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JORDAN DERIVATIONS ON PRIME RINGS AND THEIR
APPLICATIONS IN BANACH ALGEBRAS, I

Byune-Do Kim

ABSTRACT. The purpose of this paper is to prove that the noncom-
mutative version of the Singer-Wermer Conjecture is affirmative under
certain conditions. Let A be a noncommutative Banach algebra. Sup-
pose there exists a continuous linear Jordan derivation D : A — A such
that D(z)3[D(z), ] € rad(A) for all z € A. In this case, we show that
D(A) Crad(A).

1. Introduction

Throughout, R represents an associative ring and A will be a complex Ba-
nach algebra. We write [z,y] for the commutator zy — yx for z,y in a ring.
Let rad(R) denote the (Jacobson) radical of a ring R. And a ring R is said to
be (Jacobson) semisimple if its Jacobson radical rad(R) is zero.

A ring R is called n-torsion free if nx = 0 implies x = 0. Recall that R is
prime if aRb = (0) implies that either a = 0 or b = 0, and is semiprime if aRa =
(0) implies @ = 0. On the other hand, let X be an element of a normed algebra.
Then for every a € X the spectral radius of a, denoted by r(a), is defined by
r(a) = inf{||a"||* : n € N}. It is well-known that the following theorem holds:
if a is an clement of a normed algebra, then 7(a) = limy, 0 ||a™||7 (see Bonsall
and Duncan [1]).

An additive mapping D from R to R is called a derivation if D(xy) =
D(x)y + zD(y) holds for all 2,y € R. And an additive mapping D from R to
R is called a Jordan derivation if D(x?) = D(z)z + xD(x) holds for all x € R.

Johnson and Sinclair [5] have proved that any linear derivation on a semisim-
ple Banach algebra is continuous. A result of Singer and Wermer [12] states
that every continuous linear derivation on a commutative Banach algebra maps
the algebra into its radical. From these two results, we can conclude that there
are no nonzero linear derivations on a commutative semisimple Banach algebra.
Thomas [13] has proved that any linear derivation on a commutative Banach
algebra maps the algebra into its radical.
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A noncommutative version of Singer and Wermer’s Conjecture states that
every continuous linear derivation on a noncommutative Banach algebra maps
the algebra into its radical.

Vukman [15] has proved the following: Let R be a 2-torsion free prime ring.
If D: R — R is a derivation such that [D(z),z]D(x) = 0 for all z € R, then
D =0.

Moreover, using the above result, he has proved that the following holds: Let
A be a noncommutative semisimple Banach algebra. Suppose that [D(z), z]
D(z) =0 holds for all z € A. In this case, D = 0.

Kim [6] has showed that the following result holds: Let R be a 3!-torsion
free semiprime ring. Suppose there exists a Jordan derivation D : R — R such
that

[D(z), 2] D(x)[D(x),z] =0
for all z € R. In this case, we have [D(z),z]®> = 0 for all # € R.

And, Kim [7] has showed that the following result holds: Let A be a non-
commutative Banach algebra. Suppose there exists a continuous linear Jordan
derivation D : A — A such that D(z)[D(z),z]D(z) € rad(A) for all z € A. In
this case, we have D(A) C rad(A).

In this paper, our aim is to prove the following results in the ring theory in
order to apply it to the Banach algebra theory:

Let R be a 7!-torsion free prime ring. Suppose there exists a Jordan deriva-
tion D : R — R such that

D(2)’[D(x),2] = 0

for all € R. In this case, we obtain D(z) =0 for all z € R.
Let A be a noncommutative Banach Algebra. Suppose there exists a con-
tinuous linear Jordan derivation D : A — A such that

D(x)*[D(z), x] € rad(A)
for all x € A. In this case, we obtain D(A) C rad(A) for all x € A.

2. Preliminaries

In this section, we review the basic results in prime and semiprime rings.
The following lemma is due to Chung and Luh [4].

Lemma 2.1. Let R be a n!-torsion free ring. Suppose there exist elements
Y1y Y2y -« -y Yn—1,Yn i R such that ZZ:1 thyy =0 for allt = 1,2,...,n. Then
we have yr = 0 for every positive integer k with 1 < k < n.

The following theorem is due to Bresar [3].

Theorem 2.2. Let R be a 2-torsion free semiprime ring and let D : R — R
be a Jordan derivation. In this case, D is a derivation.

The following theorem is due to Chung and Luh [4].
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Theorem 2.3. Let R be a semiprime ring with a derivation D. Suppose there
exists a positive integer n such that (Dx)™ =0 for all x € R and suppose R is
(n — 1)!-torsion free. Then D = 0.

3. Main results

We need the following notations. After this, by S, we denote the set {k €
N | 1 < k < m} where m is a positive integer. When R is a ring, we shall
denote the maps B: Rx R — R, f,g: R — R by B(z,y) = [D(z),y] +
[D(y),z], f(z) = [D(x),z], g(x) = [f(z),z] for all z,y € R, respectively. And
we have the basic properties:

B(z,y) = B(y,z), B(z,yz) = B(z,y)z + yB(z, 2) + D(y)[z, 2] + [y, 2] D(z),
B(x,z) = 2f(z), B(z,2%) = 2(f(2)x + 2 f(x)), =,y,2 € R.

Lemma 3.1. Let R be a 2-torsion free noncommutative prime ring. Suppose
there exists a Jordan derivation D : R — R such that

[D(z),z] =0
for all x € R. Then we have D(x) =0 for all € R.

Proof. From Theorem 2.2, we see that D is a derivation on R. Let

(1) f(z) =[D(z), 2] =0, z€R.
Substituting « + y for = in (1), we have

(2) f(z+y) = f(z) + B(z,y) + [D(y),y] =0, z,y € R.
From (1) and (2), we obtain

(3) B(z,y) =0, z,y € R.
Replacing yx for y in (3), we have

(4) B(z,y)z + 2yf(z) + [y,2]D(x) =0, z,y € R.
Combining (1), (3) with (4), we get

(5) [y, z]D(z) =0, x,y € R.
Substituting zy for y in (5), we have

(6) [z, 2)lyD(z) + 2]y, 2] D(z) =0, z,y,z € R.
Combining (5) with (6), we obtain

(7) [z,z]lyD(z) =0, z,y,z € R.

Substituting « 4+ u for x in (5),

(8) [z, z|lyD(x) + [z, ulyD(z) + [z, z]yD(u) + [z,ulyD(u) =0, u,x,y,z € R.
From (7) and (8),

9) [z,u]lyD(x) + [z, z]yD(u) =0, u,x,y,z € R.
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Writing yD(z)v]z, u]y for y in (9), we have
[z, ulyD(z)v[z, ulyD(z) + [z, ]y D(x)v[z, uly D(u)

(10) =0, u,v,2,Y,2 € R.
Combining (7) with (10), we get
(11) [z,ulyD(z)v]z,ulyD(x) =0, w,v,z,y,z € R.
From (11) and the (semi)primeness of R,
(12) [z,ulyD(z) =0, u,z,y,z € R.
By the primeness and noncommutativity of R, (12) gives
D(x)=0, z€R. O

Lemma 3.2. Let R be a 2-torsion free noncommutative semiprime ring. Sup-
pose there exists a Jordan derivation D : R — R such that

([D(x), 2], 2] =0
for all x € R. Then we have [D(x),xz] =0 for all x € R.

Proof. From Theorem 2.2, we see that D is a derivation on R.
Let

(13) g(x) =[[D(z),z],z] =0, = € R.
Substituting x + ty for  in (13), we have
g9(x +ty) = g(x) + H([f (x), y] + [B(=z,y), z])

+ 12 A(z,y) +t3g(y) =0, x,y € R, t € Sy,

where A(x,y) denotes the term satisfying the identity (14).
From (13) and (14), we obtain

(15)  t([f(x),y] + [B(z,y),z]) + t*A(z,y) =0, z,y € R,t € Ss.
Since R is 2-torsion free, by Lemma 2.1, (15) yields
(16) [f(x),y] + [B(z,y),2] =0, =,y €R.
Replacing yz for y in (16), we have

[f (@), ylz +yg(x) + [B(x, y), x]x

(14)

(17) +3yg(x) + 3y, 2] f(x) + [[y, 2], 2] D(z) =0, =,y € R.
Right multiplication of (16) by = leads to

(18) [f (@), ylx + [B(xz,y),2]le =0, z,y€R.
Comparing (13), (17) and (18), we get

(19) 3yg(z) + 3[y, 2] f(x) + [y, 2], 2] D(x) =0, z,y € R.

From (13) and (19),
(20) 3ly, =] f(2) + [ly, 2], 2] D(2) = 0, =,y € R.
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From (20), we have

(21) 3y, 2lg(x) + [ly, . 2] f(z) = 0, =,y € R.
From (13) with (21),
(22) (ly, z],2]f(x) = 0, @,y €R.

Writing D(x)y for y in (20), we have
3D(2)ly, =] f () + 3f(2)yf(x) + D(2)[ly, 2], 2] D(x)

(23) +2f(2)ly, 2] D(z) + g(z)yD(x) =0, z,y € R.

Left multiplication of (20) by D(z), we obtain

(24) 3D(@)ly, 21/ () + D(@)lly, 21, 21D () = 0, 2,y € R.
From (13), (23) and (24), we get

(25) 3f(x)yf(x) +2f (@)ly,2]D(x) =0, x,y € R.

Replacing yD(z)w for y in (25), we have
3f(@)yD(x)wf(x) +2f (z)ly, 2| D(x)wD(x)
(26) +2f(x)yf(x)wD(x) + 2f(x)yD(x)[w,z]D(z) =0, w,z,y € R.
);

From (25) and (26), we get

3f(x)yD(zx)wf(x) - f(x)yf(x)wD(x)
(27) +2f(x)yD(z)[w,z]D(x) =0, w,z,y € R.
Substituting wz for w in (27), we have

3f(@)yD(x)wzf(x) — f(x)yf(z)weD(x)
(28) +2f(x)yD(z)[w,z]zD(xz) =0, w,z,y € R.
Right multiplication of (27) by x leads to

37 (@)yD(@ywf (@) — [(2)yf(@)wD ()
(29) +2f(x)yD(z)[w,z]D(x)x =0, w,z,y € R.
From (28) and (29), we get

31 (@)yD(@)wg(x) - f@)yf (@] (@)

(30) +2f(2)yD(z)[w,z]f(z) =0, w,z,y € R.
Comparing (13) and (30), we get
(31) f@)y(f(@)wf(z) = 2yD(z)[w, 2] f(x)) =0, w,z,y € R.

From (31), we obtain
(f(@)wf(z) = 2D(z)[w, x| f(z))y(f(z)wf(z)
(32) —2D(x)[w,z]f(z) =0, w,z,y € R.
Since R is semiprime, (32) yields
(33) f@yf(x) —2D(x)ly,z]f(x) =0, x,y € R.
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Putting zy instead of y in (16), we have
2([f (@), y] + [B(z,y), z]) + 39(x)y + 3 (2)ly, 2] + D(@)[[y, 2], z]

(34) =0, xz,y € R.
Comparing (13), (16) and (34), we get
(35) 3f(x)ly, 2] + D()[ly, 2], ] = 0, w,y € R.
Writing yD(z) for y in (35), we have

3f(@)ly,2]D(x) + 3f(x)yf(z) + D(2)[ly, 2], 2] D(x)
(36) +2D(x)ly, 2] f (x) + D(z)yg(x) =0, =,y € R.
From (35) and (36),
(37)  3f(@)yf(x) +2D(x)[y, z]f(x) + D(z)yg(x) =0, x,y € R.
From (13) and (37), we have

(38) 3f(x)yf(z) +2D(x)[y, 2] f(x) =0, x,y € R.
Combining (33) with (38),
(39) Af(x)yf(x) =0, z,y€R.
Since R is 2-torsionfree, (39) gives
(40) f@)yf(z) =0, z,y€R.
Since R is semiprime, (40) yields
f(x) = [D(@),2] =0, z &R s

Lemma 3.3. Let R be a T!-torsion free noncommutative prime ring. Suppose
there exists a Jordan derivation D : R — R such that

D(z)’y[[D(x), ], 2] =0
for all z,y € R. Then we have D(x) =0 for all x € R.

Proof. From Theorem 2.2, we see that D is a derivation on R. Let
(41) D(x)*y[[D(x),z],2] =0, z,y € R.
Substituting x + ¢z for x in (41), we have
D(x + t2)°yg(z + t2)
= D(z + t2)%y[[D(x + t2), = + tz], x + t2]
= D(2)°yg(x) + t{(D(2)D(z)* + D(z)D(2) D(x)’
+D(2)*D(2)D(x)* + D(x)*D(2)D(x) + D(x)" D(2))yg(z)
+D(2)°y([[D(2), ], 2] + [[D(x), 2], «] + [f(2), 2])}
+t2C1 (2,1, 2) + t3Cy(x, y, 2) + 1 Cs(z,y, 2) + t°Cy(, y, 2)
+t5Cs(x,y, 2) + t7Cs(z,y, 2) + t°D(2)°yg(2)
(42) =0, xz,y,z € R, t € S7,
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where C; (:c y z) (1 <4 < 6) denotes the term satisfying the identity (42).
From (41) and (42), we obtain

t{(D(z)D
(96)2

D(x)°y(

+t Cl(:r y,2) + t3Cy (z,y, 2) + ' Cs(z,y, 2) + t°Cy(z, 9, 2)

(43) +t5Cs(x,y,2) +t"Cs(z,y,2) =0, x,y,2 € R,t € Sr.

()" + D(2)D(2)D(x)?*
(2)D()? + D(2)*D(2) D(x) + D(x)*D(2))yg(x)
([D(2), 2], a] + [[D(), 2], ] + [f (2), 2]) }

Since R is T!-torsion free, by Lemma 2.1, (43) yields
{D(2)D(2)* + D(x)D(2)D(2)* + D(2)*D(2) D ()
+D(2)* D(2)D(x) + D(z)" D(2)}yg(x)
(44)  +D(@)°y{[[D(2), ], 2] + [[D(x), 2], 2] + [f(2), 2]} = 0, 2,y,2 € R.
Replacing yg(z)u for y in (44),
(D(2)D(2)* + D(x)D(2)D (50)3+ (x)*D(2)D(x)
+D(x)? D( )D(z) + D(x)"D(z))yg(z)ug(x)
(45) +D(z)’yg(x)u(([D(2), 2], 2] + [[D(2), 2], ] + [f(2), 2]) = 0, w, 2,9,z € R.
Combining (41) with (45), we get
(D(2)D(2)* + D(x)D(2)D(x)* + D(x)*D(2)D(x)*

(46) +D(2)*D(2)D(z) + D(2)' D(2))yg(x)ug(x) = 0, u,z,y,2 € R.
Putting u(D(2) D(x)'+ D(x) D() D(w)’+ D(x)* D() D(x)*+ D(x)* D(2) D(x) +
D(x)*D(z))y instead of u in (46), we obtain

(D(2)D(2)* + D(2)D(2)D(x) +D( )?D(2)D(x)

+D(2)*D(2)D(x) + D(z)* D(2))yg(«)u(D(2)D(z)*

+D(2)D(2)D(x)* + D(x)? () ( )? + D(2)° D(2)D(x)
(47) +D(2)*D(2))yg(z) =0, u,z,y,z € R.
Since R is semiprime, (47) yields

(D(2)D(2)* + D(x)D(2) D(x)* + D()*D(2) D ()
(48) +D(x)>D(2)D(x) + D(2)*D(2))yg(x) =0, z,y,z € R.

By using the same process of relations so obtained from (41) to (48) under the
5l-torsionfreeness repeatedly, we arrive at

(D(2)D(v)D(w)D(p)D(q) + D(v)D(z)D(w)D(p)D(q) + - - -
(49) +D(q)D(p)D(w)D(v) D(2))yg(x) = 0, u,v,w,p,q,2,y,2 € R.
Let u=v=w=p=q==zin (49).
(50) 120D(2)%yg(xz) = 0, x,y,2 € R.



542 BYUNG-DO KIM

Since R is 7!-torsionfree, (50) gives

(51) D(2)°yg(z) =0, z,y,2 € R.
Since R is prime, it follows from (51) that

(52) D(2)°=0,z€R

or

(53) g(x) =0, z € R.

Thus if (52) holds, then by Theorem 2.3,
D(z)=0, z € R.
Thus if (53) holds, then by Lemma 3.2,
(54) [D(z),z] =0, z € R.
Hence by Lemma 3.1, (54) gives
D(z)=0, z € R.
Therefore in any case, we have D = 0. (]

Theorem 3.4. Let R be a T!-torsionfree noncommutative prime ring. Suppose
there exists a Jordan derivation D : R — R such that
D(x)’[D(x), 2] =0

for all x € R. Then we have D(z) =0 for all x € R.
Proof. By Theorem 2.2, we can see that D is a derivation on R. Suppose
(55) D(z)*f(z) =0, z € R.
Replacing x + ty for  in (55), we have

D(z +ty)*[D(z + ty), = + ty]

= D(«)* () + H{D(y) D(x)* f () + D(z)D(y) D(x) f (x)

+D(2)*D(y) f(z) + D(x)’ B(z,y)} + t*Exr(x,y) + t*Es(z,y)
(56) +t* By (x,y) +t°D(y)2f(y) =0, x,y € R,t € S3,
where E;(z,y),1 < i < 3, denotes the term satisfying the identity (56).
From (55) and (56),

H{D(y)D(x)?f(x) + D(x)D(y) D(x) f(x) + D(x)*D(y) f (x)

+D(2)*B(x,y)} + * By (2, y) + t*Ba(x,y) + t' Es(x, y)
(57) =0, x,y € R,t € S4.
Since R is 3!-torsionfree, by Lemma 2.1, (57) yields

D(y)D(x)* f(x) + D(2)D(y)D(x) f (x) + D(x)* D(y) f (x)
(58) +D(x)*B(z,y) =0, z,y € R.
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Let y = 2% in (58). Then using (55), we get
(D(z)x + 2D (2))D(x)* f(x) + D(z)(D(z)x + zD(2))D(z) f ()
+D(2)*(D(w)x + zD(x)) f(x) + 2D (2)* (f (x)z + z f(x))

— f(2)D(2)* f(2) + (f(2)D(x) + D(x)(2)) D() f(x)
+F(@) D@ (2) + (f(2)D(@)? + D(@)f(2)D(x) + D(x)?f(2))f (x)
+(f(2)D(x) + D(2) f(2))D(x) f(z) + 2(f(2)D(x)* + D(x) f(z)D(x)
+D(x)* f(x)) f(x)

(59) =T7f(z)D(x)*f(x) +5D(x) f(2)D(z) f(x) + 3D(z)* f(x)* =0, = € R.

Left multiplication of (59) by D(z)? leads to

(60)  7(D(z)*f(x))* +5D(2)* f(z)D(z)f(z) + 3D(z)’ f(z)* =0, z € R.

Comparing (55) with (60),

7(D(z)?f(z))* =0, z€R.

Since R is 7!-torsionfree, the above relation gives

(61) (D(z)*f(z))*=0, z€R.

On the other hand, we obtain from (55)

0= [D( )*f(x), ]
f@)D()* f(z) + D(2) f(x) D(x) f (x) + D(x)* f (z)*

(62) +D(x) g(z), z €R.

Left multiplication of (62) D(z)? leads to

( (2)°f(2))* + D(2)° f(2)D(2) f (z) + D(w)* f ()

(63) (96)9()—0 z e R.

Comparing (55), (61) and (63),

(64) D(z)°g(x) =0, =€ R.

From (59) and (62), we get

(65)  4f(x)D(@)*f(x) +2D(x) f()D(x)f(x) — 3D(x)g(x) =0, x € k.

Combining (59) with (65),

3(2f(2)D(x)* f(z) — 2D(x)* f(2)* — 5D(x)’g(z)) =0, = € R.

Since R is 3!-torsion-free, the above relation gives

(66) 2f()D(x)* () — 2D(x)*f(2)* - 5D(z)°g(2) =0, z € R.

Writing zy for y in (58), we have

)

wD(y)D(x)* f(x) + D(x)yD(x)* f (x) + D(x)aD(y)D(x) f (x)
+D(x)*yD(x)f(x) + D(2)*xD(y) f (= )+D( ) f(z)
(67) +D(x)*(2f (2)y + 2B(z,y) + D(x)[y, ]) = y € R.
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Left multiplication of (58) by z leads to
eD(y)D(x)* f(z) + 2D (z)D(y)D(x)f (z) +=D(x)*D(y) f (z)
(68) +a2D(x)®B(z,y) =0, z,y € R.
From (67) and (68), we arrive at
D(2)yD(x)*f(z) + f(2)D(y) D(x)f (x) + D(x)’y ( )f(x)
+f(x)D(x)D(y) f(x) + D(x) f(2)D(y) f (x) + ( *yf(z)
+2D(2)* f(z)y + D(z)*B(x,y) — 2D (z)* B(x,
(69) +D(x)[y,x] =0, x,y € R.
By (55) and (69), it is obvious that
D(2)yD(x)*f () + f(x)D(y) D(x) f () + ( )*yD(x)f (x)
+f(2)D(@)D(y) f (x) + D(x)f ()D(y) f (@) + D(=)°y f (x)
+f(2)D()*B(x,y) + D(2) f (x) D(z)B(, ) D(x)* () B(x,
(70)  +D(x)'[y,2] =0, z,y€R.
Left multiplication of (70) by D(z)? gives

( )'yD(2)*f(x) + D(2)* f (x)D(y) D(x) f () + D(x)°yD(x) f ()
D()*f(2)D(2)D(y) f(x) + D(2)* f(2)D(y) f () + D()°y [ (x)
D(x)*f(x)D(x)* B(x,y) + D()" f()D(z) B(x,y)

(71) D()’f(2)B(x,y) + D(x)"[y.2] =0, w,y € R.
Comblmng (55) with (71),

D(@)'yD()? (x) + D(a)°yD()f(2) + D)y x)
(72) +D(x)"[y,x] =0, z,y € R.

Replacing yz for y in (72),
D(z)'yaD(x)*f(x) + D(x)’yxD(z) f (z) + D(x)°ya f (z)
(73) +D(z) [y, xjx =0, x,y € R.
Right multiplication of (72) by z leads to
D(x)'yD(x)*f(z)z + D(x)°yD(x) f (x)x + D(2)°y f (x)x
(74) +D(z) [y, xjx =0, x,y € R.
Combining (73) with (74),
D(@)*y(f(x)D(x)f(z) + D(z)f(2)* + D(x)*g(x))
(75) +D(2)’y(f(2)* + D(2)g(x)) + D(2)°yg(x) =0, x,y € R.
Writing yD(x)* for y in (75), we get
D(x)'y(D(2)" f(z)D(x)f(x) + D(x)° f(z)* + D(x)°g(x))

(76) +D(2)°y(D(2)" f(2)* + D(x)°g(x)) + D(x)°yD(x)*g(z) =0, @,y € R.
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From (55), (64) and (76),
(77) D(2)°yD(x)*g(x) =0, 2,y € R.
Comparing (55), (75) and (77),

D(x)'yD(x)*g(x)z(D(x)* f(2) D() f (z) + D(x)"g())
(78)  +D(x)’yD(x)"g(x)z(D(x)’ f(x)* + D(x)*g(x)) =
Left multiplication of (65) by D(z) leads to
(79) 4D(2) f(2)D(x)* f(z) + 2D(x)* f () D(x)f (z) — 3D(z)"g(z) =0, z € R.
Left multiplication of (66) by D(:I:) yields

(80)  2D(2)f(x)D(x)*f(x) — 2D(2)’ f(x)* = 5D(x)*g(x) = 0, = € R.
From (55) and (80),

(81) 2D (z) f(x)D(z)? f(z) — 5D(z)*g(z) =0, = € R.

From (79) and (81), we have

(82) 2D(x)? f(z)D(x) f(x) + 7D(2)*g(x) =0, = € R.

From (78) and (82), we arrive at

D(x)*yD(x) ( 2(2D(x)*f(2)D(2) f () + 2D(x)"g())

+2D(a)yD(x) g(x)2(D(x)* f (x)* + D(z)*9(x))
= D(x)'yD(x)"g(x)2(—=7D(x) g(x) + 2D(z) " g())
+2D(2)°yD(x)*g(x)2(D(x)? f(x)* + D(x)*g())
= —5D(x)*yD(x)*g(x)2D(x)"g()
+2D(2)°yD(x)*g(x)2(D(x)? f(x)* + D(x)*g())
(83) =0, z,y,2 € R.

Substituting g(x)y for y in (83), it follows that

—5D(x) g(x)yD(x)*g(x)zD(x)*g(x)
+2D(x)’g(x)yD(x)*g(x)2(D(x) f(x)* + D(x)’g(x))
(84) =0, z,y,2 € R.
Comparing (64) and (84),
—5D(z)*g(z)yD(x)*g(x)zD(z)*g(x) =0, z,y,z € R.

Since R is 5!-torsion-free, the above relation yields

(85) D(x)*g(z)yD(x)"g(x)2D(z)*g(x) =0, w,y,2 € R.
Thus by the semiprimeness of R, (85) gives
(86) D(x)*g(x) =0, z € R.

From (81) and (86),
2D(z) f(x)D(x)? f(x) =0, =€ R.
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Since R is 5l-torsion-free, the above relation gives
(87) D(x)f(z)D(z)?f(z) =0, = € R.
From (82) and (86), we have

2D(x)?f(x)D(x)f(x) =0, x € R.
Since R is 2!-torsion-free, the above relation gives
(88) D(x)?f(x)D(z)f(z) =0, =€ R.
Substituting yD(x)? for y in (75), it follows that

D(x)'y(D(x)*f(2)D(2) f(x) + D(x)* f()* + D(x)"g(x))
(89) +D(x)’y(D(2)*f(2)* + D(z)*g(x)) + D(x)°yD(x)*g(z) =0, w,y € R.
From (55), (86), (88) and (89),
(90) D(x)°y(D(x)*f(2)* + D(x)*g(x)) + D(x)°yD(z)*g(z) =0, =,y € R.
Writing yD(x) for y in (90), we get
(91)  D(2)°y(D(2)* f(x)* + D(z)"g(x)) + D(x)’yD(x)’g(x) = 0, @,y € R.
Combining (55), (86) with (91),
(92) D(x)%yD(x)3g(x) =0, x,y € R.
Replacing yD(z) f(x) for y in (72), it follows that
e YyD(@) () D(x)? (x) + D(x)*yD (@) () D(x)f (x)
+D(2)°yD(2)f(2)* + D(x)"[y, 2] D(x) f (x)

(93) +D(2)"y(f(2)* + D(w)g(z)) =0, =,y € R.
From (87) and (93),

D(2)°yD(x)f(x)D(z)f(x) + D(x)°yD(x) f(z)*
(94)  +D(x)"[y,2]D(x)f(x) + D(x)"y(f(2)* + D(w)g(z)) =0, @,y € R.
Right multiplication of (72) by D(x)f(z) leads to
D( )'yD(x) f(2)D()f(z) + D(x)’yD(x) f(x)D ( )f(x)
(95) +D(2)%yf(2)D(@)f(2) + D(2) [y, 2] D(x) f(x) =0, z,y € R.
Combining (88) with (95),

T

D( )°yD(z) f(x)D(x) f(z) + D(2)°y f(z)D(x) f (x)
(96) D(z)"[y,2]D(x)f(z) =0, z,y € R.
Combining (94) with (96),
D(x)°y(D(x) f(2)* = f(2)D(x) f(z)) + D(x) y(f(2)* + D(z)g(z))

(97) =0, z,y€R.
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Writing yD(x)? for y in (97), we get
D(z)°y(D(x)*f* — D(x)* f(z)D(x) f(z))

(98) +D(2) y(D(x)* f(x)* + D(z)°g(x)) =0, z,y € R.
From (55), (88), (92) and (98),

(99) D(z)"yD(x)*f(2)* =0, z,y€ R,
Writing yD(x)? f(z)%2D(x) for y in (97),

( )*yD(x)* f (x)*z ( (@)*f(2)* = D(x) f (z) D(x) f ()
(100)  +D(x)'yD(x)*f(2)*2(D(x)f(x)* + D(x)’g(x)) =0, @,y,z € R.
From (99) and (100), we obtain
(101) D(x) yD(x)* f (2)*2(D(x)* f (2)* — D(x) f (2)D(x) f(x)) = 0, ,y,2 € R.
From (59) and (62),

+5D(x) f(x)D(x) f(x) + 3D(x)* f (x)?
(102) = —2D(x)f(z)D(z)f(x) +4D(x)*f(z)? —7D(x)3g(x) =0, z € R
From (92) and (102),

D(x)°yD(x)? f(x)?2(=2D(x) f(2)D(x) f(x) +4D(x)* f(2)?) = 0, w,y,z € R.
Since R is 2!-torsion-free, the above relation gives
(103)
D(x)°yD(x)? f(2)*2(D(x) f (x)D() f(x) — 2D(x)* f(x)*) = 0, x,y,2 € R.
From (101) and (103), we get
D(x)%yD(x)? f(z)?2D(x)*f(x)* =0, x,y,2 € R.

The above relation yields

(104) D(x)°yD(x)* f(2)*2D(x)°yD(x)* f(2)* = 0, x,y,z € R.
Thus by the primeness of R, (104) gives
(105) D(z)%yD(z)*f(z)* =0, x,y€R.

)
D(xz) for y in (75),

Writing D(z)yD(z)? f(z)?z
D(2)*yD(x)*f(2)*2(D()f (x)D(x) f (x) + D(x)*f (2)* + D(x) g(x))
+D(2)°yD(x)* f (2)*2(D(2) f(2)* + D(x)*g(x))
(106) +D(x)yD(2)*f(2)*2D(z)g(x) =0, ,y,2 € R.
Combining (105) with (106),
D(x)°yD(x)*f(2)*2(D(2) f(x)D(w) f(x) + D(x)*f(2)* + D(x)*g(x))

(107) =0, z,y,z € R.
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From (62) and (107), we have
(108) D(x)’yD(z)? f(x)*2f(x)D(z)? f(z) =0, z,y,2z € R.
Right multiplication of (66) by D(z)yD(x)?f(z)?z leads to
D(x)’yD(x)? f(x)*2(2f (x) D(x)* f(x) — 2D(x)? f (x)* — 5D(x)*g(x))

(109) =0, x,y,z € R.
From (108) and (109),
(110)  D(x)’yD(x)*f(z)?2(2D(z)*f(x)* + 5D(z)3g(z)) =0, z,y,z € R.
Writing yD(x)? f(x)?z for y in (90), we get

D(x)*yD(x)* f(2)*2(D(2)* f(x)* + D(x)*g(x))
(111) +D(x)%yD(x)? f(2)*2D(x)?g(x)) =0, z,y,2z € R.
Combining (105) with (111),
(112)  D(2)°yD(x)* f(2)*2(D(x)* f(z)* + D(2)’g(x)) =0, z,y,2 € R.
Comparing (110) and (112),

3D(z)°yD(x)* f(x)*2D(x)*g(x) =0, x,y,2 € R.

Since R is 3!-torsion-free, the above relation gives

(113) D(x)’yD(z)? f(x)?2D(x)%g(x) =0, 2,5,z € R.
From (112) and (113), we obtain

(114) D(x)’yD(x)? f(x)?2D(x)*f(x)> =0, x,y,2 € R.
Thus by the primeness of R, (114) gives

(115) D(x)’yD(x)?f(z)? =0, =,y € R.

From (90) and (115),

(116) D(z)’yD(x)*g(x) + D(x)°yD(x)*g(x) = 0, 2,y € R.

Writing yD(x)3g(x)z for y in (116),

D(x)*yD(x)’g(z)2D(x)°g(x) + D(2)°yD(x)*g(x)2D(x)*g(x)
(117) =0, z,y,z € R.
From (92) and (117), we have

(118) D(x)’yD(x)3g(x)2D(x)3g(x) =0, z,y,z € R.
From (118),
(119) D(x)’yD(x)3g(x)2D(z)°yD(x)3g(x) =0, z,y,z € R.

Thus by the primeness of R, (114) gives
(120) D(x)’yD(x)3g(x) =0, x,y € R.
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From (116) and (120), we get
(121) D(x)%yD(x)?g(x) =0, x,y€ R.
Right multiplication of (72) by zD(z)? f(x)? leads to
D(2)'yD(x)* f(z)2D(x)*f(2)* + D(2)°yD(x) f (x)zD(x)* f(x)*

(122) +D(2)°yf (2)2D(x)*f(2)* + D(2)"[y, 2)2D(2)*f(x)* = 0, w,y,2 € R.
Combining (115) with (122), we arrive at

(123) D(x)*yD(x)?f(x)2D(x)*f(z)?> =0, x,y,2 € R.
Writing fz for z in (123), we get

(124) D(x)*yD(z)?f(x)?2D(x)*f(x)> =0, x,y,z € R.
From (124), we have

(125) D(x)*yD(z)? f(x)?2D(x)*yD(x)*f(z)?> =0, z,y,2 € R.
Thus by the primeness of R, (125) gives

(126) D(z)'yD(x)*f(z)* =0, x,y € R.

Right multiplication of (72) by D(x)f(z) leads to

D(z)*yD(z)*f(x)D(z) f(z) + D(z)°yD(z) f () ( f(z)
(127)  +D(2)°yf(2)D(2)f(x) + D(2)[y, ] ()f(x) =0, =,y€R.
Comparing (88) and (127),

D(x)*yD(x) f(2)D(x) f(z) + D(2)°y(D(x) f(x)* — f(z)D () f(x))
(128) +D(z)"yf(z)> =0, =,y € R.
Writing yD(x) for y in (128),

yD(z

—D(z) )*f(2)D()f (x) + D(x)°y(D(x)* f( )?
(129) —D(z) ( )D(x)f(x)) + D(x)'yD(x)f(x)* =0, z,y € R.
Combining (88), (126) with (129), we have
(130)  —D(x)°yD(x)f(x)D(x)f(x) + D(2)"yD(x)f(x)* =0, =,y € R.

From (130),

(131) D(2)°y(—2D(x)f(z)D(x)f(2)) +2D(z) yD(x) f(x)* =0, @,y € R.
Comparing (102) and (131),
(132)
D(x)°y(4D(2)? f(x)* + TD(2)’g(x)) + 2D(x)"yD(z) f(x)* = 0, z,y € R.
Combining (91), (105) with (132),
2D(z)"yD(z)f(x)> =0, z,y € R.
Since R is 3!-torsion-free, the above relation gives

(133) D(x)"yD(x)f(z)> =0, =,y € R.
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Right multiplication of (72) by f(z) gives

(134)  D(2)°yD(x)f(x)* + D(2)°yf(x)* + D(2) [y, 2] f(z) =0, z,y € R.
Left multiplication of (134) by D(z) leads to

(135)  D(x)°yD(x)f(x)* + D(x)"yf(x)* + D(x)*[y, 2]f () =0, @,y € R.

Right multiplication of (135) by zD(x)f(z)? yields
D(2)°yD(x)f(2)*2D(x)f(2)* + D(z)"y f(x)*2D () f (x)*

(136) +D(2)%[y, x| f(x)zD(z) f(z)*> =0, z,y,2€ R.

Combining (133) with (136),

(137) D(2)°yD(x)f(x)*2D(2)f(x)* =0, z,y,z € R.

It follows from (137) that

(138) D(x)°yD(z)f(x)*2D(x)°yD(x) f(z)* =0, z,y,2 € R.

By the primeness of R, we get from (138)

(139) D(x)®yD(x)f(z)> =0, z,y € R.

Right multiplication of (72) by zD(z) f(z)? leads to
D(x)*yD(x)* f(x)2D(x) f(x)* + D(2)*yD(x) f (2)zD(x) f (x)*
(140) +D(2)°yf(2)zD(x)f(2)* + D(2)"[y, 2]2D() f(2)* =0, @,y,z € R,
Combining (133), (139) with (140),
D(x)*yD(x)*f(2)2D(x) f(x)* + D(x)’yD(x) f (x)zD() f (x)?
(141) =0, x,y,2 € R.
Replacing f(x)z for z in (141), it follows that
D(x)*yD(x)*f(2)*2D(x) f (2)* + D(2)°yD() f (x)*2D () f (x)*
(142) =0, z,y,z € R.
Comparing (126) and (142),

(143) D(x)°yD(x)f(x)?2D(z) f(x)> =0, 2,9,z € R.

It follows from (143) that

(144) D(@)*yD (@) (x)*=D(x)*yD(x) f(z)? = 0, 2,9,2 € R
By the primeness of R, we obtain from (144)

(145) D(x)®yD(x)f(z)> =0, z,y € R.
Combining (141) with (145),

(146) D(x)*yD(x)*f(z)zD(z)f(x)> =0, z,y,z € R.

Replacing yD(z) for y in (72),
D(x)°yD(x)?f(z) + D(x)°yD(x) f (x) + D(z) [y, 2] D(x)
(147) +D(x)7yf(z) =0, =,y €R.



JORDAN DERIVATIONS ON PRIME RINGS 551

Left multiplication of (72) by D(z) leads to
D(x)°yD(x)*f(z) + D(x)°yD(x) f(z) + D(2)y f(z)

(148) +D(x)%[y,x] =0, x,y € R.

Combining (147) with (148), we have

(149) D(x)"[y, z|D(x) — D(z)%[y,z] =0, z,y € R.
Replacing yz for y in (149),

(150) D(x)"[y, xlzD(x) — D(x)®[y,z]x =0, z,y € R.
Right multiplication of (149) by x leads to

(151) D(x)"[y, z|D(x)x — D(x)®[y,z]z =0, z,y € R.
Combining (150) with (151), we get

(152) D(x)"[y,z]f(z) =0, =,y € R.

Right multiplication of (72) by f(z) leads to
D(x)'yD(x)*f(2)* + D(x)°yD(x) f(x)* + D(x)%y f(z)*

(153) +D(x)[y, x| f(x) =0, =,y €R.
From (126), (145), (152) and (153), we conclude that
(154) D(x)%yf(z)? =0, =,y € R.
Left multiplication of (75) by D(z) leads to
( )’y(f (@)D (@) f(x) + D(x)f(2)* + D(x)*g(x))
(155) D(2)°y(f(2)* + D(x)g(x)) + D(z)"yg(x) =0, w,y € R.

From (145), (154) and (155), we get
D(x)°y(f () D(x )f( ) + D(2)?g(x)) + D(z)°yD(x)g()
(156) +D(x)"yg(z) =0, =,y €R.
Replacing yD(z) for y in (149), it follows that
x| D

D(x)"[y, «]D(x ) D(2)"yf(«)D(x) — D()*[y, =] D(x)
(157) —D(z)%yf(x) =0, z,y € R.
Right multiplication of (149) by D(x) gives
(158) D(x)[y, 2]D(z)* = D(2)*[y,z]D(x) =0, z,y € R.
From (157) and (158), we have
(159) D(2)"yf(2)D(x) — D(x)*yf(z) =0, z,y€R.
Right multiplication of (159) by f(z) leads to
(160) D(2)"yf(2)D(2)f(z) — D(2)*yf(2)* =0, w,y€ R.

From (154) and (160),
(161) D(x)"yf(z)D(z)f(x) =0, z,y € R.
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8

Replacing y f(x)D(x) f(z)z for y in (75), it follows that
D(2)*yf(2)D(2)f(2)2(f(x)D(x)f(x) + D(x)f(x)* + D(x)’g(x))
+D(2)y f(2)D(@) f (x)z(f(2)* + D(x) (ZE))

(162)  +D(z)yf(x)D(x)f(x)zg(x) =0, x,y,z € R.

Left multiplicatmn of (162) by D(

D( yf(@)D(2)f(x)z(f(2)D(x)f(z) + D(2)f(2)* + D(x)*g(x))

D(x ) yf( )D()f (2)2(f(x)* + D(x)g(x))

(163) D(x ) yf(z)D(z)f(x)zg(z) =0, z,y,z€ R.
From (161) and (163),

D(2)°yf(z)D(x) f (x)2(f(2)D(2) f (z) + D(z) f(x)* + D(z)*g(x))

(164) =0, z,y,z € R.

From (121), (145) and (164), we obtain

(165) D(2)°yf(2)D(2)f(z)zf(2)D(x)f(x) =0, z,y,z€R.

From (165),

(166)  D(2)°yf(x)D(x)f(2)zD(x)’yf(x)D(x)f(x) =0, =,y,z € R.

Since R is prime, we get from (166)

(167) D(x)°yf(z)D(2)f(z) =0, =,y € R.

Right multiplication of (156) by zf(z)D(z)f(x) leads to

D(x)°y(f(2)D(x)f(x) + D(z)*g(x))zf (x) D(x) f (x)
(x)f(z) + D(x)"yg(x)=f (x)D(x) f (z)

x)? gives

X

+D(2)°yD(x)g(x)z f (x)D
(168) =0, z,y,2 € R.

From (167) and (168), we obtain
D(2)°y(f(x)D(x)f () + D(x)f(2)* + D(x)*g(x))zf (2) D(x) f (x)
(169) =0, z,y,z € R.
On the other hand, right multiplication of (156) by zD(x)?g(x) leads to
D(2)*y(f(x)D(x)f(x) + D(x)*g(x))2D(x)*g(x)
+D(2) yD(w)g(x)2D(x)*g(x) + D(x) yg(x)zD(x)’g(x)
(170) =0, z,y,2 € R.
From (121) and (170),
(171)  D(2)’y(f(=
From (169) and (171
D(2)y(f(2)D(x)f (x) + D(x)*g(x))2(f (z) D(x) f (x)
(172) +D(x)%g(x)) =0, z,y,z € R.

x)f(x

)D(2)f(x) + D(x)*g(x))zD(x)’g(x) =0, w,y,z € R.
);

we have
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From (172),

D(2)°y(f(x)D(x) f () + D(x)*g(x))=D(x)’y(f (2) D () (x)
(173) +D(2)%g(x)) =0, 2,9,z € R.
Since R is prime, (173) gives
(174) D(2)’y(f(z)D(x)f(z) + D(x)’g(x)) =0, 2.y € R.
From (156) and (174), we get
(175) D(2)°yD(x)g(x) + D(x) yg(x) =0, z,y € R.
Replacing yD(z) for y in (175),
(176) D(@)*yD(@)%g(x) + D(@)yD(@)g(x) = 0, 2,y € R
From (121) and (176),
(177) D(x)"yD(x)g(z) =0, z,y € R.

Replacing yD(z)g(x)z for y in (175),
(178) D(x)°yD(x)g(x)zD(x)g(x) + D(x)"yD(x)g(x)2g(x) =0, w,y,z € R.

From (177) and (178),

(179) D(x)%yD(z)g(z)2D(x)g(x) =0, x,y,z € R.
From (179), we have

(180) D(x)°yD(x)g(x)2D(x)°yD(z)g(x) =0, w,y,z € R.
Since R is prime, (180) yields

(181) D(x)%yD(x)g(z) =0, =,y € R.

From (175) and (181),
D(z)"yg(x) =0, z,y € R.
Replacing y(f(z)D(x) f(x) + D(z)f(x)? + D(x)?g(x))z for y in (75),
D(x)*y(f(x)D(x) f(z) + D(x)f(2)* + D(x)*9(x))2(f(z)D(z) f ()
(

+D(x)f(2)* + D(x)’g(2)) + D(x)°y(f (2) D(x) f (2) + D(@) f(x)*
+D(x)%g(2))2(f (2)* + D(x)g(x)) + D(x)°y(f (z) D(x) f ()
(182)  +D(x)f(x)” + D(x)’g(x))zg(z) =0, 2,y.z € R.
From (145), (174) and (182), we arrive at

(17
D(@)*y(f (2)D(x)f(z) + D(x) f(x)* + D(x)*g(x))2(f (z) D(x) f ()
(183)  +D(z)f(xz)* + D(2)?*¢(x)) =0, =,y,2 € R.

From (183), we get

8

D(2)*y(f(x)D()f(x) + D(x)f (x)*
+D()*g(x))zD(x )4y(f($)D( )f ()
(184) +D(2)f(2)* + D(x)’g(x)) =0, ,y,z € R.
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Since R is prime, (184) gives
(185)  D(x)'y(f(x)D(x)f(z) + D(2)f(x)* + D(z)?g(z)) = 0, =,y € R.
From (75) and (185),
(186) D(2)’y(f(2)* + D(2)g(x)) + D(z)°yg(x) =0, w,y € R.
Replacing yD(z)g(x)z for y in (186),

D(x)*yD(x)g(x)2(f(2)* + D()g(x)) + D(2)°yD(x)g(x)zg(x)
(187) =0, x,9,2 € R.
From (181) and (187), we obtain
(188) D(x)’yD(x)g(x)2(f(2)* + D(z)g(x)) =0, w,y,z € R.
Replacing y f(x)%2 for y in (186),
(189) D(2)°yf(x)*2(f(2)*+ D(x)g(2)) + D(x)°yf(x)*29(z) = 0, w,y,2 € R.
From (154) and (189),
(190) D(x)’yf(x)*2(f(2)* + D(2)g(x)) =0, @,y,2 € R.
From (188) and (190),
(191)  D(2)°y(f(z)* + D(x)g(x))z(f(2)* + D(w)g(z)) =0, z,y,z € R.
From (191), we get
(192) D(2)’y(f(x)* +D(2)g(2))2D(x) y(f (x)* + D(z)g(x)) =0, @,y,z € R.
Since R is prime, (192) gives

(193) D(2)’y(f(x)* + D(x)g(x)) =0, =,y € R.
From (75), (185) and (193), we arrive at

(194) D(x)%yg(x) =0, x,y€ R.

Left multiplication of (70) by D(z)? leads to

D( )*yD(x)? f(x) + D(2)*f(2)D(y)D(w) f (x) + D(z)*yD(x) f ()

D(x)*f(2)D(x)D(y) f (x) + D(x)* f(x)D(y) f (x) + D(x)°y.f (x)
D(x) f(x)D(x)*B(x,y) + D(x)° f () D(z) B(x, y)
(195)  +D(2)*f(2)B(x,y) + D(x)°[y, 2] =0, =,y € R.

and (195), we have

)

()°yD(x)*f(x) + D(x)*f(x)D(y) D(x) f (x) + D(x)*yD(x) f (x)
+D(x)? f(x)D(2)D(y) f (x) + D(x)°yf(x) + D(x)? f () D(2)? B(z, y)
(196) +D(x)°[y,x] =0, z,y € R.

From (55
D
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Right multiplication of (196) by zg(x) leads to
D()yD()f() g(x) + D(x)* f()D(y) D(w) f(
D(x)f(x)zg(x) + D(x)* f (x) D(x) D(y) f (x)zg(x)

D(x)'y )D
+D( )’y f(2)2g9(z) + D(x)*f(2)D(x)* B(z, y)zg(x)
(197) +D(x)%[y, x]zg(z) =0, z,y,2z € R.

From (55), (194) and (197),

(»’C)ByD( )?f(x)zg(x) + D(x)? f(x) D(y) D(x) f
D(z)*yD(x)f(x)zg(x) + D(x)? f(x)D(x)D(y) f (z)zg (

(198) +D(2)°yf(x)2g(x) + D(x)* f(z)D(x)* B(z,y)2g(x) = 0, x,y,2 € R.

Left multiplication of (198) by ) yields

)?
D(z
D(2)*yD(x)*f(x)zg(x) + D(2)° f(2) D(y)D(x) f (x)zg(x)
+D(x)°yD(x) f(x)zg(x) + D(x)’ f(2) D(x) D(y) f () z9(x)
(199) +D(2)°yf(x)zg(z) + D(x)° f(x) D(x)*B(x,y)zg(x) =0, ,y,z € R.

From (55), (194) and (199),
(200)  D(2)*yD(x)*f(x)zg(x) + D(2)°yD(w)f(x)z9(x) =0, w,y,2 € R.
Replacing yD(x) for y in (200),
(201)  D(2)'yD(x)’f(2)2g9(x) + D(x)°yD(x)* f(x)zg(z) = 0, w,y,2 € R.
From (55) and (201), we get
(202) D(x)’yD(x)*f(x)zg(x) =0, z,y,z € R.
Replacing yD(x)? f(z)w for y in (200),
D(x)*yD(x)* f(z)wD(x)* f (z)zg()

(203) +D(2)°yD(2)* f(x)wD() f (z)zg(z) =0, w,z,y,2 € R.
From (202) and (203),

(204) D(2)*yD(x)* f(z)wD(x)* f(x)2g(x) =0, w,z,y,z € R.
From (204),

(205) D(x)*yD(x)*f(z)zg(x)wD(x)*yD(x)? f(z)zg(x) = 0, w,z,y,z € R.
Since R is prime, (205) yields

(206) D(x)*yD(x)?f(z)zg(x) =0, z,y,z € R.

From (200) and (206),

(207) D(x)’yD(x)f(x)zg(x) =0, x,y,z € R.
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Left multiplication of (198
D(2)°wD(z)*yD(x
+D(z)>wD(z)'y
+D(z)’wD(x) f
+D(x)>wD(z)? f

(208)  +D(z)°wD(x)*f

From (207) and (208),

(209) D(x)>wD(z)%yf(z)zg(z) =0, w,z,y,z € R.

From (209), we have

(210) D(x)’yf(z)zg(x)wD(z)yf(x)zg9(z) =0, w,z,y,2z € R.

Since R is prime, (210) gives

(211) D(x)®yf(z)zg(x) =0, z,y,z € R.

A simple calculation shows that (211) yields

(212) D(x)’yg(x) =0, x,y € R.

From (212), by Lemma 3.3 we have

D(z) =0, = €R. O

D
D

T
T

4. Applications in Banach algebra theory

The following theorem is proved by the same arguments as in the proof of
J. Vukman’s theorem [15], but it generalizes his result.

Theorem 4.1. Let A be a Banach algebra. Suppose there exists a continuous
linear Jordan derivation D : A — A such that

D(x)*[D(z), z] € rad(A)
for all x € A. Then we have D(A) C rad(A).

Proof. Tt suffices to prove the case that A is noncommutative. By the result
of B. E. Johnson and A. M. Sinclair [5] any linear derivation on a semisimple
Banach algebra is continuous. Sinclair [11] has proved that every continuous
linear Jordan derivation on a Banach algebra leaves the primitive ideals of A
invariant. Hence for any primitive ideal P C A one can introduce a derivation
Dp : A/P — A/P, where A/P is a prime and factor Banach algebra, by
Dp(2) = D(z) + P, & = o + P. By the assumption that D(z)3[D(z),x] €
rad(A), z € A, we obtain (Dp(2))3[Dp(2),2] = 0, & € A/P, since all the
assumptions of Theorem 3.4 are fulfilled. Let the factor prime Banach algebra
A/P be noncommutative. Then we have Dp(z) = 0, & € A/P. Thus we
obtain D(x) € P for all x € A and all primitive ideals of A. Hence D(A) C
rad(A). And we consider the case that A/P is commutative. Then since A/P
is a commutative Banach semisimple Banach algebra, from the result of B. E.
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Johnson and A. M. Sinclair [5], it follows that Dp(Z) = 0, & € A/P. And so,
D(z) € P for all € A and all primitive ideals of A. Hence D(A) C rad(A).
Therefore in any case we obtain D(A) C rad(A). O

Theorem 4.2. Let A be a semisimple Banach algebra. Suppose there exists a
linear Jordan derivation D : A — A such that

D(x)’[D(x), 2] = 0
for all x € A. Then we have D = 0.

Proof. Tt suffices to prove the case that A is noncommutative. According to
the result of B. E. Johnson and A. M. Sinclair [5] every linear derivation on
a semisimple Banach algebra is continuous. A. M. Sinclair [11] has proved
that any continuous linear derivation on a Banach algebra leaves the primitive
ideals of A invariant. Hence for any primitive ideal P C A one can introduce
a derivation Dp : A/P — A/P, where A/P is a prime and factor Banach
algebra, by Dp(#) = D(x) + P, & = z + P. From the given assumptions
D(z)3[D(z),x] =0, x € A, it follows that (Dp(2))*[Dp(2),2] =0, & € A/P,
since all the assumptions of Theorem 3.4 are fulfilled. The factor algebra A/P
is noncommutative, by Theorem 3.4 we have Dp(&) = 0, & € A/P. Hence we
get D(A) C P for all primitive ideals P of A. Thus D(A) C rad(A). But since
A is semisimple, D = 0. (]

As a special case of Theorem 4.2 we get the following result which charac-
terizes commutative semisimple Banach algebras.

Corollary 4.3. Let A be a semisimple Banach algebra. Suppose
[z, y)*[[x,y],2] = 0

for all x,y € A. In this case, A is commutative.
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