Bull. Korean Math. Soc. ${\bf 51}$ (2014), No. 2, pp. 579–594 http://dx.doi.org/10.4134/BKMS.2014.51.2.579

Nil_{*}-COHERENT RINGS

YUEMING XIANG AND LUNQUN OUYANG

ABSTRACT. Let R be a ring and $Nil_*(R)$ be the prime radical of R. In this paper, we say that a ring R is left Nil_* -coherent if $Nil_*(R)$ is coherent as a left R-module. The concept is introduced as the generalization of left J-coherent rings and semiprime rings. Some properties of Nil_* -coherent rings are also studied in terms of N-injective modules and N-flat modules.

1. Introduction

Throughout R is an associative ring with identity and all modules are unitary. $_{R}\mathcal{M}(\mathcal{M}_{R})$ stands for the category of all left (right) R-modules. Hom(M, N) (resp. $\operatorname{Ext}^{n}(M, N)$) means $\operatorname{Hom}_{R}(M, N)$ (resp. $\operatorname{Ext}^{n}_{R}(M, N)$), and similarly $M \otimes N$ (resp. $\operatorname{Tor}_{n}(M, N)$) denotes $M \otimes_{R} N$ (resp. $\operatorname{Tor}^{R}_{n}(M, N)$). The character module M^{+} is defined by $M^{+} = \operatorname{Hom}_{\mathbb{Z}}(M, \mathbb{Q}/\mathbb{Z})$. The Jacobson radical of R is denoted by J(R). If X is a subset of R, the right (left) annihilator of X in R is denoted by r(X) (l(X)). We will use the usual notations from [1, 8, 9, 13, 14, 22].

We first recall some known notions needed in the sequel.

Let \mathcal{C} be the class of R-modules. For an R-module $M, C \in \mathcal{C}$ is called a \mathcal{C} cover [8] of M if there is a homomorphism $g: C \to M$ such that the following hold: (1) For any homomorphism $g': C' \to M$ with $C' \in \mathcal{C}$, there exists a homomorphism $f: C' \to C$ with g' = gf. (2) If f is an endomorphism of C with gf = g, then f must be an automorphism. If (1) holds but (2) may not, $g: C \to M$ is called a \mathcal{C} -precover. Dually we have the definition of a \mathcal{C} -(pre)envelope. \mathcal{C} -covers and \mathcal{C} -envelopes may not exist in general, but if they exist, they are unique up to isomorphism. A homomorphism $g: M \to C$ with $C \in \mathcal{C}$ is said to a \mathcal{C} -envelope with the unique mapping property (see [6]) if for any homomorphism $g': M \to C'$ with $C' \in \mathcal{C}$, there is a unique homomorphism $f: C \to C'$ such that fg = g'. Dually, we have the definition of \mathcal{C} -cover with the unique mapping property.

O2014Korean Mathematical Society

Received January 14, 2013; Revised October 7, 2013.

²⁰¹⁰ Mathematics Subject Classification. 16N60, 16E10, 16E05.

Key words and phrases. Nil_* -coherent ring, strongly Nil_* -coherent ring, N-injective module, N-flat module, precover and preenvelope.

Let M be a left R-module. A right C-resolution of M is a complex (need not be exact) $0 \to M \to F^0 \to F^1 \to \cdots$ with each $F^i \in \mathcal{C}$. Write

$$L^0 = M, \ L^1 = \operatorname{Coker}(M \to F^0), \ L^i = \operatorname{Coker}(F^{i-2} \to F^{i-1}) \ \text{ for } \ i \ge 2.$$

Here $M \to F^0, L^1 \to F^1, L^i \to F^i$ for $i \ge 2$ are \mathcal{C} -preenvelopes. The nth cokernel $L^n (n \ge 0)$ is called the nth \mathcal{C} -cosyzygy of M.

A left C-resolution of M is a complex $\cdots \to I_1 \to I_0 \to M \to 0$ with each $I_i \in C$. Write

$$K_0 = M, \ K_1 = \operatorname{Ker}(I_0 \to M), \ K_i = \operatorname{Ker}(I_{i-1} \to I_{i-2}) \ \text{for} \ i \ge 2.$$

Here $I_0 \to M, I_1 \to K_1, I_i \to K_i$ for $i \ge 2$ are *C*-precovers. The nth kernel $K_n (n \ge 0)$ is called the nth *C*-syzygy of *M*.

A left C-resolution $\cdots \to I_1 \to I_0 \to M \to 0$ is called minimal if every $I_i \to K_i$ is C-cover for any $i \ge 0$.

Let R be a ring. A left R-module M is coherent if every finitely generated submodule of M is finitely presented. The ring R is said to be left coherent if R is a coherent as a left R-module. Since coherence of rings and modules first appeared in [2], their generalizations have been studied extensively by many authors (see, [3, 4, 7, 9, 11, 15, 17]). A ring R is called left J-coherent [7] if the Jacobson radical J(R) of R is a coherent left R-module. R is said to be left P-coherent [17] (resp. left min-coherent [15]) if every principal (resp. minimal) left ideal of R is finitely presented.

Recall that the prime radical $Nil_*(R)$ [14] (N(R) for short) of R is the intersection of all prime ideals of R. N(R) contains all nilpotent one-side ideal of R. A ring R is semiprime if N(R) = 0. We say that a ring R is left Nil_* -coherent if the prime radical N(R) of R is a coherent left R-module, or equivalently, any finitely generated left ideal in N(R) is finitely presented. Nil_* -coherent rings are introduced, in this paper, as the generalization of J-coherent rings and semiprime rings. Some examples of left Nil_* -coherent rings are given, and some properties of left Nil_* -coherent rings are studied. We prove that if R is right perfect, then R is left Nil_* -coherent if and only if R is left coherent. To characterize left Nil_* -coherent rings, we introduce left N-injective modules and right N-flat modules. The class of left N-injective (resp. right N-flat) R-modules is denoted \mathcal{NI} (resp. \mathcal{NF}). We also show that if R is left Nil_* -coherent, then every right R-module has an \mathcal{NF} -preenvelope and every left R-module has an \mathcal{NI} -cover.

In [8], Enochs and Jenda investigated the global dimension of a left Noetherian ring using the left injective resolutions of left *R*-modules. Mao recently generalized their results to left coherent rings (see [16]). In the third section of this paper, left strongly Nil_* -coherent rings and the *N*-injective dimensions are defined. We study the *N*-injective dimensions of modules and rings in terms of left \mathcal{NI} -resolutions and right \mathcal{NF} -resolutions of modules.

2. Nil_* -coherent rings

Definition 2.1. A ring R is said to be left Nil_* -coherent if the prime radical N(R) of R is coherent left R-module, or equivalently, every finitely generated left ideal in N(R) is finitely presented. Similarly, we have the concept of right Nil_* -coherent rings.

Remark 2.2. Here give some examples of Nil_* -coherent rings.

(1) Obviously, left J-coherent rings are left Nil_* -coherent because $N(R) \subseteq J(R)$.

(2) A semiprime ring is right and left Nil_* -coherent. Moreover, a domain is right and left Nil_* -coherent.

The following examples show that Nil_* -coherent rings are non-trivial generalizations of J-coherent rings and semiprime rings.

Example 1. Let R be a valuation ring of rank R > 1. Then R[[x]], the ring of power series in one variable x, is a commutative domain, and so it is Nil_* -coherent. But R[[x]] is not a J-coherent ring by [7, Example 3.16].

Example 2. Let $R = \begin{pmatrix} \mathbb{Z} & \mathbb{Z} \\ 0 & \mathbb{Z} \end{pmatrix}$. Then R is a coherent ring, and hence it is a Nil_* -coherent ring. However, R is not semiprime because there is a nilpotent ideal $\begin{pmatrix} 0 & \mathbb{Z} \\ 0 & 0 \end{pmatrix} \neq 0$.

From the next example, we can see that the definition of Nil_* -coherent rings is not left-right symmetric.

Example 3. Let $L = \mathbb{Q}(x_2, x_3, ...)$ be a subfield of $K = \mathbb{Q}(x_1, x_2, ...)$ with \mathbb{Q} the field of rational numbers, and there exists a field isomorphism $\varphi : K \to L$. We define a ring by taking $R = K \times K$ with multiplication

 $(x, y)(x', y') = (xx', \varphi(x)y' + yx')$, where $x, y, x', y' \in K$.

It is easy to see that R has exactly three right ideals, (0), R, and (0, K) = (0, 1)R. So R is right Nil_{*}-coherent. Let a = (0, 1). Note that $Ra \subseteq N(R)$ and l(a) is not finitely generated. Then R is not left Nil_{*}-coherent.

Similar to [7, Proposition 2.10, Corollary 2.11 and Corollary 2.12], we have the following results.

Proposition 2.3. Let $\varphi : R \to S$ be a ring homomorphism such that S is a finitely generated left R-module and N(S) is a coherent left R-module. If R is a left Nil_{*}-coherent ring, then so is S.

Proof. Let M be a finitely generated submodule of the left S-module N(S). By assumption, M is a finitely generated submodule of the left R-module N(S), and hence M is a finitely presented left R-module. So M is a finitely presented left S-module by [11, Theorem 1]. Therefore, S is a left Nil_* -coherent ring. \Box

Corollary 2.4. Let R be a left Nil_* -coherent ring. Then $M_n(R)$, the ring of $n \times n$ matrices over R, is also a left Nil_* -coherent ring for every positive integer n.

Proof. By [14, Theorem 10.21], $N(M_n(R)) = M_n(N(R)) \cong N(R)^{n^2}$. $N(R)^{n^2}$ is a coherent left *R*-module by assumption, so is $N(M_n(R))$. Then the result comes from Proposition 2.3.

Corollary 2.5. If R is a left Nil_{*}-coherent ring and a finitely generated left ideal $I \subseteq N(R)$, then the quotient ring R/I is also left Nil_{*}-coherent.

Proof. We have N(R/I) = N(R)/I in terms of [14, Exercise 10.20]. Now let X be a finitely generated submodule of the left *R*-module N(R/I). Then there is a finitely generated left *R*-module J with $I \subseteq J \subseteq N(R)$ and X = J/I. Since R is left Nil_* -coherent, J is a finitely presented left *R*-module, so is X by [13, Lemma 4.54]. Thus N(R/I) is a coherent left *R*-module. Therefore, R/I is a left Nil_* -coherent ring by Proposition 2.3.

Proposition 2.6. A direct product of rings $R = R_1 \times R_2 \times \cdots \times R_n$ is left Nil_{*}-coherent if and only if R_i is left Nil_{*}-coherent for i = 1, ..., n.

Proof. Note that $N(R) = N(R_1) \times N(R_2) \times \cdots \times N(R_n)$. If R is left Nil_* -coherent, then N(R) is coherent left R-module, so is $N(R_i)$ for all *i*. By Proposition 2.3, R_i is left Nil_* -coherent.

Conversely, it is enough to prove the assertion for n = 2. There exists an exact sequence $0 \to N(R_1) \to N(R) \to N(R_2) \to 0$. Hence $N(R_2) \cong$ $N(R)/N(R_1)$ is a coherent R_2 -module, thus, a coherent R-module by [9, Theorem 2.4.1]. Similarly, $N(R_1)$ is a coherent R-module. By [9, Theorem 2.2.1(2)], N(R) is a coherent R-module, and hence R is left Nil_* -coherent. \Box

If R is the direct product of R_1 and R_2 , where R_1 is a left *J*-coherent ring that is not semiprime and R_2 is a semiprime ring that is not left *J*-coherent, then R is a left Nil_* -coherent ring that is neither left *J*-coherent nor semiprime.

Let *M* be a bimodule over *R*. The trivial extension of *R* and *M* is $R \propto M = \{(a, x) | a \in R, x \in M\}$ with addition defined componentwise and multiplication defined by (a, x)(b, y) = (ab, ay + xb). For convenience, we write $I \propto X = \{(a, x) | a \in I, x \in X\}$, where *I* is a subset of *R* and *X* is a subset of *M*. The below result is a generalization of [4, Theorem 12].

Proposition 2.7. A ring R is left coherent if and only if $R \propto R$ is left Nil_{*}-coherent.

Proof. (\Rightarrow) . It follows from [4, Theorem 12] and Remark 2.2(1).

 (\Leftarrow) . Set $S = R \propto R$. We first prove that R is left P-coherent. For any $a \in R, S(0, a) \subseteq N(S)$ and $l_S(0, a) = l_R(a) \propto R$. Since S is left Nil_* -coherent, $l_R(a) \propto R$ is a finitely generated left ideal of S. Write $l_R(a) \propto R = S(a_1, b_1) + \cdots + S(a_n, b_n)$ with all $(a_i, b_i) \in S$. It follows that $l_R(a) = Ra_1 + \cdots + Ra_n$. So R is left P-coherent.

Now since $R \propto R$ is left Nil_* -coherent, $M_n(R) \propto M_n(R) \cong M_n(R \propto R)$ is left Nil_* -coherent (for all n > 0) by Corollary 2.4. Thus, $M_n(R)$ is left P-coherent, and so R is left coherent by [17, Proposition 2.4].

Left Nil_* -coherent rings are left min-coherent. In fact, if Ra is a minimal left ideal of R, then we have either $(Ra)^2 = 0$, or Ra = Re for some idempotent $e^2 = e \in R$ (see [14, Lemma 10.22]). The following example is constructed to show that min-coherent rings need not be Nil_* -coherent.

Example 4. Let R be a countable direct product of the polynomial ring $\mathbb{Q}[y, z]$ (see [13, Example 4.61(a)]). Then R[x] is not a coherent ring. Note that $R[x] \propto R[x] \cong (R \propto R)[x]$, so $(R \propto R)[x]$ is not Nil_* -coherent by Proposition 2.7. But $(R \propto R)[x]$ is min-coherent because both socles are zero.

In order to characterize Nil_* -coherent rings, we introduce N-injective modules and N-flat modules as the following.

Definition 2.8. A left *R*-module *M* is said to be *N*-injective if $\text{Ext}^1(R/I, M) = 0$ for every finitely generated left ideal *I* in N(R). A right *R*-module *F* is called *N*-flat if $\text{Tor}_1(F, R/I) = 0$ for every finitely generated left ideal *I* in N(R). Dually, we can define right *N*-injective modules and left *N*-flat modules.

Remark 2.9. (1) In what follows, \mathcal{NI} (resp. \mathcal{NF}) stands for the class of all N-injective left R-modules (resp. N-flat right R-modules). By the definition, it is clear that \mathcal{NI} (resp. \mathcal{NF}) is closed under direct sums, direct summands, direct products (resp. direct limits) and extensions.

(2) A right *R*-module *F* is *N*-flat if and only if F^+ is *N*-injective by the standard isomorphism $\operatorname{Ext}^1(N, F^+) \cong \operatorname{Tor}_1(F, N)^+$ for every finitely generated left ideal *I* in N(R).

(3) Recall that a left *R*-module *M* (resp. right *R*-module *F*) is *J*-injective (resp. *J*-flat) if $\operatorname{Ext}^1(R/I, M) = 0$ (resp. $\operatorname{Tor}_1(F, R/I) = 0$) for any finitely generated ideal *I* in J(R) (see [7]). It is easy to see that left *J*-injective (resp. right *J*-flat) *R*-modules are left *N*-injective (resp. right *N*-flat). If *R* is left Artinian, then left *J*-injective (resp. right *J*-flat) *R*-modules coincide with left *N*-injective (resp. right *N*-flat).

Proposition 2.10. Let R be a ring. Then the following are equivalent:

- (1) R is a semiprime ring.
- (2) Every left (or right) R-module is N-injective.
- (3) Every left (or right) simple R-module is N-injective.
- (4) Every principle left (or right) ideal in N(R) is N-injective.
- (5) Every right (or left) R-module is N-flat.
- (6) Every finitely generated left (or right) ideal in N(R) is a pure submodule of R.

Proof. $(1)\Rightarrow(2)$ is trivial since N(R) = 0. $(2)\Rightarrow(3)$ and $(2)\Rightarrow(4)$ are clear. $(2)\Rightarrow(5)$ holds by Remark 2.9(2).

 $(3) \Rightarrow (1)$. Let $a \in N(R)$. If $N(R) + l(a) \neq R$, then we take a maximal left ideal M of R such that $N(R) + l(a) \subseteq M$. Then R/M is N-injective by (3). Note that the homomorphism $f : Ra \to R/M$ given by f(xa) = x + M, $x \in R$ is well-defined. So there exists $c \in R$ such that $f = \cdot (c + M)$. Then 1 + M =

f(a) = a(c+M) = ac+M, which implies that $1 - ac \in M$. But $ac \in M$, which yields $1 \in M$, a contradiction. Therefore N(R) + l(a) = R and so l(a) = R because N(R) is a small ideal of R. So a = 0. Hence N(R) = 0.

 $(5) \Rightarrow (6)$. For any finitely generated left ideal I in N(R) and any right R-module M, $\text{Tor}_1(M, R/I) = 0$ since M is N-flat. Then R/I is flat, and hence I is a pure submodule of R.

 $(6) \Rightarrow (2)$. Let *I* be a finitely generated left ideal in N(R). Then R/I is flat by (6), and so it is projective. Thus every left *R*-module is *N*-injective.

 $(4) \Rightarrow (1)$. Suppose that $N(R) \neq 0$, then there exists an non-zero superfluous submodule Ra in N(R). Thus $\text{Ext}^1(R/Ra, Ra) = 0$ by (3), and so the exact sequence $0 \rightarrow Ra \rightarrow R \rightarrow R/Ra \rightarrow 0$ splits. Therefore Ra is a direct summand of R. Since Ra is superfluous, Ra = 0, a contradiction. Hence R is a semiprime ring.

Let $R = \mathbb{Z}$, the integer ring. By the proposition above, any *R*-module is *N*-injective and *N*-flat. However, \mathbb{Z} is not injective and $\mathbb{Z}/2\mathbb{Z}$ is not flat as *R*-module.

Similar to [7, Theorem 2.13], [15, Theorem 4.5] and [17, Theorem 2.7], we have the following theorem which characterize Nil_* -coherent rings in terms of, among others, N-injective modules, N-flat modules and N-flat preenvelope.

Theorem 2.11. Let R be a ring. Then the following are equivalent:

- (1) R is a left Nil_{*}-coherent ring.
- (2) Any direct product of copies of R_R is N-flat.
- (3) Any direct product of N-flat right R-modules is N-flat.
- (4) Any direct limit of N-injective left R-modules is N-injective.
- (5) For any finitely generated left ideal I in N(R) and any family $\{M_i\}$ of right R-modules, $\operatorname{Tor}_1(\prod M_i, R/I) \cong \prod \operatorname{Tor}_1(M_i, R/I)$.
- (6) A left R-module M is N-injective if and only if M^+ is N-flat.
- (7) A left R-module M is N-injective if and only if M^{++} is N-injective.
- (8) A right R-module P is N-flat if and only if P^{++} is N-flat.
- (9) Every right R-module has an \mathcal{NF} -preenvelope.

Corollary 2.12. The following statements hold for any ring R:

- (1) \mathcal{NI} and \mathcal{NF} are closed under pure submodules.
- (2) If R is left Nil_{*}-coherent, then \mathcal{NI} and \mathcal{NF} are closed under pure quotient modules.

Proof. (1). The proof is similar to that of [7, Lemma 2.4].

(2). For a pure exact sequence $0 \to A \to B \to C \to 0$ of left *R*-modules with *B N*-injective, there is a split exact sequence $0 \to C^+ \to B^+ \to A^+ \to 0$. By Theorem 2.11, B^+ is *N*-flat, so is C^+ . Thus *C* is *N*-injective by Theorem 2.11 again. The \mathcal{NF} case is similar.

The following result will consider the existence of \mathcal{NI} -covers over a left Nil_* -coherent ring.

Proposition 2.13. Let R be a left Nil_{*}-coherent ring. Then every left R-module has an \mathcal{NI} -cover.

Proof. By Corollary 2.12(2), \mathcal{NI} is closed under pure quotient modules. By Remark 2.9(1), \mathcal{NI} is closed under direct sums. Then, in view of [12, Theorem 2.5], every left *R*-module has an \mathcal{NI} -cover.

Remark 2.14. If R is a left Nil_* -coherent ring, then every right R-module has a right \mathcal{NF} -resolution by Theorem 2.11, and every right R-module has a left \mathcal{NI} -resolution by Proposition 2.13.

In general, an \mathcal{NI} -cover need not be an epimorphism and an \mathcal{NF} -preenvelope need not be a monomorphism. Now we consider when every left *R*-module has an epic \mathcal{NI} -cover and when every right *R*-module has a monic \mathcal{NF} -preenvelope.

Proposition 2.15. Let R be left Nil_* -coherent. Then the following are equivalent:

- (1) R is N-injective as left R-module.
- (2) For any left R-module, there is an epimorphic \mathcal{NI} -cover.
- (3) For any right R-module, there is a monomorphic \mathcal{NF} -preenvelope.
- (4) Every (FP-)injective right R-module is N-flat.
- (5) Every flat left R-module is N-injective.

Proof. (1) \Rightarrow (3). Let M be any right R-module. Then M has an \mathcal{NF} -preenvelope $f: M \to F$ by Theorem 2.11. Since $(_RR)^+$ is a cogenerator in the category of right R-modules, there is an exact sequence $0 \to M \xrightarrow{i} \prod (_RR)^+$. By Theorem 2.11, $\prod (_RR)^+$ is N-flat. So there exists a homomorphism $g: F \to \prod (_RR)^+$ such that gf = i. Since i is a monomorphism, so is f.

 $(3) \Rightarrow (4)$. Note that the *FP*-injective right *R*-module *E* embeds in a *N*-flat right *R*-module by (3). Thus *E* is *N*-flat by Corollary 2.12.

 $(4) \Rightarrow (5)$. For any flat left *R*-module *F*, F^+ is injective. Then F^+ is *N*-flat by assumption, and hence *F* is *N*-injective by Theorem 2.11.

 $(5) \Rightarrow (2)$. For any left *R*-module *M*, in view of Proposition 2.13, there is an \mathcal{NI} -cover $f: C \to M$. Note that *R* is also *N*-injective by hypothesis, so *f* is an epimorphic.

(2) \Rightarrow (1). By assumption, R has an epimorphic \mathcal{NI} -cover $\varphi : D \to R$, then we have an exact sequence $0 \to K \to D \xrightarrow{\varphi} R \to 0$ with $K = \text{Ker}\varphi$ and D N-injective. Note that R is projective, so the sequence is split, then R is N-injective as left R-module by Remark 2.9 (1).

Corollary 2.16. The following are equivalent for a ring R.

- (1) R is semiprime.
- (2) R is left N-injective and every finitely generated left ideal in N(R) is projective.

Proof. $(1) \Rightarrow (2)$ is clear.

 $(2) \Rightarrow (1)$. We firstly prove that every quotient module of a N-injective left R-module is N-injective. Let B be any N-injective left R-module and $A \subseteq B$. For any finitely generated left ideal I in N(R) and a homomorphism $f: I \to B/A$, I is projective, so there is a homomorphism $g: I \to B$ such that $\pi g = f$, where $\pi: B \to B/A$ is the canonical epimorphism. Then there is a homomorphism $h: R \to B$ such that hi = g since B is N-injective, where $i: I \to R$ is an inclusion. Thus, $f = \pi hi$, and hence B/A is N-injective. Thus, for any left R-module M, there is a monomorphic N-injective cover $\alpha: E \to M$ by [20, Proposition 4]. Since R is left N-injective, then α is epimorphic by Proposition 2.15, whence M is left N-injective. By Proposition 2.10, R is semiprime.

Remark 2.17. The ring R in Example 2 is left hereditary, and hence every finitely generated left ideal in N(R) is projective. But it is not semiprime, so R is not left N-injective by Corollary 2.16. Thus, there exists a ring whose every left R-module has an \mathcal{NI} - cover but need not be an epimorphism and every right R-module has an \mathcal{NF} -preenvelope but need not be a monomorphism.

Recall that a ring R is right perfect [18] if R/J(R) is semisimple and J(R) is right T-nilpotent. It was shown that if R is right perfect, then R is left J-coherent if and only if R is left coherent (see [7]). At the end of this section, we extend this result onto left Nil_* -coherent rings.

Proposition 2.18. If R is right perfect, then R is left Nil_* -coherent if and only if R is left coherent.

Proof. (\Leftarrow) is clear.

 (\Rightarrow) . We first prove that every N-flat right R-module is flat. Let F be right N-flat. Note that $N(R) \cong \varinjlim I_i$, where I_i range over all finitely generated submodules of N(R). Then

 $\operatorname{Tor}_1(F, R/N(R)) = \operatorname{Tor}_1(F, \lim R/I_i) = \lim \operatorname{Tor}_1(F, R/I_i) = 0.$

Since $N(R) \subseteq J(R)$ is also right *T*-nilpotent, *F* is right flat by [23, Theorem 5.2].

Now let M be any N-injective left R-module. Then M^+ is N-flat by Theorem 2.11, and hence M^+ is flat by the preceding result. Thus M^{++} is FP-injective, whence M is FP-injective because M is a pure submodule of M^{++} . By Theorem 2.11 again, any direct limit of FP-injective left R-modules is FP-injective, which implies R is left coherent.

3. Strongly Nil_* -coherent rings

A class \mathcal{C} of left *R*-modules is said to be coresolving [19] if $E \in \mathcal{C}$ for all injective left *R*-modules *E*, if \mathcal{C} is closed under extensions, and if given an exact sequence of left *R*-modules $0 \to A \to B \to C \to 0$, $C \in \mathcal{C}$ whenever $A, B \in \mathcal{C}$. Dually, we have the definition of resolving.

In the present section, we study the ring that \mathcal{NI} is coresolving.

Lemma 3.1. Let R be a ring. Then the following are equivalent:

- (1) \mathcal{NI} is coresolving.
- (2) $\operatorname{Ext}^{k}(R/I, M) = 0$ for any N-injective left R-module M and any finitely generated left ideal I in $N(R), k \geq 1$.
- (3) R is left Nil_{*}-coherent and \mathcal{NF} is resolving.
- (4) R is left Nil_{*}-coherent and $\operatorname{Tor}_k(N, R/I) = 0$ for any N-flat right R-module N and any finitely generated left ideal I in $N(R), k \geq 1$.

Proof. The proof is similar to that of [7, Lemma 3.4]. \Box

Definition 3.2. We call the ring satisfying the equivalent conditions in Lemma 3.1 left strongly Nil_* -coherent. Dually, the notion of right strongly Nil_* -coherent rings can be defined.

Example 5. (1) By Proposition 2.10, a semiprime ring is left and right strongly Nil_* -coherent.

(2) If a ring R satisfies the condition that every finitely generated left ideal in N(R) is projective, then R is left strongly Nil_* -coherent by the proof of Corollary 2.16.

(3) A right perfect and left Nil_* -coherent ring is left strongly Nil_* -coherent by Proposition 2.18 and Lemma 3.1.

Remark 3.3. We claim that the definition of strongly Nil_* -coherent rings is also not left-right symmetric. Indeed, the ring R in Example 3 is right Nil_* coherent but not left Nil_* -coherent. Note that it has only three right ideals, 0, (0, K) = (0, 1)R and R. Thus R is left prefect by [18, Theorem B.39], and hence R is right strongly Nil_* -coherent ring but not left strongly Nil_* -coherent.

Definition 3.4. The left *N*-injective dimension of a left *R*-module *M*, denoted by l.N - Id(M), is defined as the least nonnegative integer *n* such that $\operatorname{Ext}^{n+1}(R/I, M) = 0$ for any finitely generated left ideal *I* in N(R). If no such *n* exists, then $l.N - Id(M) = \infty$. Set $l.N - I.dim(R) = \sup\{l.N - Id(M) : M \in_R \mathcal{M}\}$ and call l.N - I.dim(R) the left *N*-injective dimension of *R*.

By Proposition 2.10, l.N - I.dim(R) = 0 if and only if R is a semiprime ring. Then the N-injective dimension of R can measure how far away a ring is from being a semiprime ring.

Proposition 3.5. Let R be a left strongly Nil_* -coherent ring. Then the following are equivalent for a left R-module M:

- (1) $l.N Id(M) \le n.$
- (2) $\operatorname{Ext}^{n+1}(R/I, M) = 0$ for every finitely generated left ideal I in N(R).
- (3) $\operatorname{Ext}^{n+k}(R/I, M) = 0$ for every finitely generated left ideal I in N(R), and $k \ge 1$.
- (4) For every exact sequence $0 \to M \to E_0 \to E_1 \to \cdots \to E_{n-1} \to L_n \to 0$ with each E_i N-injective, L_n is N-injective.

Proof. The proof is similar to that of [7, Lemma 3.6]. \Box

Proposition 3.6. Let R be a strongly Nil_{*}-coherent ring and $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ be an exact sequence of left R-modules. Then:

- (1) $l.N Id(B) \le \sup\{l.N Id(A), l.N Id(C)\}.$
- (2) $l.N Id(A) \le \sup\{l.N Id(B), l.N Id(C) + 1\}.$
- (3) $l.N Id(C) \le \sup\{l.N Id(B), l.N Id(A) 1\}.$

Proof. (1). For any finitely generated left ideal I in N(R), we have the following exact sequence

$$\operatorname{Ext}^{n}(R/I, A) \to \operatorname{Ext}^{n}(R/I, B) \to \operatorname{Ext}^{n}(R/I, C)$$
$$\to \operatorname{Ext}^{n+1}(R/I, A) \to \operatorname{Ext}^{n+1}(R/I, B).$$

Let l.N-Id(B) = n. If $l.N-Id(C) \le n-1$, by Proposition 3.5, $\operatorname{Ext}^n(R/I, C) = \operatorname{Ext}^{n+1}(R/I, B) = 0$. Then $\operatorname{Ext}^{n+1}(R/I, A) = 0$, and hence $l.N - Id(A) \le n$ by Proposition 3.5 again. If l.N - Id(A) < n, then $\operatorname{Ext}^n(R/I, A) = 0$, so $\operatorname{Ext}^n(R/I, B) = 0$, and hence l.N - Id(B) < n, contradicting with assumption. Thus l.N - Id(A) = n, and (1) follows. If $l.N - Id(C) \ge n$, it is clear that (1) hold.

Similarly, we can prove (2) and (3).

By Proposition 3.6, we immediately deduce the following corollary.

Corollary 3.7. Let R be a strongly Nil_{*}-coherent ring and $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ be an exact sequence of left R-modules with B N-injective. If $0 < l.N - Id(A) < \infty$, then l.N - Id(A) = l.N - Id(C) + 1.

Lemma 3.8. Let R be a ring and M a left R-module. There is an exact sequence $0 \to M \to I \to N \to 0$ with I N-injective and $\text{Ext}^1(N, I') = 0$ for all N-injective left R-modules I'. Moreover, $\text{Tor}_1(F, N) = 0$ for all N-flat right R-modules F.

Proof. In view of [10, Theorem 4.1.6] and [21, Corollary 3.5], left *R*-module *M* has a special \mathcal{NI} -preenvelope $f: M \to I$, that is, there is an exact sequence $0 \to M \to I \to N \to 0$, where *I* is *N*-injective and $\operatorname{Ext}^1(N, I') = 0$ for all *N*-injective left *R*-modules *I'*.

For any N-flat right R-module F, F^+ is N-injective by Remark 2.9(2). Thus $(\operatorname{Tor}_1(F, N))^+ \simeq \operatorname{Ext}^1(N, F^+) = 0$, and hence $\operatorname{Tor}_1(F, N) = 0$.

Proposition 3.9. Let R be a left strongly Nil_* -coherent ring and M a left R-module. Then $l.N - Id(M) \leq n(n \geq 0)$ if and only if for every left \mathcal{NI} -resolution $\cdots \rightarrow I_n \rightarrow I_{n-1} \rightarrow \cdots \rightarrow I_1 \rightarrow I_0 \rightarrow N \rightarrow 0$ of any right R-module N, $\operatorname{Hom}(M, I_n) \rightarrow \operatorname{Hom}(M, K_n)$ is an epimorphism, where K_n is the nth \mathcal{NI} -syzygy of N.

Proof. We proceed by induction on n. For $n \ge 1$, by Lemma 3.8, there is an exact sequence $0 \to M \to I \to N \to 0$, where I is N-injective and $\text{Ext}^1(N, I') = 0$ for all N-injective left R-modules I'. Then we have the following commutative diagram

$$\begin{array}{rccc} \operatorname{Hom}(I, I_n) & \to & \operatorname{Hom}(I, K_n) & \to 0 \\ \downarrow & & \downarrow \\ \operatorname{Hom}(M, I_n) & \to & \operatorname{Hom}(M, K_n) \\ \downarrow & & & \\ 0. \end{array}$$

Since $I_n \to K_n$ is an \mathcal{NI} -precover of K_n , the first arrow is exact. In addition, the first column is exact since $\operatorname{Ext}^1(N, I_n) = 0$. Furthermore, there is commutative diagram

 $l.N - Id(M) \leq n$ if and only if $l.N - Id(N) \leq n - 1$ by Corollary 3.7 if and only if $\operatorname{Hom}(N, I_{n-1}) \to \operatorname{Hom}(N, K_{n-1})$ is an epimorphism by induction if and only if $\operatorname{Hom}(I, K_n) \to \operatorname{Hom}(M, K_n)$ is an epimorphism by the second diagram if and only if $\operatorname{Hom}(M, I_n) \to \operatorname{Hom}(M, K_n)$ is an epimorphism by the first diagram.

For n = 0, let $K_0 = M$. Then $\operatorname{Hom}(M, I_0) \to \operatorname{Hom}(M, M)$ is an epimorphism means $\operatorname{Hom}(I, M) \to \operatorname{Hom}(M, M)$ is an epimorphism. Thus $0 \to M \to I \to N \to 0$ splits, and hence M is N-injective. Conversely, if M is N-injective, then it is clear that $\operatorname{Hom}(M, I_0) \to \operatorname{Hom}(M, K_0)$ is an epimorphism. \Box

Let $\mathfrak{C}, \mathfrak{D}$ and \mathfrak{E} be categories of modules and $T : \mathfrak{C} \times \mathfrak{D} \to \mathfrak{E}$ be an additive functor contravariant in the first variable and covariant in the second. Let \mathcal{I} and \mathcal{F} be the classes of modules of \mathfrak{C} and \mathfrak{D} respectively. Then T is said to be right balanced by $\mathcal{I} \times \mathcal{F}$ if for each module M of \mathfrak{C} , there is a $T(-,\mathcal{F})$ exact complex $\cdots \to I_1 \to I_0 \to M \to 0$ with each $I_i \in \mathcal{I}$, and for each module N of \mathfrak{D} , there is a $T(\mathcal{I}, -)$ exact complex $0 \to N \to F^0 \to F^1 \to \cdots$ with $F^i \in \mathcal{F}$. Similarly, we have the definition of left balance. If T is covariant in both variables, then we would postulate the existence of complexes $\cdots \to I_1 \to$ $I_0 \to M \to 0$ and $\cdots \to F_1 \to F_0 \to N \to 0$ or $0 \to M \to I^0 \to I^1 \to \cdots$ and $0 \to N \to F^0 \to F^1 \to \cdots$ to define the left or right balance functors relative to $\mathcal{I} \times \mathcal{F}$, respectively.

Lemma 3.10. If R is left strongly Nil_{*}-coherent, then $-\otimes -$ on $\mathcal{M}_R \times_R \mathcal{M}$ is right balanced by $\mathcal{NF} \times \mathcal{NI}$.

Proof. Let M be any right R-module. By Remark 2.14, there is a right \mathcal{NF} -resolution $0 \to M \to F^0 \to F^1 \to \cdots$. For any N-injective left R-module N,

 N^+ is N-flat by Theorem 2.11. Thus we have an exact sequence

 $\cdots \to \operatorname{Hom}(F^1, N^+) \to \operatorname{Hom}(F^0, N^+) \to \operatorname{Hom}(M, N^+) \to 0.$

Hence

$$\cdots \to (N \otimes F^1)^+ \to (N \otimes F^0)^+ \to (N \otimes M)^+ \to 0$$

is exact. Then $0 \to N \otimes M \to N \otimes F^0 \to N \otimes F^1 \to \cdots$ is exact. In addition, by Lemma 3.8, the right \mathcal{NI} -resolution $0 \to G \to I^0 \to I^1 \to \cdots$ of any left R-module G is exact, so the sequence $0 \to G \otimes F \to I^0 \otimes F \to I^1 \otimes F \to \cdots$ is exact for any $F \in \mathcal{NF}$ by Lemma 3.8 again, as desired. \Box

Remark 3.11. (1) $\operatorname{Tor}^{n}(-,-)$ denotes the nth right derived functor of $-\otimes$ with respect to the pair $\mathcal{NF} \times \mathcal{NI}$. If R is a left strongly Nil_* -coherent ring, for any right R-module M and left R-module N, $\operatorname{Tor}^{n}(M, N)$ can be computed using either the right \mathcal{NF} -resolution of M or the right \mathcal{NI} -resolution of N by Lemma 3.10.

(2) If R is a left strongly Nil_* -coherent ring, by the proof of Lemma 3.8, every left R-module has a right \mathcal{NI} -resolution. So $\operatorname{Hom}(-,-)$ is left balanced on ${}_{R}\mathcal{M} \times_{R}\mathcal{M}$ by $\mathcal{NI} \times \mathcal{NI}$. Let $\operatorname{Ext}_{n}(-,-)$ be the *n*th left derived functor of $\operatorname{Hom}(-,-)$ with respect to the pair $\mathcal{NI} \times \mathcal{NI}$. Then, for two left R-modules M and N, $\operatorname{Ext}_{n}(M, N)$ can be computed using the right \mathcal{NI} -resolution of Mor the left \mathcal{NI} -resolution of N.

We are now in a position to prove the following theorem.

Theorem 3.12. If R is left strongly Nil_* -coherent and $n \ge 0$, then the following are equivalent:

- (1) $l.N Id(R) \le n.$
- (2) If $0 \to M \to F^0 \to F^1 \to \cdots$ is a right \mathcal{NF} -resolution of right R-module M, then the sequence is exact at F^k for $k \ge n-1$, where $F^{-1} = M$.
- (3) For every flat left R-module F, there is an exact sequence $0 \to F \to A^0 \to A^1 \to \cdots \to A^n \to 0$ with each $A^i \in \mathcal{NI}$.
- (4) For every injective right R-module A, there is an exact sequence $0 \rightarrow F_n \rightarrow \cdots \rightarrow F_1 \rightarrow F_0 \rightarrow A \rightarrow 0$ with each $F_i \in \mathcal{NF}$.
- (5) If $\dots \to I_1 \to I_0 \to M \to 0$ is a left \mathcal{NI} -resolution of a left R-module M, then the sequence is exact at I_k for $k \ge n-1$, where $I_{-1} = M$.

Proof. $(3) \Rightarrow (1)$ is trivial.

 $(1)\Rightarrow(2)$. By Remark 3.11 (1), the right derived functor $\operatorname{Tor}^{n}(R, M)$ can be computed using either a right \mathcal{NF} -resolution of M or a right \mathcal{NI} -resolution of R.

If $n \geq 2$, we have the exact sequence $0 \to R \to A^0 \to \cdots \to A^n \to 0$ with $A^i \in \mathcal{NI}$, so $\operatorname{Tor}^k(R, M) = 0$ for $k \geq n-1$. Computing using $0 \to M \to F^0 \to F^1 \to \cdots$ in (2), we see that the sequence $\cdots \to R \otimes F^{n-2} \to R \otimes F^{n-1} \to R \otimes F^n \to \cdots$ is exact at $R \otimes F^k$ for $k \geq n-1$, so $0 \to M \to F^0 \to F^1 \to \cdots$ is exact at F^k for $k \geq n-1$.

If $n = 1, 0 \to R \to A^0 \to A^1 \to 0$ is exact, where A^i is N-injective. So $\operatorname{Tor}^1(R, M) = 0$ as above, $F^0 \to F^1 \to F^2$ is exact and $R \otimes M \to \operatorname{Tor}^0(R, M)$ is epic. Computing the latter morphism using $0 \to M \to F^0 \to F^1$, we have $M \to F^0 \to F^1 \to \cdots$ is exact.

If n = 0, then R is N-injective as a right R-module. But the balance of $- \otimes -$ then gives $0 \to R \otimes M \to R \otimes F^0 \to R \otimes F^1 \to \cdots$ is exact. Thus $0 \to M \to F^0 \to F^1 \to \cdots$ is exact.

 $(2) \Rightarrow (3)$. Let $0 \to M \to F^0 \to F^1 \to \cdots$ be a right \mathcal{NF} -resolution of a finitely presented left R-module M. By assumption, the sequence is exact at F^k for $k \ge n-1$. Let $0 \to F \to A^0 \to A^1 \to \cdots$ be exact with F flat and each A^i N-injective. If $n \ge 2$, we get $\operatorname{Tor}^k(F, M) = 0$ for $k \ge n-1$ since F is flat. Computing using $0 \to F \to A^0 \to A^1 \to \cdots$, then $A^{n-2} \otimes M \to A^{n-1} \otimes M \to A^n \otimes M \to A^{n+1} \otimes M$ is exact. By [8, Lemma 8.4.23], $K = \operatorname{Ker}(A^n \to A^{n+1})$ is a pure submodule of A^n , hence K is also N-injective by Corollary 2.12. Then $0 \to F \to A^0 \to A^{n-1} \to K \to 0$ gives the desired exact sequence.

If n = 1, then $M \to F^0 \to F^1 \to \cdots$ is exact. Thus $\operatorname{Tor}^k(F, M) = 0$ for $k \ge 1$ and $F \otimes M \to \operatorname{Tor}^0(F, M)$ is epic. So $F \otimes M \to A^0 \otimes M \to A^1 \otimes M \to A^2 \otimes M$ is exact. By [8, Lemma 8.4.23] again, we get the exact sequence $0 \to F \to A^0 \to K \to 0$ with $K = \operatorname{Ker}(A^1 \to A^2)$ N-injective.

If n = 0, then $0 \to M \to F^0 \to F^1 \to \cdots$ is exact, so $\operatorname{Tor}^k(F, M) = 0$ for $k \ge 0$ and $F \otimes M \to \operatorname{Tor}^0(F, M)$ is an isomorphism. This gives that $0 \to F \otimes M \to A^0 \otimes M \to A^1 \otimes M$ is exact, which implies F is a pure submodule of A^0 , hence F is N-injective.

 $(5) \Rightarrow (1)$. By assumption, $I_n \to I_{n-1} \to I_{n-2}$ is exact at I_{n-1} . Thus $I_n \to K_n$ is epic, where $K_n = \text{Ker}(I_{n-1} \to I_{n-2})$. Hence $\text{Hom}(R, I_n) \to \text{Hom}(R, K_n)$ is epic. By Proposition 3.9, $l.N - Id(R) \leq n$.

(1) \Rightarrow (5). If $n \geq 2$. Let $0 \to R \to A^{\overline{0}} \to \cdots \to A^n \to 0$ be a right \mathcal{NI} -resolution of a right R-module M, then $\operatorname{Ext}_k(R, M) = 0$ for $k \geq n-1$. By Remark 3.11 (2), we can compute $\operatorname{Ext}_k(R, M) = 0$ using a left \mathcal{NI} -resolution of $M \cdots \to I_1 \to I_0 \to M \to 0$, so $\cdots \to \operatorname{Hom}(R, I_n) \to \operatorname{Hom}(R, I_{n-1}) \to \cdots \to \operatorname{Hom}(R, I_1) \to \operatorname{Hom}(R, I_0) \to \operatorname{Hom}(R, M) \to 0$ is exact at $\operatorname{Hom}(R, I_k)$ for $k \geq n-1$. Hence $\cdots \to I_1 \to I_0 \to M \to 0$ is exact at I_k for $k \geq n-1$.

If n = 1, then there is an exact sequence $0 \to R \to A^0 \to A^1 \to 0$ with $A^i \in \mathcal{NI}$. So $0 \to \operatorname{Hom}(A^1, M) \to \operatorname{Hom}(A^0, M) \to \operatorname{Hom}(R, M)$ is exact. Thus $\operatorname{Ext}_k(R, M) = 0$ for $k \ge 1$ and $\operatorname{Ext}_0(R, M) \to \operatorname{Hom}(R, M)$ is a monomorphism. But computing $\operatorname{Ext}_0(R, M)$ using a left \mathcal{NI} -resolution of M, we see that $I_1 \to I_0 \to M$ is exact at I_0 , so $\cdots \to I_1 \to I_0 \to M \to 0$ is exact at I_k for $k \ge 0$.

If n = 0, then R is N-injective as a left R-module. So every \mathcal{NI} -precover is epic, and hence $\cdots \to I_1 \to I_0 \to M \to 0$ is exact.

The proof of $(4) \Leftrightarrow (5)$ is dual to that of $(2) \Leftrightarrow (3)$.

Proposition 3.13. Let R be a left strongly Nil_{*}-coherent ring and $wD(R) < \infty$, where wD(R) is the weak global dimension of R. Then $l.N - Id(R) = l.N - I.dim(R) \le wD(R)$.

Proof. We first prove the right inequality. By the definitions of left N-injective dimensions of modules and rings, we have

 $l.N - I.dim(R) = \sup\{l.pd(R/I) \mid I \text{ is finitely generated left ideal in } N(R)\},\$

where l.pd(R/I) is the left projective dimension of R/I. Then $l.N-I.dim(R) \le wD(R)$. We suppose that $l.N-I.dim(R) = n < \infty$.

For the left equality, it suffices to prove $l.N - I.dim(R) \leq l.N - Id(R)$. Assume that $l.N - Id(R) = m < \infty$. By the similar proof of [7, Proposition 3.10], it can be proven that $l.N - Id(F) \leq m$ for any free left *R*-module *F*. Note that, for any left *R*-module *M*, there exists an exact sequence $0 \rightarrow K_n \rightarrow F_{n-1} \rightarrow F_{n-2} \rightarrow \cdots \rightarrow F_0 \rightarrow M \rightarrow 0$ with each F_i free. Then $l.N - Id(K_n) = n$ and $l.N - Id(F_i) \leq m$. By Proposition 3.5, $\operatorname{Ext}^{m+1}(R/I, M) \cong \operatorname{Ext}^{m+n+1}(R/I, K_n) = 0$ for every finitely generated left ideal *I* in N(R), and hence $l.N - Id(M) \leq m$. Therefore, l.N - Id(R) = l.N - I.dim(R).

Example 6. Let $\mathbb{F}[x]$ be a polynomial ring over a field \mathbb{F} . Then $\mathbb{F}[x]$ is semiprime, and hence l.N - Id(R) = l.N - I.dim(R) = 0. It is easy to verify that wD(R) = 1.

Lemma 3.14. Let R be a left strongly Nil_{*}-coherent ring and M a left R-module. If $\text{Ext}^1(E, M) = 0$ for all N-injective left R-modules E, then M has an \mathcal{NI} -cover $L \to M$ with L injective.

Proof. In view of Proposition 2.13, M has an \mathcal{NI} -cover $f: L \to M$. For the exact sequence $0 \to L \xrightarrow{i} E \to L' \to 0$ with E injective, L' is N-injective. Thus $\operatorname{Hom}(E, M) \to \operatorname{Hom}(L, M) \to 0$ is exact since $\operatorname{Ext}^1(L', M) = 0$, and hence there is $g \in \operatorname{Hom}(E, M)$ such that f = gi. Then there exists $h: E \to L$ such that g = fh since $f: L \to M$ is an \mathcal{NI} -cover of M. So f = fhi, implies hi is isomorphism. Therefore, L is injective.

Theorem 3.15. If R is left strongly Nil_* -coherent and $n \ge 1$, then the following are equivalent:

- (1) $l.N I.dim(R) \le n.$
- (2) Every nth \mathcal{NI} -syzygy of a left R-module is N-injective.
- (3) Every (n-1)th \mathcal{NI} -syzygy of a right R-module has an \mathcal{NI} -cover which is a monomorphism.
 - Moreover, if $n \geq 2$, then the above conditions are equivalent to:
- (4) Every (n-2)th \mathcal{NI} -syzygy in a minimal left \mathcal{NI} -resolution of a left *R*-module has an \mathcal{NI} -cover with the unique mapping property.

Proof. (1) \Rightarrow (2). Let K_n be nth \mathcal{NI} -syzygy of a left R-module. Then $l.N - Id(K_n) \leq n$. So $\operatorname{Hom}(K_n, I_n) \to \operatorname{Hom}(K_n, K_n)$ is an epimorphism by Proposition 3.9, whence K_n is N-injective.

 $(2) \Rightarrow (3)$. Let $f : I_{n-1} \to K_{n-1}$ be an \mathcal{NI} -precover of the (n-1)th \mathcal{NI} -syzygy K_{n-1} , and $K_n = \text{Ker}(f)$. Then we have the exact sequence $0 \to K_n \to 0$

 $I_{n-1} \to \operatorname{im}(f) \to 0$. By assumption, K_n is N-injective, so is $\operatorname{im}(f)$. Thus the inclusion $\operatorname{im}(f) \to K_{n-1}$ is an \mathcal{NI} -cover which is a monomorphism.

 $(3) \Rightarrow (2)$. Let $\cdots \rightarrow I_n \rightarrow I_{n-1} \rightarrow \cdots \rightarrow I_1 \rightarrow I_0 \rightarrow N \rightarrow 0$ be any left \mathcal{NI} -resolution of a left *R*-module *N* and $K_n = \text{Ker}(I_{n-1} \rightarrow I_{n-2}), K_{n-1} =$ $\text{Ker}(I_{n-2} \rightarrow I_{n-3})$. K_{n-1} has a monomorphic \mathcal{NI} -cover $I \rightarrow K_{n-1}$ by assumption. Thus $K_n \oplus I \simeq I_{n-1}$ in terms of [8, Lemma 8.6.3]. So K_n is *N*-injective by Remark 2.9(1).

 $(2) \Rightarrow (1)$. Let M be a left R-module. For a left \mathcal{NI} -resolution $\cdots \rightarrow I_n \rightarrow I_{n-1} \rightarrow \cdots \rightarrow I_1 \rightarrow I_0 \rightarrow N \rightarrow 0$ of a left R-module $N, I_n \rightarrow K_n$ is a split epimorphism since K_n is N-injective. Thus $\operatorname{Hom}(M, I_n) \rightarrow \operatorname{Hom}(M, K_n)$ is epimorphic, hence $l.N-Id(M) \leq n$ by Proposition 3.9. Then $l.N-I.dim(R) \leq n$.

 $(3)\Rightarrow(4).$ Let $\dots \to I_{n-3} \to I_{n-4} \to \dots \to I_1 \to I_0 \to M \to 0$ be a minimal \mathcal{NI} -resolution of a left *R*-module *M* with $K_{n-2} = \operatorname{Ker}(I_{n-3} \to I_{n-4}).$ By assumption, $K_{n-1} = \operatorname{Ker}(I_{n-2} \to I_{n-3})$ has a monomorphic \mathcal{NI} -cover $i: I_{n-1} \to K_{n-1}.$ Note $\operatorname{Ext}^1(I, K_{n-1}) = 0$ for all *N*-injective right *R*-modules *I* by Wakamatsu's Lemma. Thus I_{n-1} is injective by Lemma 3.14. But K_{n-1} has no nonzero injective submodule by [15, Corollary 1.2.8]. Thus $I_{n-1} = 0$, and hence $\operatorname{Hom}(I, K_{n-1}) = \operatorname{Hom}(I, I_{n-1}) = 0$ for any *N*-injective left *R*-module *I*. So we have the exact sequence $0 \to \operatorname{Hom}(I, I_{n-2}) \to \operatorname{Hom}(I, K_{n-2}) \to 0$ for any *N*-injective left *R*-module *I*, as desired.

 $(4) \Rightarrow (2). \text{ Let } \cdots \to I_n \to I_{n-1} \to \cdots \to I_1 \to I_0 \to M \to 0 \text{ be an } \mathcal{NI} \text{-} \text{resolution of a left } R\text{-module } M \text{ with } K_n = \text{Ker}(I_{n-1} \to I_{n-2}). \text{ By assumption,} M \text{ has a minimal } \mathcal{NI} \text{-resolution of the form } 0 \to I'_{n-2} \to I'_{n-3} \to \cdots \to I'_1 \to I'_0 \to M \to 0. \text{ In view of } [8, \text{ Corollary } 8.6.4], K_n \oplus I_{n-2} \oplus I'_{n-3} \oplus \cdots \cong I_{n-1} \oplus I'_{n-2} \oplus I_{n-3} \oplus \cdots. \text{ Thus } K_n \text{ is } N\text{-injective.} \qquad \Box$

Corollary 3.16. If R is left strongly Nil_* -coherent, then the following are equivalent:

- (1) $l.N I.dim(R) \le 2$.
- (2) Every left R-module has an \mathcal{NI} -cover with the unique mapping property.

Acknowledgment. The authors are indebted to the referee for his/her various valuable comments leading to the improvement of the paper. This work was supported by the Scientific Research Foundation of Hunan Provincial Education Department(12B101).

References

- F. W. Anderson and K. R. Fuller, *Rings and Categories of Modules*, New York, Springer-Verlag, 1974.
- [2] S. U. Chase, Direct products of modules, Trans. Amer. Math. Soc. 97 (1960), 457-473.
- [3] T. J. Cheatham and D. R. Stone, *Flat and projective character modules*, Proc. Amer. Math. Soc. 81 (1981), no. 2, 175–177.

Y. XIANG AND L. OUYANG

- [4] J. L. Chen and Y. Q. Zhou, Extensions of injectivity and coherent rings, Comm. Algebra 34 (2006), no. 1, 275–288.
- [5] _____, Characterizations of coherent rings, Comm. Algebra 27 (2001), no. 5, 2491– 2501.
- [6] N. Q. Ding, On envelopes with the unique mapping property, Comm. Algebra 24 (1996), no. 4, 1459–1470.
- [7] N. Q. Ding, Y. L. Li, and L. X. Mao, *J-coherent rings*, J. Algebra Appl. 8 (2009), no. 2, 139–155.
- [8] E. E. Enochs and O. M. G. Jenda, *Relative Homological Algebra*, Walter de Gruyter, Berlin, Now York, 2000.
- [9] S. Glaz, Commutative Coherent Rings, in: Lecture Notes in Math., 1371, Springer-Verlag, Berlin-Heidelberg-New York, 1989.
- [10] R. Göbel and J. Trlifaj, Approximations and Endomorphism Algebras of Modules, Berlin-New York, Walter de Gruyter, 2006.
- [11] M. E. Harris, Some results on coherent rings, Proc. Amer. Math. Soc. 17 (1966), 474– 479.
- [12] H. Holm and P. Jørgensen, Covers, preenvelopes and purity, Illinois J. Math. 52 (2008), no. 2, 691–703.
- [13] T. Y. Lam, Lectures on Modules and Rings, Graduate Texts in Mathematic, 189, Springer-Verlag, 1999.
- [14] _____, A First Course in Noncommutative Rings, Graduate Texts in Mathematic, 131, Springer-Verlag, 2001.
- [15] L. X. Mao, Min-flat modules and min-coherent rings, Comm. Algebra ${\bf 35}$ (2007), no. 2, 635–650.
- [16] _____, Weak global dimension of coherent rings, Comm. Algebra 35 (2007), no. 12, 4319–4327.
- [17] L. X. Mao and N. Q. Ding, On divisible and torsionfree modules, Comm. Algebra 36 (2008), no. 2, 708–731.
- [18] W. K. Nicholson and M. F. Yousif, *Quasi-Frobenius Rings*, Cambridge University Press, Cambridge, 2003.
- [19] K. Pinzon, Absolutely pure covers, Comm. Algebra 36 (2008), no. 6, 2186–2194.
- [20] J. R. García Rozas and B. Torrecillas, *Relative injective covers*, Comm. Algebra 22 (1994), no. 8, 2925–2940.
- [21] J. Rada and M. Saorin, Rings characterized by (pre)envelopes and (pre)covers of their modules, Comm. Algebra 26 (1998), no. 3, 899–912.
- [22] J. J. Rotman, An Introduction to Homological Algebra, Academic Press, New York, 1979.
- [23] F. L. Sandomierski, Homological dimensions under change of rings, Math. Z. 130 (1973), 55–65.

YUEMING XIANG DEPARTMENT OF MATHEMATICS AND APPLIED MATHEMATICS HUAIHUA UNIVERSITY HUAIHUA, 418000, P. R. CHINA *E-mail address*: xymls999@126.com

LUNQUN OUYANG DEPARTMENT OF MATHEMATICS HUNAN UNIVERSITY OF SCIENCE AND TECHNOLOGY XIANGTAN, 411201, P. R. CHINA *E-mail address:* **Ouyanglqtxy@163.com**