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JORDAN DERIVATIONS ON PRIME RINGS AND THEIR

APPLICATIONS IN BANACH ALGEBRAS, I

Byung-Do Kim

Abstract. The purpose of this paper is to prove that the noncom-
mutative version of the Singer-Wermer Conjecture is affirmative under
certain conditions. Let A be a noncommutative Banach algebra. Sup-
pose there exists a continuous linear Jordan derivation D : A → A such
that D(x)3[D(x), x] ∈ rad(A) for all x ∈ A. In this case, we show that
D(A) ⊆ rad(A).

1. Introduction

Throughout, R represents an associative ring and A will be a complex Ba-
nach algebra. We write [x, y] for the commutator xy − yx for x, y in a ring.
Let rad(R) denote the (Jacobson) radical of a ring R. And a ring R is said to
be (Jacobson) semisimple if its Jacobson radical rad(R) is zero.

A ring R is called n-torsion free if nx = 0 implies x = 0. Recall that R is
prime if aRb = (0) implies that either a = 0 or b = 0, and is semiprime if aRa =
(0) implies a = 0. On the other hand, let X be an element of a normed algebra.
Then for every a ∈ X the spectral radius of a, denoted by r(a), is defined by

r(a) = inf{||an||
1

n : n ∈ N}. It is well-known that the following theorem holds:

if a is an element of a normed algebra, then r(a) = limn→∞ ||an||
1

n (see Bonsall
and Duncan [1]).

An additive mapping D from R to R is called a derivation if D(xy) =
D(x)y + xD(y) holds for all x, y ∈ R. And an additive mapping D from R to
R is called a Jordan derivation if D(x2) = D(x)x+ xD(x) holds for all x ∈ R.

Johnson and Sinclair [5] have proved that any linear derivation on a semisim-
ple Banach algebra is continuous. A result of Singer and Wermer [12] states
that every continuous linear derivation on a commutative Banach algebra maps
the algebra into its radical. From these two results, we can conclude that there
are no nonzero linear derivations on a commutative semisimple Banach algebra.
Thomas [13] has proved that any linear derivation on a commutative Banach
algebra maps the algebra into its radical.
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A noncommutative version of Singer and Wermer’s Conjecture states that
every continuous linear derivation on a noncommutative Banach algebra maps
the algebra into its radical.

Vukman [15] has proved the following: Let R be a 2-torsion free prime ring.
If D : R −→ R is a derivation such that [D(x), x]D(x) = 0 for all x ∈ R, then
D = 0.

Moreover, using the above result, he has proved that the following holds: Let
A be a noncommutative semisimple Banach algebra. Suppose that [D(x), x]
D(x) = 0 holds for all x ∈ A. In this case, D = 0.

Kim [6] has showed that the following result holds: Let R be a 3!-torsion
free semiprime ring. Suppose there exists a Jordan derivation D : R → R such
that

[D(x), x]D(x)[D(x), x] = 0

for all x ∈ R. In this case, we have [D(x), x]5 = 0 for all x ∈ R.
And, Kim [7] has showed that the following result holds: Let A be a non-

commutative Banach algebra. Suppose there exists a continuous linear Jordan
derivation D : A → A such that D(x)[D(x), x]D(x) ∈ rad(A) for all x ∈ A. In
this case, we have D(A) ⊆ rad(A).

In this paper, our aim is to prove the following results in the ring theory in
order to apply it to the Banach algebra theory:

Let R be a 7!-torsion free prime ring. Suppose there exists a Jordan deriva-
tion D : R −→ R such that

D(x)3[D(x), x] = 0

for all x ∈ R. In this case, we obtain D(x) = 0 for all x ∈ R.
Let A be a noncommutative Banach Algebra. Suppose there exists a con-

tinuous linear Jordan derivation D : A −→ A such that

D(x)3[D(x), x] ∈ rad(A)

for all x ∈ A. In this case, we obtain D(A) ⊆ rad(A) for all x ∈ A.

2. Preliminaries

In this section, we review the basic results in prime and semiprime rings.
The following lemma is due to Chung and Luh [4].

Lemma 2.1. Let R be a n!-torsion free ring. Suppose there exist elements

y1, y2, . . . , yn−1, yn in R such that
∑n

k=1
tkyk = 0 for all t = 1, 2, . . . , n. Then

we have yk = 0 for every positive integer k with 1 ≤ k ≤ n.

The following theorem is due to Bres̆ar [3].

Theorem 2.2. Let R be a 2-torsion free semiprime ring and let D : R −→ R
be a Jordan derivation. In this case, D is a derivation.

The following theorem is due to Chung and Luh [4].
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Theorem 2.3. Let R be a semiprime ring with a derivation D. Suppose there

exists a positive integer n such that (Dx)n = 0 for all x ∈ R and suppose R is

(n− 1)!-torsion free. Then D = 0.

3. Main results

We need the following notations. After this, by Sm we denote the set {k ∈
N | 1 ≤ k ≤ m} where m is a positive integer. When R is a ring, we shall
denote the maps B : R × R −→ R, f, g : R −→ R by B(x, y) ≡ [D(x), y] +
[D(y), x], f(x) ≡ [D(x), x], g(x) ≡ [f(x), x] for all x, y ∈ R, respectively. And
we have the basic properties:

B(x, y) = B(y, x), B(x, yz) = B(x, y)z + yB(x, z) +D(y)[z, x] + [y, x]D(z),

B(x, x) = 2f(x), B(x, x2) = 2(f(x)x+ xf(x)), x, y, z ∈ R.

Lemma 3.1. Let R be a 2-torsion free noncommutative prime ring. Suppose

there exists a Jordan derivation D : R −→ R such that

[D(x), x] = 0

for all x ∈ R. Then we have D(x) = 0 for all x ∈ R.

Proof. From Theorem 2.2, we see that D is a derivation on R. Let

f(x) = [D(x), x] = 0, x ∈ R.(1)

Substituting x+ y for x in (1), we have

f(x+ y) ≡ f(x) +B(x, y) + [D(y), y] = 0, x, y ∈ R.(2)

From (1) and (2), we obtain

B(x, y) = 0, x, y ∈ R.(3)

Replacing yx for y in (3), we have

B(x, y)x+ 2yf(x) + [y, x]D(x) = 0, x, y ∈ R.(4)

Combining (1), (3) with (4), we get

[y, x]D(x) = 0, x, y ∈ R.(5)

Substituting zy for y in (5), we have

[z, x]yD(x) + z[y, x]D(x) = 0, x, y, z ∈ R.(6)

Combining (5) with (6), we obtain

[z, x]yD(x) = 0, x, y, z ∈ R.(7)

Substituting x+ u for x in (5),

(8) [z, x]yD(x) + [z, u]yD(x) + [z, x]yD(u) + [z, u]yD(u) = 0, u, x, y, z ∈ R.

From (7) and (8),

[z, u]yD(x) + [z, x]yD(u) = 0, u, x, y, z ∈ R.(9)
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Writing yD(x)v[z, u]y for y in (9), we have

[z, u]yD(x)v[z, u]yD(x) + [z, x]yD(x)v[z, u]yD(u)

= 0, u, v, x, y, z ∈ R.(10)

Combining (7) with (10), we get

[z, u]yD(x)v[z, u]yD(x) = 0, u, v, x, y, z ∈ R.(11)

From (11) and the (semi)primeness of R,

[z, u]yD(x) = 0, u, x, y, z ∈ R.(12)

By the primeness and noncommutativity of R, (12) gives

D(x) = 0, x ∈ R. �

Lemma 3.2. Let R be a 2-torsion free noncommutative semiprime ring. Sup-

pose there exists a Jordan derivation D : R −→ R such that

[[D(x), x], x] = 0

for all x ∈ R. Then we have [D(x), x] = 0 for all x ∈ R.

Proof. From Theorem 2.2, we see that D is a derivation on R.
Let

g(x) = [[D(x), x], x] = 0, x ∈ R.(13)

Substituting x+ ty for x in (13), we have

(14)
g(x+ ty) ≡ g(x) + t([f(x), y] + [B(x, y), x])

+ t2A(x, y) + t3g(y) = 0, x, y ∈ R, t ∈ S2,

where A(x, y) denotes the term satisfying the identity (14).
From (13) and (14), we obtain

t([f(x), y] + [B(x, y), x]) + t2A(x, y) = 0, x, y ∈ R, t ∈ S2.(15)

Since R is 2-torsion free, by Lemma 2.1, (15) yields

[f(x), y] + [B(x, y), x] = 0, x, y ∈ R.(16)

Replacing yx for y in (16), we have

[f(x), y]x+ yg(x) + [B(x, y), x]x

+3yg(x) + 3[y, x]f(x) + [[y, x], x]D(x) = 0, x, y ∈ R.(17)

Right multiplication of (16) by x leads to

[f(x), y]x + [B(x, y), x]x = 0, x, y ∈ R.(18)

Comparing (13), (17) and (18), we get

3yg(x) + 3[y, x]f(x) + [[y, x], x]D(x) = 0, x, y ∈ R.(19)

From (13) and (19),

3[y, x]f(x) + [[y, x], x]D(x) = 0, x, y ∈ R.(20)
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From (20), we have

3[y, x]g(x) + [[y, x], x]f(x) = 0, x, y ∈ R.(21)

From (13) with (21),

[[y, x], x]f(x) = 0, x, y ∈ R.(22)

Writing D(x)y for y in (20), we have

3D(x)[y, x]f(x) + 3f(x)yf(x) +D(x)[[y, x], x]D(x)

+2f(x)[y, x]D(x) + g(x)yD(x) = 0, x, y ∈ R.(23)

Left multiplication of (20) by D(x), we obtain

3D(x)[y, x]f(x) +D(x)[[y, x], x]D(x) = 0, x, y ∈ R.(24)

From (13), (23) and (24), we get

3f(x)yf(x) + 2f(x)[y, x]D(x) = 0, x, y ∈ R.(25)

Replacing yD(x)w for y in (25), we have

3f(x)yD(x)wf(x) + 2f(x)[y, x]D(x)wD(x)

+2f(x)yf(x)wD(x) + 2f(x)yD(x)[w, x]D(x) = 0, w, x, y ∈ R.(26)

From (25) and (26), we get

3f(x)yD(x)wf(x) − f(x)yf(x)wD(x)

+2f(x)yD(x)[w, x]D(x) = 0, w, x, y ∈ R.(27)

Substituting wx for w in (27), we have

3f(x)yD(x)wxf(x) − f(x)yf(x)wxD(x)

+2f(x)yD(x)[w, x]xD(x) = 0, w, x, y ∈ R.(28)

Right multiplication of (27) by x leads to

3f(x)yD(x)wf(x)x − f(x)yf(x)wD(x)x

+2f(x)yD(x)[w, x]D(x)x = 0, w, x, y ∈ R.(29)

From (28) and (29), we get

3f(x)yD(x)wg(x) − f(x)yf(x)wf(x)

+2f(x)yD(x)[w, x]f(x) = 0, w, x, y ∈ R.(30)

Comparing (13) and (30), we get

f(x)y(f(x)wf(x) − 2yD(x)[w, x]f(x)) = 0, w, x, y ∈ R.(31)

From (31), we obtain

(f(x)wf(x) − 2D(x)[w, x]f(x))y(f(x)wf(x)

−2D(x)[w, x]f(x) = 0, w, x, y ∈ R.(32)

Since R is semiprime, (32) yields

f(x)yf(x)− 2D(x)[y, x]f(x) = 0, x, y ∈ R.(33)
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Putting xy instead of y in (16), we have

x([f(x), y] + [B(x, y), x]) + 3g(x)y + 3f(x)[y, x] +D(x)[[y, x], x]

= 0, x, y ∈ R.(34)

Comparing (13), (16) and (34), we get

3f(x)[y, x] +D(x)[[y, x], x] = 0, x, y ∈ R.(35)

Writing yD(x) for y in (35), we have

3f(x)[y, x]D(x) + 3f(x)yf(x) +D(x)[[y, x], x]D(x)

+2D(x)[y, x]f(x) +D(x)yg(x) = 0, x, y ∈ R.(36)

From (35) and (36),

3f(x)yf(x) + 2D(x)[y, x]f(x) +D(x)yg(x) = 0, x, y ∈ R.(37)

From (13) and (37), we have

3f(x)yf(x) + 2D(x)[y, x]f(x) = 0, x, y ∈ R.(38)

Combining (33) with (38),

4f(x)yf(x) = 0, x, y ∈ R.(39)

Since R is 2-torsionfree, (39) gives

f(x)yf(x) = 0, x, y ∈ R.(40)

Since R is semiprime, (40) yields

f(x) = [D(x), x] = 0, x ∈ R. �

Lemma 3.3. Let R be a 7!-torsion free noncommutative prime ring. Suppose

there exists a Jordan derivation D : R −→ R such that

D(x)5y[[D(x), x], x] = 0

for all x, y ∈ R. Then we have D(x) = 0 for all x ∈ R.

Proof. From Theorem 2.2, we see that D is a derivation on R. Let

D(x)5y[[D(x), x], x] = 0, x, y ∈ R.(41)

Substituting x+ tz for x in (41), we have

D(x+ tz)5yg(x+ tz)

= D(x+ tz)5y[[D(x+ tz), x+ tz], x+ tz]

≡ D(x)5yg(x) + t{(D(z)D(x)4 +D(x)D(z)D(x)3

+D(x)2D(z)D(x)2 +D(x)3D(z)D(x) +D(x)4D(z))yg(x)

+D(x)5y([[D(z), x], x] + [[D(x), z], x] + [f(x), z])}

+t2C1(x, y, z) + t3C2(x, y, z) + t4C3(x, y, z) + t5C4(x, y, z)

+t6C5(x, y, z) + t7C6(x, y, z) + t8D(z)5yg(z)

= 0, x, y, z ∈ R, t ∈ S7,(42)
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where Ci(x, y, z) (1 ≤ i ≤ 6) denotes the term satisfying the identity (42).
From (41) and (42), we obtain

t{(D(z)D(x)4 +D(x)D(z)D(x)3

+D(x)2D(z)D(x)2 +D(x)3D(z)D(x) +D(x)4D(z))yg(x)

+D(x)5y([[D(z), x], x] + [[D(x), z], x] + [f(x), z])}

+t2C1(x, y, z) + t3C2(x, y, z) + t4C3(x, y, z) + t5C4(x, y, z)

+t6C5(x, y, z) + t7C6(x, y, z) = 0, x, y, z ∈ R, t ∈ S7.(43)

Since R is 7!-torsion free, by Lemma 2.1, (43) yields

{D(z)D(x)4 +D(x)D(z)D(x)3 +D(x)2D(z)D(x)2

+D(x)3D(z)D(x) +D(x)4D(z)}yg(x)

+D(x)5y{[[D(z), x], x] + [[D(x), z], x] + [f(x), z]} = 0, x, y, z ∈ R.(44)

Replacing yg(x)u for y in (44),

(D(z)D(x)4 +D(x)D(z)D(x)3 +D(x)2D(z)D(x)2

+D(x)3D(z)D(x) +D(x)4D(z))yg(x)ug(x)

+D(x)5yg(x)u([[D(z), x], x] + [[D(x), z], x] + [f(x), z]) = 0, u, x, y, z ∈ R.(45)

Combining (41) with (45), we get

(D(z)D(x)4 +D(x)D(z)D(x)3 +D(x)2D(z)D(x)2

+D(x)3D(z)D(x) +D(x)4D(z))yg(x)ug(x) = 0, u, x, y, z ∈ R.(46)

Putting u(D(z)D(x)4+D(x)D(z)D(x)3+D(x)2D(z)D(x)2+D(x)3D(z)D(x)+
D(x)4D(z))y instead of u in (46), we obtain

(D(z)D(x)4 +D(x)D(z)D(x)3 +D(x)2D(z)D(x)2

+D(x)3D(z)D(x) +D(x)4D(z))yg(x)u(D(z)D(x)4

+D(x)D(z)D(x)3 +D(x)2D(z)D(x)2 +D(x)3D(z)D(x)

+D(x)4D(z))yg(x) = 0, u, x, y, z ∈ R.(47)

Since R is semiprime, (47) yields

(D(z)D(x)4 +D(x)D(z)D(x)3 +D(x)2D(z)D(x)2

+D(x)3D(z)D(x) +D(x)4D(z))yg(x) = 0, x, y, z ∈ R.(48)

By using the same process of relations so obtained from (41) to (48) under the
5!-torsionfreeness repeatedly, we arrive at

(D(z)D(v)D(w)D(p)D(q) +D(v)D(z)D(w)D(p)D(q) + · · ·

+D(q)D(p)D(w)D(v)D(z))yg(x) = 0, u, v, w, p, q, x, y, z ∈ R.(49)

Let u = v = w = p = q = z in (49).

120D(z)5yg(x) = 0, x, y, z ∈ R.(50)
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Since R is 7!-torsionfree, (50) gives

D(z)5yg(x) = 0, x, y, z ∈ R.(51)

Since R is prime, it follows from (51) that

D(z)5 = 0, z ∈ R(52)

or

g(x) = 0, x ∈ R.(53)

Thus if (52) holds, then by Theorem 2.3,

D(x) = 0, x ∈ R.

Thus if (53) holds, then by Lemma 3.2,

[D(x), x] = 0, x ∈ R.(54)

Hence by Lemma 3.1, (54) gives

D(x) = 0, x ∈ R.

Therefore in any case, we have D ≡ 0. �

Theorem 3.4. Let R be a 7!-torsionfree noncommutative prime ring. Suppose

there exists a Jordan derivation D : R −→ R such that

D(x)3[D(x), x] = 0

for all x ∈ R. Then we have D(x) = 0 for all x ∈ R.

Proof. By Theorem 2.2, we can see that D is a derivation on R. Suppose

D(x)3f(x) = 0, x ∈ R.(55)

Replacing x+ ty for x in (55), we have

D(x+ ty)3[D(x+ ty), x+ ty]

≡ D(x)3f(x) + t{D(y)D(x)2f(x) +D(x)D(y)D(x)f(x)

+D(x)2D(y)f(x) +D(x)3B(x, y)} + t2E1(x, y) + t3E2(x, y)

+t4E3(x, y) + t5D(y)3f(y) = 0, x, y ∈ R, t ∈ S3,(56)

where Ei(x, y), 1 ≤ i ≤ 3, denotes the term satisfying the identity (56).
From (55) and (56),

t{D(y)D(x)2f(x) +D(x)D(y)D(x)f(x) +D(x)2D(y)f(x)

+D(x)3B(x, y)} + t2E1(x, y) + t3E2(x, y) + t4E3(x, y)

= 0, x, y ∈ R, t ∈ S4.(57)

Since R is 3!-torsionfree, by Lemma 2.1, (57) yields

D(y)D(x)2f(x) +D(x)D(y)D(x)f(x) +D(x)2D(y)f(x)

+D(x)3B(x, y) = 0, x, y ∈ R.(58)
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Let y = x2 in (58). Then using (55), we get

(D(x)x + xD(x))D(x)2f(x) +D(x)(D(x)x + xD(x))D(x)f(x)

+D(x)2(D(x)x + xD(x))f(x) + 2D(x)3(f(x)x+ xf(x))

= f(x)D(x)2f(x) + (f(x)D(x) +D(x)f(x))D(x)f(x)

+f(x)D(x)2f(x) + (f(x)D(x)2 +D(x)f(x)D(x) +D(x)2f(x))f(x)

+(f(x)D(x) +D(x)f(x))D(x)f(x) + 2(f(x)D(x)2 +D(x)f(x)D(x)

+D(x)2f(x))f(x)

= 7f(x)D(x)2f(x) + 5D(x)f(x)D(x)f(x) + 3D(x)2f(x)2 = 0, x ∈ R.(59)

Left multiplication of (59) by D(x)2 leads to

7(D(x)2f(x))2 + 5D(x)3f(x)D(x)f(x) + 3D(x)5f(x)2 = 0, x ∈ R.(60)

Comparing (55) with (60),

7(D(x)2f(x))2 = 0, x ∈ R.

Since R is 7!-torsionfree, the above relation gives

(D(x)2f(x))2 = 0, x ∈ R.(61)

On the other hand, we obtain from (55)

0 = [D(x)3f(x), x]

= f(x)D(x)2f(x) +D(x)f(x)D(x)f(x) +D(x)2f(x)2

+D(x)3g(x), x ∈ R.(62)

Left multiplication of (62) by D(x)2 leads to

(D(x)2f(x))2 +D(x)3f(x)D(x)f(x) +D(x)4f(x)2

+D(x)5g(x) = 0, x ∈ R.(63)

Comparing (55), (61) and (63),

D(x)5g(x) = 0, x ∈ R.(64)

From (59) and (62), we get

4f(x)D(x)2f(x) + 2D(x)f(x)D(x)f(x) − 3D(x)3g(x) = 0, x ∈ R.(65)

Combining (59) with (65),

3(2f(x)D(x)2f(x)− 2D(x)2f(x)2 − 5D(x)3g(x)) = 0, x ∈ R.

Since R is 3!-torsion-free, the above relation gives

2f(x)D(x)2f(x)− 2D(x)2f(x)2 − 5D(x)3g(x) = 0, x ∈ R.(66)

Writing xy for y in (58), we have

xD(y)D(x)2f(x) +D(x)yD(x)2f(x) +D(x)xD(y)D(x)f(x)

+D(x)2yD(x)f(x) +D(x)2xD(y)f(x) +D(x)3yf(x)

+D(x)3(2f(x)y + xB(x, y) +D(x)[y, x]) = 0, x, y ∈ R.(67)



544 BYUNG-DO KIM

Left multiplication of (58) by x leads to

xD(y)D(x)2f(x) + xD(x)D(y)D(x)f(x) + xD(x)2D(y)f(x)

+xD(x)3B(x, y) = 0, x, y ∈ R.(68)

From (67) and (68), we arrive at

D(x)yD(x)2f(x) + f(x)D(y)D(x)f(x) +D(x)2yD(x)f(x)

+f(x)D(x)D(y)f(x) +D(x)f(x)D(y)f(x) +D(x)3yf(x)

+2D(x)3f(x)y +D(x)3xB(x, y)− xD(x)3B(x, y)

+D(x)4[y, x] = 0, x, y ∈ R.(69)

By (55) and (69), it is obvious that

D(x)yD(x)2f(x) + f(x)D(y)D(x)f(x) +D(x)2yD(x)f(x)

+f(x)D(x)D(y)f(x) +D(x)f(x)D(y)f(x) +D(x)3yf(x)

+f(x)D(x)2B(x, y) +D(x)f(x)D(x)B(x, y) +D(x)2f(x)B(x, y)

+D(x)4[y, x] = 0, x, y ∈ R.(70)

Left multiplication of (70) by D(x)3 gives

D(x)4yD(x)2f(x) +D(x)3f(x)D(y)D(x)f(x) +D(x)5yD(x)f(x)

+D(x)3f(x)D(x)D(y)f(x) +D(x)4f(x)D(y)f(x) +D(x)6yf(x)

+D(x)3f(x)D(x)2B(x, y) +D(x)4f(x)D(x)B(x, y)

+D(x)5f(x)B(x, y) +D(x)7[y, x] = 0, x, y ∈ R.(71)

Combining (55) with (71),

D(x)4yD(x)2f(x) +D(x)5yD(x)f(x) +D(x)6yf(x)

+D(x)7[y, x] = 0, x, y ∈ R.(72)

Replacing yx for y in (72),

D(x)4yxD(x)2f(x) +D(x)5yxD(x)f(x) +D(x)6yxf(x)

+D(x)7[y, x]x = 0, x, y ∈ R.(73)

Right multiplication of (72) by x leads to

D(x)4yD(x)2f(x)x+D(x)5yD(x)f(x)x +D(x)6yf(x)x

+D(x)7[y, x]x = 0, x, y ∈ R.(74)

Combining (73) with (74),

D(x)4y(f(x)D(x)f(x) +D(x)f(x)2 +D(x)2g(x))

+D(x)5y(f(x)2 +D(x)g(x)) +D(x)6yg(x) = 0, x, y ∈ R.(75)

Writing yD(x)4 for y in (75), we get

D(x)4y(D(x)4f(x)D(x)f(x) +D(x)5f(x)2 +D(x)6g(x))

+D(x)5y(D(x)4f(x)2 +D(x)5g(x)) +D(x)6yD(x)4g(x) = 0, x, y ∈ R.(76)
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From (55), (64) and (76),

D(x)6yD(x)4g(x) = 0, x, y ∈ R.(77)

Comparing (55), (75) and (77),

D(x)4yD(x)4g(x)z(D(x)2f(x)D(x)f(x) +D(x)4g(x))

+D(x)5yD(x)4g(x)z(D(x)2f(x)2 +D(x)3g(x)) = 0, x, y, z ∈ R.(78)

Left multiplication of (65) by D(x) leads to

4D(x)f(x)D(x)2f(x) + 2D(x)2f(x)D(x)f(x) − 3D(x)4g(x) = 0, x ∈ R.(79)

Left multiplication of (66) by D(x) yields

2D(x)f(x)D(x)2f(x)− 2D(x)3f(x)2 − 5D(x)4g(x) = 0, x ∈ R.(80)

From (55) and (80),

2D(x)f(x)D(x)2f(x)− 5D(x)4g(x) = 0, x ∈ R.(81)

From (79) and (81), we have

2D(x)2f(x)D(x)f(x) + 7D(x)4g(x) = 0, x ∈ R.(82)

From (78) and (82), we arrive at

D(x)4yD(x)4g(x)z(2D(x)2f(x)D(x)f(x) + 2D(x)4g(x))

+2D(x)5yD(x)4g(x)z(D(x)2f(x)2 +D(x)3g(x))

= D(x)4yD(x)4g(x)z(−7D(x)4g(x) + 2D(x)4g(x))

+2D(x)5yD(x)4g(x)z(D(x)2f(x)2 +D(x)3g(x))

= −5D(x)4yD(x)4g(x)zD(x)4g(x)

+2D(x)5yD(x)4g(x)z(D(x)2f(x)2 +D(x)3g(x))

= 0, x, y, z ∈ R.(83)

Substituting g(x)y for y in (83), it follows that

−5D(x)4g(x)yD(x)4g(x)zD(x)4g(x)

+2D(x)5g(x)yD(x)4g(x)z(D(x)2f(x)2 +D(x)3g(x))

= 0, x, y, z ∈ R.(84)

Comparing (64) and (84),

−5D(x)4g(x)yD(x)4g(x)zD(x)4g(x) = 0, x, y, z ∈ R.

Since R is 5!-torsion-free, the above relation yields

D(x)4g(x)yD(x)4g(x)zD(x)4g(x) = 0, x, y, z ∈ R.(85)

Thus by the semiprimeness of R, (85) gives

D(x)4g(x) = 0, x ∈ R.(86)

From (81) and (86),

2D(x)f(x)D(x)2f(x) = 0, x ∈ R.
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Since R is 5!-torsion-free, the above relation gives

D(x)f(x)D(x)2f(x) = 0, x ∈ R.(87)

From (82) and (86), we have

2D(x)2f(x)D(x)f(x) = 0, x ∈ R.

Since R is 2!-torsion-free, the above relation gives

D(x)2f(x)D(x)f(x) = 0, x ∈ R.(88)

Substituting yD(x)2 for y in (75), it follows that

D(x)4y(D(x)2f(x)D(x)f(x) +D(x)3f(x)2 +D(x)4g(x))

+D(x)5y(D(x)2f(x)2 +D(x)3g(x)) +D(x)6yD(x)2g(x) = 0, x, y ∈ R.(89)

From (55), (86), (88) and (89),

(90) D(x)5y(D(x)2f(x)2 +D(x)3g(x)) +D(x)6yD(x)2g(x) = 0, x, y ∈ R.

Writing yD(x) for y in (90), we get

(91) D(x)5y(D(x)3f(x)2 +D(x)4g(x)) +D(x)6yD(x)3g(x) = 0, x, y ∈ R.

Combining (55), (86) with (91),

D(x)6yD(x)3g(x) = 0, x, y ∈ R.(92)

Replacing yD(x)f(x) for y in (72), it follows that

D(x)4yD(x)f(x)D(x)2f(x) +D(x)5yD(x)f(x)D(x)f(x)

+D(x)6yD(x)f(x)2 +D(x)7[y, x]D(x)f(x)

+D(x)7y(f(x)2 +D(x)g(x)) = 0, x, y ∈ R.(93)

From (87) and (93),

D(x)5yD(x)f(x)D(x)f(x) +D(x)6yD(x)f(x)2

+D(x)7[y, x]D(x)f(x) +D(x)7y(f(x)2 +D(x)g(x)) = 0, x, y ∈ R.(94)

Right multiplication of (72) by D(x)f(x) leads to

D(x)4yD(x)2f(x)D(x)f(x) +D(x)5yD(x)f(x)D(x)f(x)

+D(x)6yf(x)D(x)f(x) +D(x)7[y, x]D(x)f(x) = 0, x, y ∈ R.(95)

Combining (88) with (95),

D(x)5yD(x)f(x)D(x)f(x) +D(x)6yf(x)D(x)f(x)

+D(x)7[y, x]D(x)f(x) = 0, x, y ∈ R.(96)

Combining (94) with (96),

D(x)6y(D(x)f(x)2 − f(x)D(x)f(x)) +D(x)7y(f(x)2 +D(x)g(x))

= 0, x, y ∈ R.(97)
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Writing yD(x)2 for y in (97), we get

D(x)6y(D(x)3f2 −D(x)2f(x)D(x)f(x))

+D(x)7y(D(x)2f(x)2 +D(x)3g(x)) = 0, x, y ∈ R.(98)

From (55), (88), (92) and (98),

D(x)7yD(x)2f(x)2 = 0, x, y ∈ R.(99)

Writing yD(x)2f(x)2zD(x) for y in (97),

D(x)6yD(x)2f(x)2z(D(x)2f(x)2 −D(x)f(x)D(x)f(x))

+D(x)7yD(x)2f(x)2z(D(x)f(x)2 +D(x)2g(x)) = 0, x, y, z ∈ R.(100)

From (99) and (100), we obtain

D(x)6yD(x)2f(x)2z(D(x)2f(x)2 −D(x)f(x)D(x)f(x)) = 0, x, y, z ∈ R.(101)

From (59) and (62),

7(−D(x)f(x)D(x)f(x) −D(x)2f(x)2 −D(x)3g(x))

+5D(x)f(x)D(x)f(x) + 3D(x)2f(x)2

= −2D(x)f(x)D(x)f(x) + 4D(x)2f(x)2 − 7D(x)3g(x) = 0, x ∈ R.(102)

From (92) and (102),

D(x)6yD(x)2f(x)2z(−2D(x)f(x)D(x)f(x) + 4D(x)2f(x)2) = 0, x, y, z ∈ R.

Since R is 2!-torsion-free, the above relation gives
(103)
D(x)6yD(x)2f(x)2z(D(x)f(x)D(x)f(x) − 2D(x)2f(x)2) = 0, x, y, z ∈ R.

From (101) and (103), we get

D(x)6yD(x)2f(x)2zD(x)2f(x)2 = 0, x, y, z ∈ R.

The above relation yields

D(x)6yD(x)2f(x)2zD(x)6yD(x)2f(x)2 = 0, x, y, z ∈ R.(104)

Thus by the primeness of R, (104) gives

D(x)6yD(x)2f(x)2 = 0, x, y ∈ R.(105)

Writing D(x)yD(x)2f(x)2zD(x) for y in (75),

D(x)5yD(x)2f(x)2z(D(x)f(x)D(x)f(x) +D(x)2f(x)2 +D(x)3g(x))

+D(x)6yD(x)2f(x)2z(D(x)f(x)2 +D(x)2g(x))

+D(x)7yD(x)2f(x)2zD(x)g(x) = 0, x, y, z ∈ R.(106)

Combining (105) with (106),

D(x)5yD(x)2f(x)2z(D(x)f(x)D(x)f(x) +D(x)2f(x)2 +D(x)3g(x))

= 0, x, y, z ∈ R.(107)
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From (62) and (107), we have

D(x)5yD(x)2f(x)2zf(x)D(x)2f(x) = 0, x, y, z ∈ R.(108)

Right multiplication of (66) by D(x)5yD(x)2f(x)2z leads to

D(x)5yD(x)2f(x)2z(2f(x)D(x)2f(x)− 2D(x)2f(x)2 − 5D(x)3g(x))

= 0, x, y, z ∈ R.(109)

From (108) and (109),

(110) D(x)5yD(x)2f(x)2z(2D(x)2f(x)2 + 5D(x)3g(x)) = 0, x, y, z ∈ R.

Writing yD(x)2f(x)2z for y in (90), we get

D(x)5yD(x)2f(x)2z(D(x)2f(x)2 +D(x)3g(x))

+D(x)6yD(x)2f(x)2zD(x)2g(x)) = 0, x, y, z ∈ R.(111)

Combining (105) with (111),

(112) D(x)5yD(x)2f(x)2z(D(x)2f(x)2 +D(x)3g(x)) = 0, x, y, z ∈ R.

Comparing (110) and (112),

3D(x)5yD(x)2f(x)2zD(x)3g(x) = 0, x, y, z ∈ R.

Since R is 3!-torsion-free, the above relation gives

D(x)5yD(x)2f(x)2zD(x)3g(x) = 0, x, y, z ∈ R.(113)

From (112) and (113), we obtain

D(x)5yD(x)2f(x)2zD(x)2f(x)2 = 0, x, y, z ∈ R.(114)

Thus by the primeness of R, (114) gives

D(x)5yD(x)2f(x)2 = 0, x, y ∈ R.(115)

From (90) and (115),

D(x)5yD(x)3g(x) +D(x)6yD(x)2g(x) = 0, x, y ∈ R.(116)

Writing yD(x)3g(x)z for y in (116),

D(x)5yD(x)3g(x)zD(x)3g(x) +D(x)6yD(x)3g(x)zD(x)2g(x)

= 0, x, y, z ∈ R.(117)

From (92) and (117), we have

D(x)5yD(x)3g(x)zD(x)3g(x) = 0, x, y, z ∈ R.(118)

From (118),

D(x)5yD(x)3g(x)zD(x)5yD(x)3g(x) = 0, x, y, z ∈ R.(119)

Thus by the primeness of R, (114) gives

D(x)5yD(x)3g(x) = 0, x, y ∈ R.(120)
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From (116) and (120), we get

D(x)6yD(x)2g(x) = 0, x, y ∈ R.(121)

Right multiplication of (72) by zD(x)2f(x)2 leads to

D(x)4yD(x)2f(x)zD(x)2f(x)2 +D(x)5yD(x)f(x)zD(x)2f(x)2

+D(x)6yf(x)zD(x)2f(x)2 +D(x)7[y, x]zD(x)2f(x)2 = 0, x, y, z ∈ R.(122)

Combining (115) with (122), we arrive at

D(x)4yD(x)2f(x)zD(x)2f(x)2 = 0, x, y, z ∈ R.(123)

Writing fz for z in (123), we get

D(x)4yD(x)2f(x)2zD(x)2f(x)2 = 0, x, y, z ∈ R.(124)

From (124), we have

D(x)4yD(x)2f(x)2zD(x)4yD(x)2f(x)2 = 0, x, y, z ∈ R.(125)

Thus by the primeness of R, (125) gives

D(x)4yD(x)2f(x)2 = 0, x, y ∈ R.(126)

Right multiplication of (72) by D(x)f(x) leads to

D(x)4yD(x)2f(x)D(x)f(x) +D(x)5yD(x)f(x)D(x)f(x)

+D(x)6yf(x)D(x)f(x) +D(x)7[y, x]D(x)f(x) = 0, x, y ∈ R.(127)

Comparing (88) and (127),

−D(x)5yD(x)f(x)D(x)f(x) +D(x)6y(D(x)f(x)2 − f(x)D(x)f(x))

+D(x)7yf(x)2 = 0, x, y ∈ R.(128)

Writing yD(x) for y in (128),

−D(x)5yD(x)2f(x)D(x)f(x) +D(x)6y(D(x)2f(x)2

−D(x)f(x)D(x)f(x)) +D(x)7yD(x)f(x)2 = 0, x, y ∈ R.(129)

Combining (88), (126) with (129), we have

(130) −D(x)6yD(x)f(x)D(x)f(x) +D(x)7yD(x)f(x)2 = 0, x, y ∈ R.

From (130),

(131) D(x)6y(−2D(x)f(x)D(x)f(x)) + 2D(x)7yD(x)f(x)2 = 0, x, y ∈ R.

Comparing (102) and (131),
(132)

D(x)6y(4D(x)2f(x)2 + 7D(x)3g(x)) + 2D(x)7yD(x)f(x)2 = 0, x, y ∈ R.

Combining (91), (105) with (132),

2D(x)7yD(x)f(x)2 = 0, x, y ∈ R.

Since R is 3!-torsion-free, the above relation gives

D(x)7yD(x)f(x)2 = 0, x, y ∈ R.(133)
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Right multiplication of (72) by f(x) gives

(134) D(x)5yD(x)f(x)2 +D(x)6yf(x)2 +D(x)7[y, x]f(x) = 0, x, y ∈ R.

Left multiplication of (134) by D(x) leads to

(135) D(x)6yD(x)f(x)2 +D(x)7yf(x)2 +D(x)8[y, x]f(x) = 0, x, y ∈ R.

Right multiplication of (135) by zD(x)f(x)2 yields

D(x)6yD(x)f(x)2zD(x)f(x)2 +D(x)7yf(x)2zD(x)f(x)2

+D(x)8[y, x]f(x)zD(x)f(x)2 = 0, x, y, z ∈ R.(136)

Combining (133) with (136),

D(x)6yD(x)f(x)2zD(x)f(x)2 = 0, x, y, z ∈ R.(137)

It follows from (137) that

D(x)6yD(x)f(x)2zD(x)6yD(x)f(x)2 = 0, x, y, z ∈ R.(138)

By the primeness of R, we get from (138)

D(x)6yD(x)f(x)2 = 0, x, y ∈ R.(139)

Right multiplication of (72) by zD(x)f(x)2 leads to

D(x)4yD(x)2f(x)zD(x)f(x)2 +D(x)5yD(x)f(x)zD(x)f(x)2

+D(x)6yf(x)zD(x)f(x)2 +D(x)7[y, x]zD(x)f(x)2 = 0, x, y, z ∈ R.(140)

Combining (133), (139) with (140),

D(x)4yD(x)2f(x)zD(x)f(x)2 +D(x)5yD(x)f(x)zD(x)f(x)2

= 0, x, y, z ∈ R.(141)

Replacing f(x)z for z in (141), it follows that

D(x)4yD(x)2f(x)2zD(x)f(x)2 +D(x)5yD(x)f(x)2zD(x)f(x)2

= 0, x, y, z ∈ R.(142)

Comparing (126) and (142),

D(x)5yD(x)f(x)2zD(x)f(x)2 = 0, x, y, z ∈ R.(143)

It follows from (143) that

D(x)5yD(x)f(x)2zD(x)5yD(x)f(x)2 = 0, x, y, z ∈ R.(144)

By the primeness of R, we obtain from (144)

D(x)5yD(x)f(x)2 = 0, x, y ∈ R.(145)

Combining (141) with (145),

D(x)4yD(x)2f(x)zD(x)f(x)2 = 0, x, y, z ∈ R.(146)

Replacing yD(x) for y in (72),

D(x)5yD(x)2f(x) +D(x)6yD(x)f(x) +D(x)7[y, x]D(x)

+D(x)7yf(x) = 0, x, y ∈ R.(147)
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Left multiplication of (72) by D(x) leads to

D(x)5yD(x)2f(x) +D(x)6yD(x)f(x) +D(x)7yf(x)

+D(x)8[y, x] = 0, x, y ∈ R.(148)

Combining (147) with (148), we have

D(x)7[y, x]D(x) −D(x)8[y, x] = 0, x, y ∈ R.(149)

Replacing yx for y in (149),

D(x)7[y, x]xD(x) −D(x)8[y, x]x = 0, x, y ∈ R.(150)

Right multiplication of (149) by x leads to

D(x)7[y, x]D(x)x −D(x)8[y, x]x = 0, x, y ∈ R.(151)

Combining (150) with (151), we get

D(x)7[y, x]f(x) = 0, x, y ∈ R.(152)

Right multiplication of (72) by f(x) leads to

D(x)4yD(x)2f(x)2 +D(x)5yD(x)f(x)2 +D(x)6yf(x)2

+D(x)7[y, x]f(x) = 0, x, y ∈ R.(153)

From (126), (145), (152) and (153), we conclude that

D(x)6yf(x)2 = 0, x, y ∈ R.(154)

Left multiplication of (75) by D(x) leads to

D(x)5y(f(x)D(x)f(x) +D(x)f(x)2 +D(x)2g(x))

+D(x)6y(f(x)2 +D(x)g(x)) +D(x)7yg(x) = 0, x, y ∈ R.(155)

From (145), (154) and (155), we get

D(x)5y(f(x)D(x)f(x) +D(x)2g(x)) +D(x)6yD(x)g(x)

+D(x)7yg(x) = 0, x, y ∈ R.(156)

Replacing yD(x) for y in (149), it follows that

D(x)7[y, x]D(x)2 +D(x)7yf(x)D(x) −D(x)8[y, x]D(x)

−D(x)8yf(x) = 0, x, y ∈ R.(157)

Right multiplication of (149) by D(x) gives

D(x)7[y, x]D(x)2 −D(x)8[y, x]D(x) = 0, x, y ∈ R.(158)

From (157) and (158), we have

D(x)7yf(x)D(x) −D(x)8yf(x) = 0, x, y ∈ R.(159)

Right multiplication of (159) by f(x) leads to

D(x)7yf(x)D(x)f(x) −D(x)8yf(x)2 = 0, x, y ∈ R.(160)

From (154) and (160),

D(x)7yf(x)D(x)f(x) = 0, x, y ∈ R.(161)
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Replacing yf(x)D(x)f(x)z for y in (75), it follows that

D(x)4yf(x)D(x)f(x)z(f(x)D(x)f(x) +D(x)f(x)2 +D(x)2g(x))

+D(x)5yf(x)D(x)f(x)z(f(x)2 +D(x)g(x))

+D(x)6yf(x)D(x)f(x)zg(x) = 0, x, y, z ∈ R.(162)

Left multiplication of (162) by D(x)2 gives

D(X)6yf(x)D(x)f(x)z(f(x)D(x)f(x) +D(x)f(x)2 +D(x)2g(x))

+D(x)7yf(x)D(x)f(x)z(f(x)2 +D(x)g(x))

+D(x)8yf(x)D(x)f(x)zg(x) = 0, x, y, z ∈ R.(163)

From (161) and (163),

D(x)6yf(x)D(x)f(x)z(f(x)D(x)f(x) +D(x)f(x)2 +D(x)2g(x))

= 0, x, y, z ∈ R.(164)

From (121), (145) and (164), we obtain

D(x)6yf(x)D(x)f(x)zf(x)D(x)f(x) = 0, x, y, z ∈ R.(165)

From (165),

D(x)6yf(x)D(x)f(x)zD(x)6yf(x)D(x)f(x) = 0, x, y, z ∈ R.(166)

Since R is prime, we get from (166)

D(x)6yf(x)D(x)f(x) = 0, x, y ∈ R.(167)

Right multiplication of (156) by zf(x)D(x)f(x) leads to

D(x)5y(f(x)D(x)f(x) +D(x)2g(x))zf(x)D(x)f(x)

+D(x)6yD(x)g(x)zf(x)D(x)f(x) +D(x)7yg(x)zf(x)D(x)f(x)

= 0, x, y, z ∈ R.(168)

From (167) and (168), we obtain

D(x)5y(f(x)D(x)f(x) +D(x)f(x)2 +D(x)2g(x))zf(x)D(x)f(x)

= 0, x, y, z ∈ R.(169)

On the other hand, right multiplication of (156) by zD(x)2g(x) leads to

D(x)5y(f(x)D(x)f(x) +D(x)2g(x))zD(x)2g(x)

+D(x)6yD(x)g(x)zD(x)2g(x) +D(x)7yg(x)zD(x)2g(x)

= 0, x, y, z ∈ R.(170)

From (121) and (170),

(171) D(x)5y(f(x)D(x)f(x) +D(x)2g(x))zD(x)2g(x) = 0, x, y, z ∈ R.

From (169) and (171), we have

D(x)5y(f(x)D(x)f(x) +D(x)2g(x))z(f(x)D(x)f(x)

+D(x)2g(x)) = 0, x, y, z ∈ R.(172)
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From (172),

D(x)5y(f(x)D(x)f(x) +D(x)2g(x))zD(x)5y(f(x)D(x)f(x)

+D(x)2g(x)) = 0, x, y, z ∈ R.(173)

Since R is prime, (173) gives

D(x)5y(f(x)D(x)f(x) +D(x)2g(x)) = 0, x, y ∈ R.(174)

From (156) and (174), we get

D(x)6yD(x)g(x) +D(x)7yg(x) = 0, x, y ∈ R.(175)

Replacing yD(x) for y in (175),

D(x)6yD(x)2g(x) +D(x)7yD(x)g(x) = 0, x, y ∈ R.(176)

From (121) and (176),

D(x)7yD(x)g(x) = 0, x, y ∈ R.(177)

Replacing yD(x)g(x)z for y in (175),

(178) D(x)6yD(x)g(x)zD(x)g(x) +D(x)7yD(x)g(x)zg(x) = 0, x, y, z ∈ R.

From (177) and (178),

D(x)6yD(x)g(x)zD(x)g(x) = 0, x, y, z ∈ R.(179)

From (179), we have

D(x)6yD(x)g(x)zD(x)6yD(x)g(x) = 0, x, y, z ∈ R.(180)

Since R is prime, (180) yields

D(x)6yD(x)g(x) = 0, x, y ∈ R.(181)

From (175) and (181),

D(x)7yg(x) = 0, x, y ∈ R.

Replacing y(f(x)D(x)f(x) +D(x)f(x)2 +D(x)2g(x))z for y in (75),

D(x)4y(f(x)D(x)f(x) +D(x)f(x)2 +D(x)2g(x))z(f(x)D(x)f(x)

+D(x)f(x)2 +D(x)2g(x)) +D(x)5y(f(x)D(x)f(x) +D(x)f(x)2

+D(x)2g(x))z(f(x)2 +D(x)g(x)) +D(x)6y(f(x)D(x)f(x)

+D(x)f(x)2 +D(x)2g(x))zg(x) = 0, x, y, z ∈ R.(182)

From (145), (174) and (182), we arrive at

D(x)4y(f(x)D(x)f(x) +D(x)f(x)2 +D(x)2g(x))z(f(x)D(x)f(x)

+D(x)f(x)2 +D(x)2g(x)) = 0, x, y, z ∈ R.(183)

From (183), we get

D(x)4y(f(x)D(x)f(x) +D(x)f(x)2

+D(x)2g(x))zD(x)4y(f(x)D(x)f(x)

+D(x)f(x)2 +D(x)2g(x)) = 0, x, y, z ∈ R.(184)
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Since R is prime, (184) gives

D(x)4y(f(x)D(x)f(x) +D(x)f(x)2 +D(x)2g(x)) = 0, x, y ∈ R.(185)

From (75) and (185),

D(x)5y(f(x)2 +D(x)g(x)) +D(x)6yg(x) = 0, x, y ∈ R.(186)

Replacing yD(x)g(x)z for y in (186),

D(x)5yD(x)g(x)z(f(x)2 +D(x)g(x)) +D(x)6yD(x)g(x)zg(x)

= 0, x, y, z ∈ R.(187)

From (181) and (187), we obtain

D(x)5yD(x)g(x)z(f(x)2 +D(x)g(x)) = 0, x, y, z ∈ R.(188)

Replacing yf(x)2z for y in (186),

(189) D(x)5yf(x)2z(f(x)2+D(x)g(x))+D(x)6yf(x)2zg(x) = 0, x, y, z ∈ R.

From (154) and (189),

D(x)5yf(x)2z(f(x)2 +D(x)g(x)) = 0, x, y, z ∈ R.(190)

From (188) and (190),

(191) D(x)5y(f(x)2 +D(x)g(x))z(f(x)2 +D(x)g(x)) = 0, x, y, z ∈ R.

From (191), we get

(192) D(x)5y(f(x)2+D(x)g(x))zD(x)5y(f(x)2+D(x)g(x)) = 0, x, y, z ∈ R.

Since R is prime, (192) gives

D(x)5y(f(x)2 +D(x)g(x)) = 0, x, y ∈ R.(193)

From (75), (185) and (193), we arrive at

D(x)6yg(x) = 0, x, y ∈ R.(194)

Left multiplication of (70) by D(x)2 leads to

D(x)3yD(x)2f(x) +D(x)2f(x)D(y)D(x)f(x) +D(x)4yD(x)f(x)

+D(x)2f(x)D(x)D(y)f(x) +D(x)3f(x)D(y)f(x) +D(x)5yf(x)

+D(x)2f(x)D(x)2B(x, y) +D(x)3f(x)D(x)B(x, y)

+D(x)4f(x)B(x, y) +D(x)6[y, x] = 0, x, y ∈ R.(195)

From (55) and (195), we have

D(x)3yD(x)2f(x) +D(x)2f(x)D(y)D(x)f(x) +D(x)4yD(x)f(x)

+D(x)2f(x)D(x)D(y)f(x) +D(x)5yf(x) +D(x)2f(x)D(x)2B(x, y)

+D(x)6[y, x] = 0, x, y ∈ R.(196)
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Right multiplication of (196) by zg(x) leads to

D(x)3yD(x)2f(x)zg(x) +D(x)2f(x)D(y)D(x)f(x)zg(x)

+D(x)4yD(x)f(x)zg(x) +D(x)2f(x)D(x)D(y)f(x)zg(x)

+D(x)5yf(x)zg(x) +D(x)2f(x)D(x)2B(x, y)zg(x)

+D(x)6[y, x]zg(x) = 0, x, y, z ∈ R.(197)

From (55), (194) and (197),

D(x)3yD(x)2f(x)zg(x) +D(x)2f(x)D(y)D(x)f(x)zg(x)

+D(x)4yD(x)f(x)zg(x) +D(x)2f(x)D(x)D(y)f(x)zg(x)

+D(x)5yf(x)zg(x) +D(x)2f(x)D(x)2B(x, y)zg(x) = 0, x, y, z ∈ R.(198)

Left multiplication of (198) by D(x) yields

D(x)4yD(x)2f(x)zg(x) +D(x)3f(x)D(y)D(x)f(x)zg(x)

+D(x)5yD(x)f(x)zg(x) +D(x)3f(x)D(x)D(y)f(x)zg(x)

+D(x)6yf(x)zg(x) +D(x)3f(x)D(x)2B(x, y)zg(x) = 0, x, y, z ∈ R.(199)

From (55), (194) and (199),

(200) D(x)4yD(x)2f(x)zg(x) +D(x)5yD(x)f(x)zg(x) = 0, x, y, z ∈ R.

Replacing yD(x) for y in (200),

(201) D(x)4yD(x)3f(x)zg(x) +D(x)5yD(x)2f(x)zg(x) = 0, x, y, z ∈ R.

From (55) and (201), we get

D(x)5yD(x)2f(x)zg(x) = 0, x, y, z ∈ R.(202)

Replacing yD(x)2f(x)w for y in (200),

D(x)4yD(x)2f(x)wD(x)2f(x)zg(x)

+D(x)5yD(x)2f(x)wD(x)f(x)zg(x) = 0, w, x, y, z ∈ R.(203)

From (202) and (203),

(204) D(x)4yD(x)2f(x)wD(x)2f(x)zg(x) = 0, w, x, y, z ∈ R.

From (204),

(205) D(x)4yD(x)2f(x)zg(x)wD(x)4yD(x)2f(x)zg(x) = 0, w, x, y, z ∈ R.

Since R is prime, (205) yields

D(x)4yD(x)2f(x)zg(x) = 0, x, y, z ∈ R.(206)

From (200) and (206),

D(x)5yD(x)f(x)zg(x) = 0, x, y, z ∈ R.(207)
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Left multiplication of (198) by D(x)5w leads to

D(x)5wD(x)3yD(x)2f(x)zg(x)

+D(x)5wD(x)4yD(x)f(x)zg(x)

+D(x)5wD(x)2f(x)D(y)D(x)f(x)zg(x)

+D(x)5wD(x)2f(x)D(x)D(y)f(x)zg(x) +D(x)5wD(x)5yf(x)zg(x)

+D(x)5wD(x)2f(x)D(x)2B(x, y)zg(x) = 0, w, x, y, z ∈ R.(208)

From (207) and (208),

D(x)5wD(x)5yf(x)zg(x) = 0, w, x, y, z ∈ R.(209)

From (209), we have

D(x)5yf(x)zg(x)wD(x)5yf(x)zg(x) = 0, w, x, y, z ∈ R.(210)

Since R is prime, (210) gives

D(x)5yf(x)zg(x) = 0, x, y, z ∈ R.(211)

A simple calculation shows that (211) yields

D(x)5yg(x) = 0, x, y ∈ R.(212)

From (212), by Lemma 3.3 we have

D(x) = 0, x ∈ R. �

4. Applications in Banach algebra theory

The following theorem is proved by the same arguments as in the proof of
J. Vukman’s theorem [15], but it generalizes his result.

Theorem 4.1. Let A be a Banach algebra. Suppose there exists a continuous

linear Jordan derivation D : A −→ A such that

D(x)3[D(x), x] ∈ rad(A)

for all x ∈ A. Then we have D(A) ⊆ rad(A).

Proof. It suffices to prove the case that A is noncommutative. By the result
of B. E. Johnson and A. M. Sinclair [5] any linear derivation on a semisimple
Banach algebra is continuous. Sinclair [11] has proved that every continuous
linear Jordan derivation on a Banach algebra leaves the primitive ideals of A
invariant. Hence for any primitive ideal P ⊆ A one can introduce a derivation
DP : A/P −→ A/P, where A/P is a prime and factor Banach algebra, by
DP (x̂) = D(x) + P, x̂ = x + P. By the assumption that D(x)3[D(x), x] ∈
rad(A), x ∈ A, we obtain (DP (x̂))

3[DP (x̂), x̂] = 0, x̂ ∈ A/P, since all the
assumptions of Theorem 3.4 are fulfilled. Let the factor prime Banach algebra
A/P be noncommutative. Then we have DP (x̂) = 0, x̂ ∈ A/P. Thus we
obtain D(x) ∈ P for all x ∈ A and all primitive ideals of A. Hence D(A) ⊆
rad(A). And we consider the case that A/P is commutative. Then since A/P
is a commutative Banach semisimple Banach algebra, from the result of B. E.



JORDAN DERIVATIONS ON PRIME RINGS 557

Johnson and A. M. Sinclair [5], it follows that DP (x̂) = 0, x̂ ∈ A/P. And so,
D(x) ∈ P for all x ∈ A and all primitive ideals of A. Hence D(A) ⊆ rad(A).
Therefore in any case we obtain D(A) ⊆ rad(A). �

Theorem 4.2. Let A be a semisimple Banach algebra. Suppose there exists a

linear Jordan derivation D : A −→ A such that

D(x)3[D(x), x] = 0

for all x ∈ A. Then we have D = 0.

Proof. It suffices to prove the case that A is noncommutative. According to
the result of B. E. Johnson and A. M. Sinclair [5] every linear derivation on
a semisimple Banach algebra is continuous. A. M. Sinclair [11] has proved
that any continuous linear derivation on a Banach algebra leaves the primitive
ideals of A invariant. Hence for any primitive ideal P ⊆ A one can introduce
a derivation DP : A/P −→ A/P, where A/P is a prime and factor Banach
algebra, by DP (x̂) = D(x) + P, x̂ = x + P. From the given assumptions
D(x)3[D(x), x] = 0, x ∈ A, it follows that (DP (x̂))

3[DP (x̂), x̂] = 0, x̂ ∈ A/P,
since all the assumptions of Theorem 3.4 are fulfilled. The factor algebra A/P
is noncommutative, by Theorem 3.4 we have DP (x̂) = 0, x̂ ∈ A/P. Hence we
get D(A) ⊆ P for all primitive ideals P of A. Thus D(A) ⊆ rad(A). But since
A is semisimple, D = 0. �

As a special case of Theorem 4.2 we get the following result which charac-
terizes commutative semisimple Banach algebras.

Corollary 4.3. Let A be a semisimple Banach algebra. Suppose

[x, y]3[[x, y], x] = 0

for all x, y ∈ A. In this case, A is commutative.
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