• Title/Summary/Keyword: Power semiconductor devices

Search Result 527, Processing Time 0.024 seconds

Trends of Power Semiconductor Device (전력 반도체의 개발 동향)

  • Yun, Chong-Man
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.3-6
    • /
    • 2004
  • Power semiconductor devices are being compact, high performance and intelligent thanks to recent remarkable developments of silicon design, process and related packaging technologies. Developments of MOS-gate transistors such as MOSFET and IGBT are dominant thanks to their advantages on high speed operation. In conjunction with package technology, silicon technologies such as trench, charge balance and NPT will support future power semiconductors. In addition, wide band gap material such as SiC and GaN are being studies for next generation power semiconductor devices.

  • PDF

Recent Overview on Power Semiconductor Devices and Package Module Technology (차세대 전력반도체 소자 및 패키지 접합 기술)

  • Kim, Kyoung-Ho;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.3
    • /
    • pp.15-22
    • /
    • 2019
  • In these days, importance of the power electronic devices and modules keeps increasing due to electric vehicles and energy saving requirements. However, current silicon-based power devices showed several limitations. Therefore, wide band gap (WBG) semiconductors such as SiC, GaN, and $Ga_2O_3$ have been developed to replace the silicon power devices. WBG devices show superior performances in terms of device operation in harsh environments such as higher temperatures, voltages and switching speed than silicon-based technology. In power devices, the reliability of the devices and module package is the critically important to guarantee the normal operation and lifetime of the devices. In this paper, we reviewed the recent trends of the power devices based on WBG semiconductors as well as expected future technology. We also presented an overview of the recent package module and fabrication technologies such as direct bonded copper and active metal brazing technology. In addition, the recent heat management technologies of the power modules, which should be improved due to the increased power density in high temperature environments, are described.

A Study on the Simulation of AlGaN/GaN HEMT Power Devices (AlGaN/GaN HEMT 전력소자 시뮬레이션에 관한 연구)

  • Son, Myung Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.4
    • /
    • pp.55-58
    • /
    • 2014
  • The next-generation AlGaN/GaN HEMT power devices need higher power at higher frequencies. To know the device characteristics, the simulation of those devices are made. This paper presents a simulation study on the DC and RF characteristics of AlGaN/GaN HEMT power devices. According to the reduction of gate length from $2.0{\mu}m$ to $0.1{\mu}m$, the simulation results show that the drain current at zero gate voltage increases, the gate capacitance decreases, and the maximum transconductance increases, and thus the cutoff frequency and the maximum oscillation frequency increase. The maximum oscillation frequency maintains higher than the cutoff frequency, which means that the devices are useful for power devices at very high frequencies.

Z-Source Inverter with SiC Power Semiconductor Devices for Fuel Cell Vehicle Applications

  • Aghdam, M. Ghasem Hosseini
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.606-611
    • /
    • 2011
  • Power electronics is a key technology for electric, hybrid, plug-in hybrid, and fuel cell vehicles. Typical power electronics converters used in electric drive vehicles include dc/dc converters, inverters, and battery chargers. New semiconductor materials such as silicon carbide (SiC) and novel topologies such as the Z-source inverter (ZSI) have a great deal of potential to improve the overall performance of these vehicles. In this paper, a Z-source inverter for fuel cell vehicle application is examined under three different scenarios. 1. a ZSI with Si IGBT modules, 2. a ZSI with hybrid modules, Si IGBTs/SiC Schottky diodes, and 3. a ZSI with SiC MOSFETs/SiC Schottky diodes. Then, a comparison of the three scenarios is conducted. Conduction loss, switching loss, reverse recovery loss, and efficiency are considered for comparison. A conclusion is drawn that the SiC devices can improve the inverter and inverter-motor efficiency, and reduce the system size and cost due to the low loss properties of SiC devices. A comparison between a ZSI and traditional PWM inverters with SiC devices is also presented in this paper. Based on this comparison, the Z-source inverter produces the highest efficiency.

A Study on Field Ring Design of 600 V Super Junction Power MOSFET (600 V급 Super Junction MOSFET을 위한 Field Ring 설계의 관한 연구)

  • Hong, Young-Sung;Jung, Eun-Sik;Kang, Ey-Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.4
    • /
    • pp.276-281
    • /
    • 2012
  • Power semiconductor devices are widely used as high voltage applications to inverters and motor drivers, etc. The blocking voltage is one of the most important parameters for power semiconductor devices. Generally most of field effect concentrations shows on the edge of power devices. Can be improve the breakdown characteristic using edge termination technology. In this paper, considering the variables that affect the breakdown voltage and optimization of parameters result for 600 V Super Junction MOSFET Field ring.

A Study on the Field Ring of High Voltage Characteristics Improve for the Power Semiconductor (전력반도체 고내압 특성 향상을 위한 필드링 최적화 연구)

  • Nam, Tae-Jin;Jung, Eun-Sik;Jung, Hun-Suk;Kim, Sung-Jong;Kang, Ey-Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.3
    • /
    • pp.165-169
    • /
    • 2012
  • Power semiconductor devices are widely used as high voltage applications to inverters and motor drivers, etc. The blocking voltage is one of the most important parameters for power semiconductor devices. And cause of junction curvature effects, the breakdown voltage of the device edge and device unit cells was found to be lower than the 'ideal' breakdown voltage limited by the semi-infinite junction profile. In this paper, Propose the methods for field ring design by DOE (Design of Experimentation). So The field ring can be improve for breakdown voltage and optimization.

Approximate Equations and Sensitivity for Breakdown Voltages of Cylindrical PN Junctions in Power Semiconductor Devices (전력 반도체 소자에 적용되는 원통형 PN 접합의 항복전압에 대한 근사식과 민감도)

  • Yun, Jun-Ho;Kim, Hae-Mi;Seo, Hyeon-Seok;Jo, Jung-Yol;Choi, Yearn-Ik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.12
    • /
    • pp.2234-2237
    • /
    • 2008
  • Approximate equations for cylindrical breakdown voltages of planar pn junctions are proposed and verified. The equations show good agreement with the Baliga's results for $r_{j}/Wpp{\leqq}0.3$ and with numerical results for $r_{j}/Wpp{\geqq}0.3$ within 1% error. Sensitivity of the breakdown voltage with respect to the doping concentrations is successfully derived using the approximate equations. The sensitivity formula can be utilized in the area of tolerance design of power semiconductor devices.

Considerations on the use of a Boost PFC Regulator Used in Household Air-conditioning Systems (over 3kW)

  • Jang Ki-Young;Suh Bum-Seok;Kim Tae-Hoon
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.589-592
    • /
    • 2002
  • The CCM (Continuous Conduction Mode) boost topology is generally used in the PFC (Power Factor Correction) regulator of household air-conditioning systems. There are three kinds of power devices-bridge rectifier diodes, FRDs (Fast Recovery Diodes), and IGBTs (or MOSFETs) - used In a boost PFC regulator. Selecting the appropriate device is very cumbersome work, specially, in the case of FRDs and IGBTs, because there are several considerations as described below: 1) High frequency leakage current regulation (conducted and radiated EMI regulation) 2) Power losses and thermal design 3) Device cost. It should be noted that there are trade-offs between the power loss characteristic of 2) and the other characteristics of 1) and 3). This paper presents a detailed evaluation by using several types of power devices, which can be unintentionally used, to show that optimal selection can be achieved. Based on the given thermal resistances, thermal analysis and design procedures are also described from a practical viewpoint.

  • PDF

Thermal Characteristics Analysis of Power Device for Motor Driving Power Converter (전동기 구동용 전력 변환기에 대한 전력소자의 열적 특성 해석)

  • Cho, Moontaek;Lee, Chungsik;Lee, SangBock
    • Journal of the Korean Society of Radiology
    • /
    • v.6 no.6
    • /
    • pp.495-498
    • /
    • 2012
  • In this paper, the basic behavior of the environment and the driving time as a prediction of the lifetime of the power semiconductor devices were recorded. Radiator of a power device driving time and temperature operating environment, including cumulative record by the controller of the power converter, and doing it so you can see the power semiconductor devices for the life of the structure that the size of the change in the temperature of the semiconductor chip and the number of iterations to maintenance warranty period because of a lifetime by forecasting or replacement can be made at the appropriate time that is considered.

Advances in Power Semiconductor Devices for Automotive Power Inverters: SiC and GaN (전기자동차 파워 인버터용 전력반도체 소자의 발전: SiC 및 GaN)

  • Dongjin Kim;Junghwan Bang;Min-Su Kim
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.2
    • /
    • pp.43-51
    • /
    • 2023
  • In this paper, we introduce the development trends of power devices which is the key component for power conversion system in electric vehicles, and discuss the characteristics of the next-generation wide-bandgap (WBG) power devices. We provide an overview of the characteristics of the present mainstream Si insulated gate bipolar transistor (IGBT) devices and technology roadmap of Si IGBT by different manufacturers. Next, recent progress and advantages of SiC metal-oxide-semiconductor field-effect transistor (MOSFET) which are the most important unipolar devices, is described compared with conventional Si IGBT. Furthermore, due to the limitations of the current GaN power device technology, the issues encountered in applying the power conversion module for electric vehicles were described.