• 제목/요약/키워드: Power electronic

검색결과 7,840건 처리시간 0.035초

Status Review of Power Electronic Converters for Fuel Cell Applications

  • Emadi, Ali;Williamson, Sheldon S.
    • Journal of Power Electronics
    • /
    • 제1권2호
    • /
    • pp.133-144
    • /
    • 2001
  • Power electronics plays an important role in providing an interface between fuel cells and loads. Furthermore, power electronic converters ensure that the power is reliably and efficiently delivered to the load in the required DC or AC form. In this paper, major types of fuel cells are presented. Basic structures, operating principles, and different applications of fuel cells are described. In addition, current status and future trends in the areas of power electronics for fuel cells are described. In addition, current statue and future trends in the areas of power electronics for fuel cell applications are explained. A review of fuel cell power electronic system topologies and basic requirements are given as well.

  • PDF

1.9-GHz CMOS Power Amplifier using Adaptive Biasing Technique at AC Ground

  • Kang, Inseong;Yoo, Jinho;Park, Changkun
    • Journal of information and communication convergence engineering
    • /
    • 제17권4호
    • /
    • pp.285-289
    • /
    • 2019
  • A 1.9-GHz linear CMOS power amplifier is presented. An adaptive bias circuit (ABC) that utilizes an AC ground to detect the power level of the input signal is proposed to enhance the linearity and efficiency of the power amplifier. The ABC utilizes the second harmonic component as the input to mitigate the distortion of the fundamental signal. The input power level of the ABC was detected at the AC ground located at the VDD node of the power amplifier. The output of the ABC was fed into the inputs of the power stage. The input signal distortion was mitigated by detecting the input power level at the AC ground. The power amplifier was designed using a 180 nm RFCMOS process to evaluate the feasibility of the application of the proposed ABC in the power amplifier. The measured output power and power-added efficiency were improved by 1.7 dB and 2.9%, respectively.

태양광 시스템의 전 범위 전력점 추종을 위한 CPG 알고리즘에 관한 연구 (A Study on Constant Power Generation Algorithms for a Whole Range Power Point Tracking in Photovoltaic Systems)

  • 양형규;방태호;배선호;박정욱
    • 전력전자학회논문지
    • /
    • 제24권2호
    • /
    • pp.111-119
    • /
    • 2019
  • In this study, constant power generation (CPG) algorithms are introduced for whole range power point tracking in photovoltaic systems. Currently, maximum power point tracking (MPPT) algorithm is widely used for high-power photovoltaic systems. However, MPPT algorithm cannot flexibly control such systems according to changing grid conditions. Maintaining grid stability has become important as the capacity of grid-connected photovoltaic systems is increased. CPG algorithms are required to generate the desired power depending on grid conditions. A grid-connected photovoltaic system is configured, and CPG algorithms are implemented. The performances of the implemented algorithms are compared and analyzed by experimental results.

Improvement in DRX Power Saving for Non-real-time Traffic in LTE

  • Kawser, Mohammad Tawhid;Islam, Mohammad Rakibul;Islam, Khondoker Ziaul;Islam, Mohammad Atiqul;Hassan, Mohammad Mehadi;Ahmed, Zobayer;Hasan, Rafid
    • ETRI Journal
    • /
    • 제38권4호
    • /
    • pp.622-633
    • /
    • 2016
  • A discontinuous reception (DRX) operation is included in the Long Term Evolution (LTE) system to achieve power saving and prolonged battery life of the user equipment. An improvement in DRX power saving usually leads to a potential increase in the packet delay. An optimum DRX configuration depends on the current traffic, which is not easy to estimate accurately, particularly for non-real-time applications. In this paper, we propose a novel way to vary the DRX cycle length, avoiding a continuous estimation of the data traffic when only non-real-time applications are running with no active real-time applications. Because a small delay in non-real-time traffic does not essentially impact the user's experience adversely, we deliberately allow a limited amount of delay in our proposal to attain a significant improvement in power saving. Our proposal also improves the delay in service resumption after a long period of inactivity. We use a stochastic analysis assuming an M/G/1 queue to validate this improvement.

제주 행원 풍력 발전 시스템의 역률 개선에 관한 연구 (A study on the power factor improvement of Wind Turbine Generation System at Haeng-Won in Jeju)

  • 박성기;김정웅;강경보;김일환
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2003년도 춘계전력전자학술대회 논문집(1)
    • /
    • pp.375-378
    • /
    • 2003
  • This paper presents a study on the power factor improvement of the Wind turbine Generation System(WTGS) at Haeng-won wind farm in Jeju Island. Vestas WTGS named V47 as a model system is selected in this paper, and has 660 kW Power ratings. In this system, power factor correction is controlled by the conventional method with power condenor bank. So, model system at Haeng-won wind farm has very low power factor in the area of low wind speed, which is from 4 m/s to 6 m/s. This is caused by the power factor correction using power condenser bank To improve the power factor in the area of low wind speed, we used the static var compensator(SVC) using current controlled PWM power converter by IGBT switching device. finally, to verify the profosed method, the results of computer simulation using Psim program are presented to support the discussion.

  • PDF

A Reliability Model of Wind Farm Considering the Complex Terrain and Cable Failure Based on Clustering Algorithm

  • Liu, Wenxia;Chen, Qi;Zhang, Yuying;Qiu, Guobing;Lin, Chenghui
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권6호
    • /
    • pp.1891-1899
    • /
    • 2014
  • A reliability model of wind farm located in mountainous land with complex terrain, which considers the cable and wind turbine (WT) failures, is proposed in this paper. Simple wake effect has been developed to be applied to the wind farm in mountainous land. The component failures in the wind farm like the cable and WT failures which contribute to the wind farm power output (WFPO) and reliability is investigated. Combing the wind speed distribution and the characteristic of wind turbine power output (WTPO), Monte Carlo simulation (MCS) is used to obtain the WFPO. Based on clustering algorithm the multi-state model of a wind farm is proposed. The accuracy of the model is analyzed and then applied to IEEE-RTS 79 for adequacy assessment.

Power Electronic Converters for Fuel Cell Applications

  • Williamson S. S.;Emadi A.
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 Proceedings ICPE 01 2001 International Conference on Power Electronics
    • /
    • pp.660-667
    • /
    • 2001
  • Power electronics plays an important role in providing an interface between fuel cells and loads. Furthermore, power electronic converters ensure that the power is reliably and efficiently delivered to the load in the required DC or AC form. In this paper, major types of fuel cells are presented. Basic structures, operating principles, and different applications of fuel cells are described. In addition, current status and future trends in the areas of power electronics for fuel cell applications are explained. A review of fuel cell power electronic system topologies and basic requirements are given as well.

  • PDF

AC PDP 시스템의 전원회로 해석과 소비전력 분석 (Power system analysis and power consumption breakdown for an ac PDP system)

  • 안재우;하정준;최병조
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 전력전자학술대회 논문집
    • /
    • pp.446-449
    • /
    • 2001
  • This paper presents the results of the power system analysis and power loss breakdown peformed on a 40-inch ac plasma display panel (PDP) TV set. The architecture and function of power system is reviewed. The power flow inside the PDP TV set is presented, and the distribution of the power loss is analyzed. It was found that the sustain driver circuit and power factor correction (PFC) circuit are the two major sources of the power loss. The results of this paper can be used as a preliminary guideline to improve the architecture and efficiency of power systems for ac PDP application systems.

  • PDF

Modified Asymmetrical Variable Step Size Incremental Conductance Maximum Power Point Tracking Method for Photovoltaic Systems

  • Tian, Yong;Xia, Bizhong;Xu, Zhihui;Sun, Wei
    • Journal of Power Electronics
    • /
    • 제14권1호
    • /
    • pp.156-164
    • /
    • 2014
  • The power-voltage (P-V) characteristic of a photovoltaic (PV) array is nonlinear and time varying with the change in atmospheric conditions. As a result, the maximum power point tracking (MPPT) technique must be applied in PV systems to maximize the generated energy. The incremental conductance (INC) algorithm, one of the MPPT strategies, is widely used for its high tracking accuracy, good adaptability to rapidly changing atmospheric conditions, and easy implementation. This paper presents a modified asymmetrical variable step size INC MPPT method that is based on the asymmetrical feature of the P-V curve. Compared with conventional fixed or variable step size method, the proposed method can effectively improve tracking accuracy and speed. The theoretical foundation and design principle of the proposed approach are validated by the simulation and experimental results.