DOI QR코드

DOI QR Code

Modified Asymmetrical Variable Step Size Incremental Conductance Maximum Power Point Tracking Method for Photovoltaic Systems

  • Tian, Yong (Graduate School at Shenzhen, Tsinghua University, Shenzhen, China Sunwoda Electronic Co. Ltd.) ;
  • Xia, Bizhong (Graduate School at Shenzhen, Tsinghua University, Shenzhen, China Sunwoda Electronic Co. Ltd.) ;
  • Xu, Zhihui (Sunwoda Electronic Co. Ltd.) ;
  • Sun, Wei (Sunwoda Electronic Co. Ltd.)
  • Received : 2013.07.04
  • Published : 2014.01.20

Abstract

The power-voltage (P-V) characteristic of a photovoltaic (PV) array is nonlinear and time varying with the change in atmospheric conditions. As a result, the maximum power point tracking (MPPT) technique must be applied in PV systems to maximize the generated energy. The incremental conductance (INC) algorithm, one of the MPPT strategies, is widely used for its high tracking accuracy, good adaptability to rapidly changing atmospheric conditions, and easy implementation. This paper presents a modified asymmetrical variable step size INC MPPT method that is based on the asymmetrical feature of the P-V curve. Compared with conventional fixed or variable step size method, the proposed method can effectively improve tracking accuracy and speed. The theoretical foundation and design principle of the proposed approach are validated by the simulation and experimental results.

Keywords

References

  1. N. Mutoh, T. Matuo, K. Okada, and M. Sakai, "Prediction-data based maximum-power-point-tracking method for photovoltaic power generation systems," in Proc. 33rd Annu. IEEE Power Electron. Spec. Conf., pp. 1489-1494, 2002.
  2. K. Kobayashi, H. Matsuo, and Y. Sekine, "A novel optimum operating point tracker of the solar cell power supply system," in Proc. 35th Annu. IEEE Power Electron. Spec. Conf., pp. 2147-2151, 2004.
  3. N. Femia, G. Petrone, G. Spagnuolo, and M. Vitelli, "A technique for improving P&O MPPT performances of double-stage grid-connected photovoltaic systems," IEEE Trans. Ind. Electron., Vol. 56, No. 11, pp. 4473-4482, Nov. 2009. https://doi.org/10.1109/TIE.2009.2029589
  4. N. Fermia, D. Granozio, G. Petrone, and M. Vitelli, "Predictive & adaptive MPPT perturb and observe method," IEEE Trans. Aerosp. Electron Syst., Vol. 43, No. 3, pp. 934-950, Jul. 2007. https://doi.org/10.1109/TAES.2007.4383584
  5. A. K. Abdelsalam, A. M. Massoud, S. Ahmed, and P. N. Enjeti, "High-Performance adaptive perturb and observe MPPT technique for photovoltaic-based microgrids," IEEE Trans. Power Electron., Vol. 26, No. 4, pp. 1010-1021, Apr. 2011. https://doi.org/10.1109/TPEL.2011.2106221
  6. S. Jain and V. Agarwal, "A new algorithm for rapid tracking of approximate maximum power point in photovoltaic systems," IEEE Trans. Power Electron. Lett., Vol. 2, No. 1, pp. 16-19, Mar. 2004. https://doi.org/10.1109/LPEL.2004.828444
  7. W. Xiao and W. G. Dunford, "A modified adaptive hill climbing MPPT method for photovoltaic power systems," in Proc. 35th Annu. IEEE Power Electron. Spec. Conf., pp. 1957-1963, 2004.
  8. F. Liu, S. Duan, F. Liu, B. Liu, and Y. Kang, "A variable step size INC MPPT method for PV systems," IEEE Trans. Ind. Electron., Vol. 55, No. 7, pp. 2622-2628, Jul. 2008. https://doi.org/10.1109/TIE.2008.920550
  9. A. Safari and S. Mekhilef, "Simulation and hardware implementation of incremental conductance MPPT with direct control method using cuk converter," IEEE Trans. Ind. Electron., Vol. 58, No. 4, pp. 1154-1161, Apr. 2011. https://doi.org/10.1109/TIE.2010.2048834
  10. P. E. Kakosimos and A. G. Kladas, "Implementation of photovoltaic array MPPT through fixed step predictive control technique," Renewable Energy, Vol. 36, pp. 2508-2514, 2011. https://doi.org/10.1016/j.renene.2011.02.021
  11. Q. Mei, M. Shan, L. Liu and J. M. Guerrero, "A novel improved variable step-size incremental-resistance MPPT method for PV systems," IEEE Trans. Ind. Electron., Vol. 58, No. 6, pp. 2427-2434, Jun. 2011. https://doi.org/10.1109/TIE.2010.2064275
  12. E. M. Ahmed and M. Shoyama, "Scaling factor design based variable step size incremental resistance maximum power point tracking for PV systems," Journal of Power Electronics, Vol. 12, No. 1, pp. 164-171, Jan. 2012. https://doi.org/10.6113/JPE.2012.12.1.164
  13. A. M. Varnham, G. S. Virk, and D. Azzi, "Soft-computing model-based controllers for increased photovoltaic plant efficiencies," IEEE Trans. Energy Convers., Vol. 22, No. 4, pp. 873-880, Dec. 2007. https://doi.org/10.1109/TEC.2007.895877
  14. A. G. Abo-Khalil, D. C. Lee, J. W. Choi, and H. G. Kim, "Maximum power point tracking controller connecting PV system to grid," Journal of Power Electronics, Vol. 6, No. 3, pp. 226-234, Jul. 2010.
  15. J. L. Agorreta, L. Reinaldos, R. Gonzalez, M. Borrega, J. Balda, and L. Marroyo, "Fuzzy switching technique applied to PWM boost converter operating in mixed conduction mode for PV systems," IEEE Trans. Ind. Electron., Vol. 56, No. 11, pp. 4363-4373, Nov. 2009. https://doi.org/10.1109/TIE.2009.2019567
  16. T. Esram and P. L. Chapman, "Comparison of photovoltaic array maximum power point tracking techniques," IEEE Trans. Energy Convers., Vol. 22, No. 2, pp. 439-449, Jun. 2007. https://doi.org/10.1109/TEC.2006.874230
  17. M. A. G. D. Brito, L. Galotto, Jr., L. P. Sampaio, G. D. A. E. Melo, and C. A. Canesin, "Evaluation of the main MPPT techniques for photovoltaic applications," IEEE Trans. Ind. Electron., Vol. 60, No. 11, pp. 1156-1167, Mar. 2013. https://doi.org/10.1109/TIE.2012.2198036
  18. M. G. Villalva, J. R. Gazoli, and E. R. Filho, "Comprehensive approach to modeling and simulation of photovoltaic arrays," IEEE Trans. Power Electron., Vol. 24, No. 5, pp. 1198-1208, May. 2009. https://doi.org/10.1109/TPEL.2009.2013862
  19. Y. Yushaizad, H. Siti, A. L. Muhammad, "Modeling and simulation of maximum power point tracker for photovoltaic system," National Power & Energy Conf., pp. 88-93, Nov. 2004.
  20. A. Pandey, N. Dasgupta, and A. K. Mukerjee, "Design issues in implementing MPPT for improved tracking and dynamic performance," in Proc. IEEE IECON, pp. 4387-4391, 2006.

Cited by

  1. A Novel Asymmetrical Single-Phase Multilevel Inverter Suitable for Hybrid Renewable Energy Sources vol.07, pp.06, 2016, https://doi.org/10.4236/cs.2016.76079
  2. Optimised hydrogen production by a photovoltaic-electrolysis system DC/DC converter and water flow controller vol.41, pp.45, 2016, https://doi.org/10.1016/j.ijhydene.2016.05.111
  3. Backstepping Control of a Buck-Boost Converter in an Experimental PV-System vol.15, pp.6, 2015, https://doi.org/10.6113/JPE.2015.15.6.1584
  4. FPGA-based Centralized Controller for Multiple PV Generators Tied to the DC Bus vol.14, pp.4, 2014, https://doi.org/10.6113/JPE.2014.14.4.733
  5. Modeling and global maximum power point tracking for photovoltaic system under partial shading conditions using modified particle swarm optimization algorithm vol.6, pp.6, 2014, https://doi.org/10.1063/1.4904436
  6. Tracking the global maximum power point of a photovoltaic system under partial shading conditions using a modified firefly algorithm vol.8, pp.3, 2016, https://doi.org/10.1063/1.4948524
  7. A Study on the Fuzzy-Logic-Based Solar Power MPPT Algorithms Using Different Fuzzy Input Variables vol.8, pp.2, 2015, https://doi.org/10.3390/a8020100
  8. Simulation of FPGA controlled Single Stage Boost Inverter for the Applications of Grid Connected Photovoltaic System 2017, https://doi.org/10.1177/0037549717705466