat modules and N-flat preenvelope.

Theorem 2.11. Let R be a ring. Then the following are equivalent:

2) Any direct product of copies of Rg is N-flat.

3) Any direct product of N-flat right R-modules is N -flat.

4) Any direct limit of N-injective left R-modules is N -injective.

5) For any finitely generated left ideal I in N(R) and any family {M;} of
right R-modules, Tory (][] M;, R/I) =[] Tor1(M;, R/I) .

(6) A left R-module M is N -injective if and only if Mt is N-flat.

(7) A left R-module M is N -injective if and only if M is N-injective.

(8) A right R-module P is N-flat if and only if PT is N-flat.

(9) Every right R-module has an N F-preenvelope.

Corollary 2.12. The following statements hold for any ring R :

(1) NZ and N'F are closed under pure submodules.
(2) If R is left Nil.-coherent, then NI and N'F are closed under pure
quotient modules.

Proof. (1). The proof is similar to that of [7, Lemma 2.4].

(2). For a pure exact sequence 0 = A — B — C — 0 of left R-modules
with B N-injective, there is a split exact sequence 0 — CT — BT — AT — 0.
By Theorem 2.11, BT is N-flat, so is C™. Thus C is N-injective by Theorem
2.11 again. The N'F case is similar. O

The following result will consider the existence of NZ-covers over a left
Nil,-coherent ring.
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Proposition 2.13. Let R be a left Nil.-coherent ring. Then every left R-
module has an N'Z-cover.

Proof. By Corollary 2.12(2), NZ is closed under pure quotient modules. By
Remark 2.9(1), NZ is closed under direct sums. Then, in view of [12, Theorem
2.5], every left R-module has an NZ-cover. O

Remark 2.14. If R is a left Nil.-coherent ring, then every right R-module has
a right N F-resolution by Theorem 2.11, and every right R-module has a left
NZ-resolution by Proposition 2.13.

In general, an NZ-cover need not be an epimorphism and an N F-preenvelope
need not be a monomorphism. Now we consider when every left R-module has
an epic N'Z-cover and when every right R-module has a monic N F-preenvelope.

Proposition 2.15. Let R be left Nil.-coherent. Then the following are equi-
valent:

(1) R is N-injective as left R-module.
(2) For any left R-module, there is an epimorphic NZ-cover.
(3) For any right R-module, there is a monomorphic N'F-preenvelope.
(4) Ewvery (FP-)injective right R-module is N-flat.

(5) Fwvery flat left R-module is N -injective.

Proof. (1) = (3). Let M be any right R-module. Then M has an N F-
preenvelope f: M — F by Theorem 2.11. Since (gR)™" is a cogenerator in the

category of right R-modules, there is an exact sequence 0 — M = [[(rR)*.
By Theorem 2.11, [[(gR)™ is N-flat. So there exists a homomorphism g : F —
[1(gR)T such that gf = i. Since i is a monomorphism, so is f.

(3) = (4). Note that the F P-injective right R-module E embeds in a N-flat
right R-module by (3). Thus E is N-flat by Corollary 2.12.

(4) = (5). For any flat left R-module F, F'" is injective. Then F't is N-flat
by assumption, and hence F' is N-injective by Theorem 2.11.

(5) = (2). For any left R-module M, in view of Proposition 2.13, there is
an N'Z-cover f : C — M. Note that R is also N-injective by hypothesis, so f
is an epimorphic.

(2) = (1). By assumption, R has an epimorphic NZ-cover ¢ : D — R,
then we have an exact sequence 0 - K — D % R — 0 with K = Kerp and
D N-injective. Note that R is projective, so the sequence is split, then R is
N-injective as left R-module by Remark 2.9 (1). O

Corollary 2.16. The following are equivalent for a ring R.

(1) R is semiprime.
(2) R is left N-injective and every finitely generated left ideal in N(R) is
projective.

Proof. (1) = (2) is clear.
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(2) = (1). We firstly prove that every quotient module of a N-injective
left R-module is N-injective. Let B be any N-injective left R-module and
A C B. For any finitely generated left ideal I in N(R) and a homomorphism
f I — BJA, I is projective, so there is a homomorphism g : I — B such
that mg = f, where 7 : B — B/A is the canonical epimorphism. Then there
is a homomorphism h : R — B such that hi = g since B is N-injective, where
i : I —» R is an inclusion. Thus, f = 7whi, and hence B/A is N-injective.
Thus, for any left R-module M, there is a monomorphic N-injective cover
a : E — M by [20, Proposition 4]. Since R is left N-injective, then « is
epimorphic by Proposition 2.15, whence M is left N-injective. By Proposition
2.10, R is semiprime. (I

Remark 2.17. The ring R in Example 2 is left hereditary, and hence every
finitely generated left ideal in N(R) is projective. But it is not semiprime, so
R is not left N-injective by Corollary 2.16. Thus, there exists a ring whose every
left R-module has an N'Z- cover but need not be an epimorphism and every
right R-module has an N F-preenvelope but need not be a monomorphism.

Recall that a ring R is right perfect [18] if R/J(R) is semisimple and J(R)
is right T-nilpotent. It was shown that if R is right perfect, then R is left
J-coherent if and only if R is left coherent (see [7]). At the end of this section,
we extend this result onto left Nil.-coherent rings.

Proposition 2.18. If R is right perfect, then R is left Nil.-coherent if and
only if R is left coherent.

Proof. (<) is clear.

(=). We first prove that every N-flat right R-module is flat. Let F' be right
N-flat. Note that N(R) = H_H}Ii, where I; range over all finitely generated
submodules of N(R). Then

Tory (F, R/N(R)) = Tory(F, ligR/Ii) = ligTorl(F, R/I;) =0.

Since N(R) C J(R) is also right T-nilpotent, F' is right flat by [23, Theorem
5.2].

Now let M be any N-injective left R-module. Then M™ is N-flat by The-
orem 2.11, and hence M is flat by the preceding result. Thus M T is FP-
injective, whence M is F P-injective because M is a pure submodule of M+,
By Theorem 2.11 again, any direct limit of F P-injective left R-modules is
F P-injective, which implies R is left coherent. (I

3. Strongly Nil.-coherent rings

A class C of left R-modules is said to be coresolving [19] if E € C for all
injective left R-modules E, if C is closed under extensions, and if given an
exact sequence of left R-modules 0 - A - B — C — 0, C € C whenever
A, B € C. Dually, we have the definition of resolving.

In the present section, we study the ring that N'Z is coresolving.
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Lemma 3.1. Let R be a ring. Then the following are equivalent:

(1) NZ is coresolving.

(2) Ext®(R/I, M) =0 for any N -injective left R-module M and any finitely
generated left ideal I in N(R), k > 1.

(3) R is left Nil.-coherent and N'F is resolving.

(4) R is left Nil.-coherent and Tory(N,R/I) =0 for any N-flat right R-
module N and any finitely generated left ideal T in N(R), k > 1.

Proof. The proof is similar to that of [7, Lemma 3.4]. O

Definition 3.2. We call the ring satisfying the equivalent conditions in Lemma
3.1 left strongly Nil.-coherent. Dually, the notion of right strongly Nil,.-
coherent rings can be defined.

Example 5. (1) By Proposition 2.10, a semiprime ring is left and right strongly
Nil,-coherent.

(2) If a ring R satisfies the condition that every finitely generated left ideal
in N(R) is projective, then R is left strongly Nil.-coherent by the proof of
Corollary 2.16.

(3) A right perfect and left Nil,-coherent ring is left strongly Nil.-coherent
by Proposition 2.18 and Lemma 3.1.

Remark 3.3. We claim that the definition of strongly Nil.-coherent rings is
also not left-right symmetric. Indeed, the ring R in Example 3 is right Nil.-
coherent but not left Nil.-coherent. Note that it has only three right ideals, 0,
(0, K) = (0,1)R and R. Thus R is left prefect by [18, Theorem B.39], and hence
R is right strongly Nil.-coherent ring but not left strongly Nil.-coherent.

Definition 3.4. The left N-injective dimension of a left R-module M, de-
noted by I.N — Id(M), is defined as the least nonnegative integer n such that
Ext"*(R/I, M) = 0 for any finitely generated left ideal I in N(R). If no such
n exists, then I.N — Id(M) = co. Set I.N — I.dim(R) = sup{l.N — Id(M) :
M eg M} and call I.N — I.dim(R) the left N-injective dimension of R.

By Proposition 2.10, [.N — I.dim(R) = 0 if and only if R is a semiprime
ring. Then the N-injective dimension of R can measure how far away a ring is
from being a semiprime ring.

Proposition 3.5. Let R be a left strongly Nil.-coherent ring. Then the fol-
lowing are equivalent for a left R-module M :
(1) I.N —Id(M) < n.
(2) Ext"™(R/I, M) =0 for every finitely generated left ideal I in N(R).
(3) Ext"+k(R/I, M) = 0 for every finitely generated left ideal I in N(R),
and k > 1.
(4) For every exact sequence 0 - M — Ey - Fy — -+ = Ep_1 — L, —
0 with each E; N -injective, L,, is N -injective.

Proof. The proof is similar to that of [7, Lemma 3.6]. O
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Proposition 3.6. Let R be a strongly Nil.-coherent ring and 0 - A — B —
C — 0 be an exact sequence of left R-modules. Then:
(1) I.N — Id(B) <sup{l.N — Id(A),l.N — Id(C)}.
(2) I.N — Id(A) < sup{l.N — Id(B),l.N — Id(C) + 1}.
(3) I.N — Id(C) < sup{l.N — Id(B),l.N — Id(A) — 1}.

Proof. (1). For any finitely generated left ideal I in N (R), we have the following
exact sequence

Ext"(R/I, A) — Ext™(R/I, B) — Ext"(R/I,C)
— BExt"t(R/I, A) — Ext" T (R/I, B).

Let .N—Id(B) =n.If L N—I1d(C) < n—1, by Proposition 3.5, Ext"(R/I,C) =
Ext"™(R/I, B) = 0. Then Ext"**(R/I, A) = 0, and hence I.N — Id(A) < n
by Proposition 3.5 again. If LN — Id(A) < n, then Ext"(R/I,A) = 0, so
Ext"(R/I,B) =0, and hence I.N —Id(B) < n, contradicting with assumption.
Thus [.N — Id(A) = n, and (1) follows. If I.N — Id(C) > n, it is clear that (1)
hold.

Similarly, we can prove (2) and (3). O

By Proposition 3.6, we immediately deduce the following corollary.

Corollary 3.7. Let R be a strongly Nil.-coherent ring and 0 - A — B —
C — 0 be an exact sequence of left R-modules with B N -injective. If 0 <
I.N —Id(A) < oo, then LN —Id(A) =1.N — Id(C) + 1.

Lemma 3.8. Let R be a ring and M a left R-module. There is an exact
sequence 0 — M — I — N — 0 with I N-injective and Ext'(N,1') = 0 for all
N-injective left R-modules I'. Moreover, Tor,(F,N) = 0 for all N-flat right
R-modules F.

Proof. In view of [10, Theorem 4.1.6] and [21, Corollary 3.5], left R-module M
has a special N'Z-preenvelope f : M — I, that is, there is an exact sequence
0= M — I — N — 0, where I is N-injective and Ext'(N,I’) = 0 for all
N-injective left R-modules I’.

For any N-flat right R-module F', F* is N-injective by Remark 2.9(2). Thus
(Tory(F, N))t ~ Ext' (N, Ft) = 0, and hence Tor,(F, N) = 0. O

Proposition 3.9. Let R be a left strongly Nil.-coherent ring and M a left
R-module. Then I.N — Id(M) < n(n > 0) if and only if for every left NZI-
resolution --- — I, > I, 1 — -+ — 11 = Iy = N — 0 of any right R-module
N, Hom(M, I,,) — Hom(M, K,,) is an epimorphism, where K,, is the nth NZ-
syzyqy of N.

Proof. We proceed by induction on n. For n > 1, by Lemma 3.8, there is an ex-
act sequence 0 — M — I — N — 0, where I is N-injective and Ext' (N, I’) = 0
for all N-injective left R-modules I’. Then we have the following commutative
diagram



Nil,-COHERENT RINGS 589

Hom(I,I,) — Hom(I,K,) —0

A A
Hom(M,I,) — Hom(M,K,)
!

0.

Since I, — K, is an N'Z-precover of K, the first arrow is exact. In ad-
dition, the first column is exact since Ext*(N,I,,) = 0. Furthermore, there is
commutative diagram

0 0 0
1 1 \
0 —» Hom(N,K,) — Hom(N,I,—1) — Hom(N,K,_1)
4 4 \
0— Hom(l,K,) —Hom(Il,I,—;) — Hom([,K,—1;) —0
{ { 1
0— Hom(M,K,) — Hom(M,I,_,) — Hom(M, K, 1)

1
0.

I.N —Id(M) < nif and only if LN — Id(N) < n — 1 by Corollary 3.7 if
and only if Hom(N, I,,—1) — Hom(N, K,,_1) is an epimorphism by induction
if and only if Hom(I, K,,) — Hom(M, K,,) is an epimorphism by the second
diagram if and only if Hom(M, I,,) — Hom(M, K,,) is an epimorphism by the
first diagram.

For n = 0, let Ko = M. Then Hom(M, Iy) — Hom(M, M) is an epimor-
phism means Hom(I, M) — Hom(M, M) is an epimorphism. Thus 0 — M —
I — N — 0 splits, and hence M is N-injective. Conversely, if M is N-injective,
then it is clear that Hom(M, Iy) — Hom(M, Kj) is an epimorphism. O

Let €, and € be categories of modules and T": € x ©® — € be an additive
functor contravariant in the first variable and covariant in the second. Let Z
and F be the classes of modules of € and © respectively. Then T is said to be
right balanced by Z x F if for each module M of €, there is a T'(—, F) exact
complex .-+ — I — Iy - M — 0 with each I; € Z, and for each module
N of D, there is a T(Z,—) exact complex 0 — N — F° — F! — ... with
F' ¢ F. Similarly, we have the definition of left balance. If T is covariant in
both variables, then we would postulate the existence of complexes - -+ — [} —
Ip—-M-—=0and ---—>F—-Fp—>N-=-00or0—-M—=1—= 71" ... and
0= N —= F% = F' — ... to define the left or right balance functors relative
to Z x F, respectively.

Lemma 3.10. If R is left strongly Nil.-coherent, then — ® — on Mp xp M
1s right balanced by NF x NT.

Proof. Let M be any right R-module. By Remark 2.14, there is a right A F-
resolution 0 — M — F° — F' — .... For any N-injective left R-module N,
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N+ is N-flat by Theorem 2.11. Thus we have an exact sequence
<o+ — Hom(F', N*) — Hom(F° N*) — Hom(M,N™*) — 0.

Hence

s (N FHYT 5 (NeFO)T 5 (No M)t —0
is exact. Then 0 = N® M - N® F° - N ® F! — ... is exact. In addition,
by Lemma 3.8, the right N'Z-resolution 0 = G — I° — I' — ... of any left
R-module G is exact, so the sequence 0 - GRF - I'QF - I'@F — ---
is exact for any F' € N F by Lemma 3.8 again, as desired. O

Remark 3.11. (1) Tor"™(—, —) denotes the nth right derived functor of — ® —
with respect to the pair NF x NZ. If R is a left strongly Nil.-coherent ring,
for any right R-module M and left R-module N, Tor" (M, N) can be computed
using either the right A/F-resolution of M or the right A"Z-resolution of N by
Lemma 3.10.

(2) If R is a left strongly Nil.-coherent ring, by the proof of Lemma 3.8,
every left R-module has a right AZ-resolution. So Hom(—, —) is left balanced
on pM xgM by NZ x NZ. Let Ext,(—, —) be the nth left derived functor of
Hom(—, —) with respect to the pair NZ x NZ. Then, for two left R-modules
M and N, Ext,(M, N) can be computed using the right A'Z-resolution of M
or the left N'Z-resolution of N.

We are now in a position to prove the following theorem.

Theorem 3.12. If R is left strongly Nil.-coherent and n > 0, then the follow-
ing are equivalent:

(1) I.N — Id(R) < n.

(2) If0 - M — F° — F' — ... is a right N F-resolution of right R-
module M, then the sequence is exact at F¥ for k > n — 1, where
F~'=M.

(3) For every flat left R-module F, there is an exact sequence 0 — F —
AY 5 Al ... 5 A" = 0 with each A" € NT.

(4) For every injective right R-module A, there is an exact sequence 0 —
F,— - —F = Fy— A— 0 with each F; € NF.

(5) If -+ = I = Iy = M — 0 is a left NI-resolution of a left R-module
M, then the sequence is exact at I, for k >n —1, where [_1 = M.

Proof. (3)=(1) is trivial.

(1)=(2). By Remark 3.11 (1), the right derived functor Tor" (R, M) can be
computed using either a right N F-resolution of M or a right A'Z-resolution of
R.

If n > 2, we have the exact sequence 0 — R — A° — ... — A" — 0 with
At € NZ, so Tor®(R, M) = 0 for k > n — 1. Computing using 0 — M — F° —
Fl — ... in (2), we see that the sequence --- -+ R® F" 2 - R® F"~! —
RQF" — .- - isexactat R FFfork>n—1,500 > M — FO - F' — ...
is exact at F¥ for k > n — 1.
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Ifn=10— R — A" - A' — 0 is exact, where A’ is N-injective. So
Tor' (R, M) = 0 as above, FO — F' — F? is exact and R ®@ M — Tor’(R, M)
is epic. Computing the latter morphism using 0 — M — F° — F!, we have
M — F° — F! — ... is exact.

If n = 0, then R is N-injective as a right R-module. But the balance of
— ® — then gives 0 > R® M — R® F* - R® F' — --- is exact. Thus
0—M— F°— F! — ... is exact.

(2)=(3). Let 0 = M — F° — F' — ... be a right N/ F-resolution of a
finitely presented left R-module M. By assumption, the sequence is exact at
Frfork>n—1.Let 0 » F — A% — A — ... be exact with F flat and each
A? N-injective. If n > 2, we get Tor”(F, M) = 0 for k > n — 1 since F is flat.
Computing using 0 — F — A% — Al — ... then A" 2@ M — A" '@ M —
A"@ M — A"T1® M is exact. By [8, Lemma 8.4.23], K = Ker(A™ — A"*1) is
a pure submodule of A", hence K is also N-injective by Corollary 2.12. Then
0> F— A" 5 Al — ... — A"~ ! K — 0 gives the desired exact sequence.

If n =1, then M — F° — F' — ... is exact. Thus Tor®(F, M) = 0 for
kE>1and F® M — Tor’(F, M) is epic. So F@ M — A@ M — A'@ M —
A? ® M is exact. By [8, Lemma 8.4.23] again, we get the exact sequence
0— F— A" - K — 0 with K = Ker(A! — A?) N-injective.

If n =0, then 0 - M — F° — F!' — ... is exact, so Tor"(F,M) = 0
for k > 0 and F ® M — Tor’(F, M) is an isomorphism. This gives that
0 - FM — A® M — A' ® M is exact, which implies F is a pure
submodule of A, hence F is N-injective.

(5)=(1). By assumption, I, = I,_1 — I,_o is exact at I,_y. Thus I,, —
K, is epic, where K,, = Ker(I,,—1 — I,—2). Hence Hom(R, I,,) — Hom(R, K,,)
is epic. By Proposition 3.9, [.N — Id(R) < n.

()=(5). If n > 2. Let 0 > R — A — ... — A" — 0 be a right N'Z-
resolution of a right R-module M, then Exty(R,M) = 0 for k > n — 1. By
Remark 3.11 (2), we can compute Exty(R, M) = 0 using a left N Z-resolution
of M --- -1 Iy = M — 0, so -+ - Hom(R, I,,) - Hom(R,I,_1) —
-+« — Hom(R,I;) - Hom(R,I) - Hom(R, M) — 0 is exact at Hom(R, I})
for k >n—1. Hence --- — I} — Iy — M — 0 is exact at I for kK > n — 1.

If n = 1, then there is an exact sequence 0 — R — A% — A! — 0 with
A" € NZ. So 0 — Hom(A', M) — Hom(A°, M) — Hom(R, M) is exact. Thus
Extg (R, M) =0 for k > 1 and Exto(R, M) — Hom(R, M) is a monomorphism.
But computing Exto(R, M) using a left N'Z-resolution of M, we see that I —
Iy — M is exact at Iy, so --- — Iy — Ip - M — 0 is exact at I}, for k£ > 0.

If n = 0, then R is N-injective as a left R-module. So every N Z-precover is
epic, and hence --- — I} — Iy - M — 0 is exact.

The proof of (4)<(5) is dual to that of (2)<(3). O

Proposition 3.13. Let R be a left strongly Nil.-coherent ring and wD(R) <
oo, where wD(R) is the weak global dimension of R. Then I.N — Id(R) =
I.N — Idim(R) < wD(R).
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Proof. We first prove the right inequality. By the definitions of left N-injective
dimensions of modules and rings, we have

I.N — I.dim(R) = sup{l.pd(R/I) | I is finitely generated left ideal in N(R)},

where l.pd(R/I) is the left projective dimension of R/I. Then I.N —I.dim(R) <
wD(R). We suppose that [.N — I.dim(R) =n < co.

For the left equality, it suffices to prove I.N — I.dim(R) < I.N — Id(R).
Assume that I.N — Id(R) = m < oo. By the similar proof of [7, Proposition
3.10], it can be proven that I.N — Id(F) < m for any free left R-module
F. Note that, for any left R-module M, there exists an exact sequence 0 —
K, —F,1—>F,— - — Fy— M — 0 with each F; free. Then [.N —
Id(K,) = n and I.N — Id(F;) < m. By Proposition 3.5, Ext™ "' (R/I, M) =
Ext™ " Y (R/I, K,) = 0 for every finitely generated left ideal I in N(R), and
hence [.N — Id(M) < m. Therefore, [.N — Id(R) = I.N — I.dim(R). O

Example 6. Let F[z] be a polynomial ring over a field F. Then F[z] is
semiprime, and hence I.N — Id(R) = I.N — I.dim(R) = 0. It is easy to verify
that wD(R) = 1.

Lemma 3.14. Let R be a left strongly Nil.-coherent ring and M a left R-
module. If Ext*(E, M) = 0 for all N-injective left R-modules E, then M has
an N'I-cover L — M with L injective.

Proof. In view of Proposition 2.13, M has an N'Z-cover f : L — M. For the

exact sequence 0 — L - E — L' — 0 with E injective, L’ is N-injective. Thus
Hom(E, M) — Hom(L, M) — 0 is exact since Ext'(L/, M) = 0, and hence
there is ¢ € Hom(E, M) such that f = gi. Then there exists h : E — L such
that g = fh since f : L — M is an N'Z-cover of M. So f = fhi, implies hi is
isomorphism. Therefore, L is injective. (]

Theorem 3.15. If R is left strongly Nil.-coherent and n > 1, then the follow-
ing are equivalent:
(1) I.N — I.dim(R) < n.
(2) Every nth NI-syzygy of a left R-module is N -injective.
(3) Every (n—1)th NZ-syzygy of a right R-module has an N'I-cover which
18 a monomorphism.
Moreover, if n > 2, then the above conditions are equivalent to:
(4) Every (n — 2)th NZ-syzygy in a minimal left NT-resolution of a left
R-module has an N'Z-cover with the unique mapping property.

Proof. (1)=(2). Let K,, be nth NZ-syzygy of a left R-module. Then I.N —
Id(K,) <n. So Hom(K,, I,) - Hom(K,, K,) is an epimorphism by Proposi-
tion 3.9, whence K, is N-injective.

(2)=(3). Let f: I,—1 — K,_1 be an NZ-precover of the (n — 1)th N'Z-
syzygy Kn_1, and K,, = Ker(f). Then we have the exact sequence 0 — K, —
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I,—1 — im(f) — 0. By assumption, K, is N-injective, so is im(f). Thus the
inclusion im(f) — K,,—1 is an NZ-cover which is a monomorphism.

3)=(2). Let --- - I, - I,y — -+ - I1 - I[j - N — 0 be any
left N'Z-resolution of a left R-module N and K,, = Ker(I,,—1 — I,—2), K—1 =
Ker(I,—2 — I,,_3). K,,—1 has a monomorphic N'Z-cover I — K,_; by assump-
tion. Thus K,, ® I ~ I, in terms of [8, Lemma 8.6.3]. So K, is N-injective
by Remark 2.9(1).

(2)=(1). Let M be a left R-module. For a left NZ-resolution --- — I, —
I,1— - ---— 1L — Iy > N — 0 of aleft R-module N, I,, — K, is a split
epimorphism since K,, is N-injective. Thus Hom(M, I,,) — Hom(M, K,,) is
epimorphic, hence {.N —Id(M) < n by Proposition 3.9. Then [.N —I.dim(R) <
n.

3)=(4). Let -+ > I3 = Iy - -+ > Ih - Ip = M — 0 bea
minimal N'Z-resolution of a left R-module M with K, _o = Ker(l,,—3 — I,,—4).
By assumption, K,,_1 = Ker(I,_o — I,_3) has a monomorphic NZ-cover
i:1,_1— K,_1. Note Extl(I, K,,—1) = 0 for all N-injective right R-modules I
by Wakamatsu’s Lemma. Thus I,,_1 is injective by Lemma 3.14. But K,,_1 has
no nonzero injective submodule by [15, Corollary 1.2.8]. Thus I,,_1 = 0, and
hence Hom([I, K,,_1) = Hom(I, I,,_1) = 0 for any N-injective left R-module I.
So we have the exact sequence 0 — Hom(I, I,,_2) — Hom(I, K,,_3) — 0 for
any N-injective left R-module I, as desired.

(4)=(2). Let -+ = I, > I,_1 — -+ = I = Iy = M — 0 be an N'Z-
resolution of a left R-module M with K,, = Ker(I,_1 — I,,_2). By assumption,
M has a minimal N'Z-resolution of the form 0 — I}, o — I/ g — -+ = I] —
Iy - M — 0. In view of [8, Corollary 8.6.4], K, ® I,_o ® I, _5& ---
In.1®I, _o®I,—3®---. Thus K,, is N-injective.

0 R

Corollary 3.16. If R is left strongly Nil.-coherent, then the following are
equivalent:
(1) I.N — I.dim(R) < 2.
(2) Every left R-module has an N'Z-cover with the unique mapping prop-
erty.
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