DOI QR코드

DOI QR Code

Advances in Power Semiconductor Devices for Automotive Power Inverters: SiC and GaN

전기자동차 파워 인버터용 전력반도체 소자의 발전: SiC 및 GaN

  • Dongjin Kim (Advanced Joining & Additive Manufacturing R&D Department / Micro-Joining Center, Korea Institute of Industrial Technology(KITECH)) ;
  • Junghwan Bang (Advanced Joining & Additive Manufacturing R&D Department / Micro-Joining Center, Korea Institute of Industrial Technology(KITECH)) ;
  • Min-Su Kim (Advanced Joining & Additive Manufacturing R&D Department / Micro-Joining Center, Korea Institute of Industrial Technology(KITECH))
  • 김동진 (한국생산기술연구원 접합적층연구부문/마이크로조이닝센터) ;
  • 방정환 (한국생산기술연구원 접합적층연구부문/마이크로조이닝센터) ;
  • 김민수 (한국생산기술연구원 접합적층연구부문/마이크로조이닝센터)
  • Received : 2023.06.21
  • Accepted : 2023.06.30
  • Published : 2023.06.30

Abstract

In this paper, we introduce the development trends of power devices which is the key component for power conversion system in electric vehicles, and discuss the characteristics of the next-generation wide-bandgap (WBG) power devices. We provide an overview of the characteristics of the present mainstream Si insulated gate bipolar transistor (IGBT) devices and technology roadmap of Si IGBT by different manufacturers. Next, recent progress and advantages of SiC metal-oxide-semiconductor field-effect transistor (MOSFET) which are the most important unipolar devices, is described compared with conventional Si IGBT. Furthermore, due to the limitations of the current GaN power device technology, the issues encountered in applying the power conversion module for electric vehicles were described.

본 논문에서는 전기차 전력변환 시스템의 근간이 되는 전력반도체 소자의 발전 방향과 차세대 전력반도체 소자인 wide bandgap (WBG)의 특징에 관해 소개하고자 한다. 현재까지의 주류인 Si insulated gate bipolar transistor (IGBT)의 특징에 관해 소개하고, 제조사 별 Si IGBT 개발 방향에 대해 다루었다. 또한 대표적인 WBG 전력반도체 소자인 SiC metal-oxide-semiconductor field-effect transistor (MOSFET)이 가지는 특징을 고찰하여 종래의 Si IGBT 소자 대비 SiC MOSFET이 가지는 효용 및 필요성에 대해 서술하였다. 또한 현 시점에서의 GaN 전력반도체 소자가 가지는 한계 및 그로 인해 전기자동차용 전력변환모듈 용으로 사용하기에 이슈인 점을 서술하였다.

Keywords

Acknowledgement

본 논문은 한국생산기술연구원 기관주요사업 "제품생산 유연성 확보를 위한 뿌리공정기술 개발(KITECH EO-23-0008)"의 지원으로 수행한 연구입니다.

References

  1. D. Kim, B. Lee, T.-I. Lee, S. Noh, C. Choe, S. Park, and M.-S. Kim, "Power cycling tests under driving ΔTj = 125 ℃ on the Cu clip bonded EV power module", Microelectron. Reliab., 138, 114652 (2022).
  2. Y. Ma, J. Li, F. Dong, and J. Yu, "Power cycling failure analysis of double side cooled IGBT modules for automotive applications", Microelectron. Reliab., 124, 114282 (2021).
  3. D. Kim, S. Noh, S. Park and M.-S. Kim, "Thermo-mechanical fatigue induced unexpected strain hardening of Cu clip wiring on transfer-mold type EV power modules", Int. J. Fatigue, 172, 107603 (2023).
  4. E. Robles, A. Matallana, I. Aretxabaleta, J. Andreu, M. Fernandez, and J. L. Martin, "The role of power device technology in the electric vehicle powertrain", Int. J. Energy Res., 46, 22222 (2022).
  5. G. Liu, R. Ding, and H. Luo, "Development of 8-inch key processes for insulated-gate bipolar transistor", Engineering, 1, 361 (2015).
  6. L. M. Selgi and L. Fragapane, "Experimental evaluation of a 600 V super-junction planar PT IGBT prototype - comparison with planar PT and trench gate PT technologies", Proc. 15th European Confence on Power Electronics and Applications (EPE), Lille, IEEE Power Electronics Society (PES) (2013).
  7. C. Jaeger, A. Pillppou, A. Vellei, J. G. Laven, and A. Hartl, "A new sub-micron trench cell concept in ultrathin wafer technology for next generation 1200 V IGBTs", Proc. 29th International Symposium on Power Semiconductor Devices and ICs (ISPSD), Sapporo, 69 (2017).
  8. I. Imperiale, R. Baburske, T. Arnold, A. Philippou, E. Griebl, F. Wolter, H. J. Thees, A. Mauder, F. J. Niedernostheide, and C. Sandow, "Opportunities and challenges of a 1200 V IGBT for 5 V gate voltage operation", Proc. 32nd International Symposium on Power Semiconductor Devices and ICs (ISPSD), Virtual, 505 (2020).
  9. C. H. Van Der Broeck, L. A. Ruppert, R. D. Lorenz and R. W. De Doncker, "Methodology for active thermal cycle reduction of power electronic modules", IEEE Trans. Power Electron, 34, 8213 (2019).
  10. J. Millan, P. Godignon, X. Perpina, A. Perez-Tomas, and J. Rebollo, "A survey of wide bandgap power semiconductor devices", IEEE Trans. Power Electron, 29, 2155 (2014).
  11. K. Shenai, "The Figure of merit of a semiconductor power electronics switch", IEEE Trans. Electron Devices, 65, 4216 (2018).
  12. A. S. Abdelrahman, Z. Erdem, Y. Attia, and M. Z. Youssef, "Wide bandgap devices in electric vehicle converters: A performance survey", Can. J. Electr. Comput. Eng., 41, 45 (2018).
  13. N. Donato, N. Rouger, J. Pernot, G. Longobardi, and F. Udrea, "Diamond power devices: State of the art, modelling, figures of merit and future perspective", J. Phys. D., 53, 093001 (2020)
  14. C. J. H. Wort, and R. S. Balmer, "Diamond as an electronic material", Mater. Today, 11, 22 (2008)
  15. K. Suganuma, "Wide bandgap power semiconductor packaging", pp. 3-7, Elsevier, Duxford, 2018.
  16. X. She, A. Q. Huang, O. Lucia, and B. Ozpineci, "Review of silicon carbide power devices and their applications", IEEE Trans. Ind. Electron, 64, 8193 (2017).
  17. V. Soler, M. Cabello, M. Berthou, J. Montserrat, J. Rebollo, P. Godignon, A. Mihaila, M. R. Rogina, A. Rodriguez, and J. Sebastian, "High-voltage 4H-SiC power MOSFETs with boron-doped gate oxide", IEEE Trans. Ind. Electron, 64, 8962 (2017).
  18. V. Pala, E. Van Brunt, S. H. Ryu, B. Hull, S. Allen, J. Palmour and A. Hefner, "Physics of bipolar, unipolar and intermediate conduction modes in silicon carbide MOSFET body diodes", Proc. 28th International Symposium on Power Semiconductor Devices and ICs (ISPSD), Prague, 227 (2016).
  19. T. Kimoto, "High-voltage SiC power devices for improved energy efficiency", Proc. Jpn. Acad. Ser. B., 98, 161 (2022).
  20. B. Benakaprasad, A. M. Eblabla, X. Li, K. G. Crawford and K. Elgaid, "Optimization of ohmic contact for AlGaN/GaN HEMT on low-resistivity silicon", IEEE Trans. Electron Devices, 67, 863 (2020).
  21. K. J. Chen, O. Haberlen, A. Lidow, C. L. Tsai, T. Ueda, Y. Uemoto, and Y. Wu, "GaN-on-Si power technology: devices and applications", IEEE Trans. Electron Devices, 64, 779 (2017).
  22. J. Wei, M. Zhang, G. Lyu and K. J. Chen, "GaN integrated bridge circuits on bulk silicon substrate: issues and proposed solution", IEEE J. Electron Devices Soc., 9, 545 (2021).
  23. S. Han, S. Yang and K. Sheng, "High-voltage and high-ION/IOFF vertical GaN-on-GaN schottky barrier diode with nitridation-based termination", IEEE Electron Device Lett., 39, 572 (2018).
  24. B. Chatterjee, D. Ji, A. Agarwal, S. H. Chan, S. Chowdhury and S. Choi, "Electro-thermal investigation of GaN vertical trench MOSFETs", IEEE Electron Device Lett., 42, 723 (2021).
  25. E. Farzana, J. Wang, M. Monavarian, T. Itoh, K. S. Qwah, Z. J. Biegler, K. F. Jorgensen and J. S. Speck, "Over 1 kV vertical GaN-on-GaN p-n diodes with low on-resistance using ammonia molecular beam epitaxy", IEEE Electron Device Lett., 41, 1806 (2020).