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A Reliability Model of Wind Farm Considering the Complex Terrain  
and Cable Failure Based on Clustering Algorithm 

 
 

Wenxia Liu*, Qi Chen†, Yuying Zhang*, Guobing Qiu* and Chenghui Lin** 
 

Abstract – A reliability model of wind farm located in mountainous land with complex terrain, which 
considers the cable and wind turbine (WT) failures, is proposed in this paper. Simple wake effect has 
been developed to be applied to the wind farm in mountainous land. The component failures in the 
wind farm like the cable and WT failures which contribute to the wind farm power output (WFPO) and 
reliability is investigated. Combing the wind speed distribution and the characteristic of wind turbine 
power output (WTPO), Monte Carlo simulation (MCS) is used to obtain the WFPO. Based on 
clustering algorithm the multi-state model of a wind farm is proposed. The accuracy of the model is 
analyzed and then applied to IEEE-RTS 79 for adequacy assessment. 
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1. Introduction 
 
Recent public concerns on environmental issues associated 

with conventional fossil resources has motivated an 
increased interest in the development and use of alternative 
sources. Wind energy has been widely recognized as an 
important alternative with the development in modern WT 
technology. Many countries, e.g. US, China, Germany and 
Denmark have integrated large scale wind energy into their 
power systems with incentive politics promoted which 
ensure the purchase of the wind energy produced in spite of 
its uncompetitive prices [1-3]. 

However the stochastic WFPO, depending on the wind, 
which is intermittent, has become one major difficulty while 
planning or operation a power system with increasing 
wind energy penetration. The impact of wind farms (WFs) 
on composite power system reliability is a major concern, 
especially after a series of large scale accidents of wind 
farms disconnected with the power grid occurred in China 
since 2011 [4]. The intermittent nature of wind speed, along 
with the probabilistic behavior of outage of WTs and other 
components, makes output power of wind farms completely 
stochastic and different from those of conventional units. 
Therefore, one of the complexities of integration of wind 
power in power systems can be seen in the reliability model 
of wind farms. 

Traditionally, the analytic and MCS approaches are 
always used to model the wind farm [5-11]. Generally a 
wind farm can be simplified to an equivalent multi-state 

unit [7, 10-11], which can be used for reliability evaluation 
of a power system with wind farms. 

Analytic approach is always used when the wind farm is 
not large. Sayas combines the stochastic characteristics of 
wind speed with the operational information of the turbines, 
such as the failure and repair rates, representing the wind 
farm by a Markov process [5]. Leite utilizes the model for 
reliability studies, providing an annual estimate of energy 
production and calculate several performance indexes [6]. 
Then, based on Markov process Dobakhshari models a 
wind farm like a multistate conventional unit [7].  

Although the model is more credible and reliable, with 
the wind energy integrated into the power grid in large scale 
the problem becomes more complex and difficult, especially 
after incorporating wake effect and other relevant factors 
in a Markov process. 

Roy Billinton proposed MCS to mimic the operation 
of a wind farm hourly, taking into account the fluctuating 
characteristics of wind speeds, the random failure of 
generating units and other recognized factors [8]. Based on 
the model, assessment of risk-based capacity is carried out 
for the power system including wind farms [9]. In 2006 
Karki and Billinton, etc. presents a simplified multi-state 
unit model for reliability evaluation of power systems [10]. 
And the method is further simplified by determining the 
reasonable multistate representation for a wind farm 
generation model in reliability evaluation. 

Compared with the analytical one, MCS is more 
applicable to model the wind farm with numerous WTs and 
always used in an existing composite power grid. Thus, in 
this paper MCS is selected. The wind farm model is mainly 
determined by the random nature of the site resource, the 
characteristic of WTPO, and the unavailability of the WT 
expressed by the unit forced outage rate (FOR) [8-11]. 
However, two main aspects should be further investigated: 

1. More factors should be taken into account due to the 

†   Corresponding Author: State Key Laboratory of Alternate Electrical 
Power System with Renewable Energy Sources, School of Electrical 
and Electronic Engineering, North China Electric Power University, 
Beijing, China. (qichantd@163.com). 

* State Key Laboratory of Alternate Electrical Power System with 
Renewable Energy Sources, School of Electrical and Electronic 
Engineering, North China Electric Power University, Beijing, China.

** Guizhou Electric Power Research Institute, Guiyang, China. 
Received: November 18, 2013; Accepted: July 29, 2014 

ISSN(Print)  1975-0102
ISSN(Online) 2093-7423



A Reliability Model of Wind Farm Considering the Complex Terrain and Cable Failure Based on Clustering Algorithm 

 1892

differences between wind farms.  
2. How to achieve the tradeoff between accuracy and the 

number of states. 
 
The existing models consider only the wake effect of a 

wind farm in a flat area. Based on the relatively simple 
Jensen model, a partial wake effect model in flat terrain 
between WTs is established [12-14]. When the wind passes 
over a mountainous land, complex terrain feature will 
change the wind speed. Wind speed over a mountain is 
much different from that on a flat area. Therefore wake 
effect model in flat terrain is not sufficient to accurately 
evaluate power outputs of WTs at different parts of a wind 
farm. The terrain influence of a mountainous land on 
wind speed has not been considered in an adequacy study 
of a wind farm. Besides, the internal connection line 
failures in the wind farm have been recognized as a 
contributing factor to wind power system reliability, after 
three accidents of a cable breakdown in wind farms and the 
impact of it on wind farm reliability is investigated. In this 
paper the number of states and the accuracy of the model is 
investigated, providing a reference to the tradeoff. The 
overall idea of the paper is illustrated in Fig. 1. 

 
 

2. Wind Turbine Power Output Considering 
Multiple Wake Effect in Complex Terrain 

 
2.1 Wind speed model 

 
The probability density function (PDF) of wind speed is 

important in numerous wind energy applications. A large 
number of studies have been published in scientific 
literature related to renewable energies that propose the use 
of a variety of PDFs to describe the wind speed frequency 
distributions, such as Weibull, Rayleigh, r2 and so on [15]. 

Amongst the various distributions, the two parameter Weibull 
distribution has been the most widely used, accepted and 
recommended distribution on wind energy [16]. In this paper, 
two parameter Weibull distribution is used to simulate the 
wind speed probability distribution, its probability density 
function (PDF) is given by [17]: 

 

 1( ) ( )( ) exp[ ( ) ]k kk v vf v
c c c

−= −  (1) 

 
where c is the scale factor and k is the shape factor. 
Seasonal patterns of wind speed which significantly affect 
the reliability indexes is taken into account [6]. The values 
of c and k can be estimated using maximum likelihood 
method based on measured wind speeds [16], [18]. 

Cumulative distribution function (CDF) of two parameter 
Weibull distribution is given by: 

 

 ( ) 1 exp[ ( ) ]kvF v
c

= − −  (2) 

 
2.2 Partial wake effect model in complex terrain 

 
WTs generate electricity by tapping into the energy in 

the wind. Consequently, the wind leaving the turbine must 
have a lower energy content than that arriving in front of 
the turbine [14]. In this paper, a detail wake model, con-
sidering partial and multiple wakes inside a wind farm, has 
been developed. 

The Jensen wake model is a single wake model, which 
demonstrates linear expansion of the wake diameter, 
ignoring the changes of the wind speed caused by the 
altitude difference between the WTs. Fig. 2 shows an 
overview of the wake model. 

When completely located in the wake of the upstream 
WT, the wind speed at location x is expressed by [14]: 
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where v0 is the original wind speed, dF is the declining 
coefficient of wind speed in flat terrain, CT is the thrust 
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Fig. 2. The Jensen wake model 
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coefficient, r=r0+kwx, r is the wake effect radius, kw 
depends on the terrain and environment, kw=0.04 for 
nature wind, otherwise kw=0.08 [14]. 

However; the wake effect model in a more general 
terrain should be proposed for the wind farm located in 
mountainous land where the difference of altitude 
between WTs is not negligible. Besides the difference of 
altitude and the wind direction may probably lead to the 
downstream WT in partial wake. Combining the basic 
theories of Jensen model and Lissaman model [19], a 
partial wake effect model of WTs at the different altitudes 
in complex terrain is developed in this paper. 

In a wind farm configuration, the wind speed at WT j is 
affected not only by the upstream WT that is directly in 
front of it, WT i, but also by other upstream WTs [14]. At 
first, only the effect on WT j caused by WT i is studied in 
this section. In a wind farm, the relative position of WT i 
and WT j is assumed to be shown in Fig. 3. In the figure, hi 
and hj are the rotor altitudes of WT i and WT j, ri and rj are 
the rotor radiuses of WT i and WT j and xij is the distance 
between WT i and WT j. Then the wind speed of WT j 
affected by WT i can be calculated using the following 
expression: 

 
.2 2

( ) [1 (1 1 ) ( ) ( ) ( )]( )
( )

j shad ij ji
j i i T

j i ij rotor i

r A hh
v v C

h r x A h
= − − − ⋅  ⋅ ⋅α α  

  (4) 
 
where vi and vj(i) are the wind speeds at WT i and WT j; α is 
the coefficient of wind speed variation with the altitude, 
which is generally 1/7. ri(xij) is the wake effect radius at 
WT j caused by WT i; ri(xij)=ri+kwxij; Arotor is the area 
covered by the rotor of downstream WT i, Arotor=πrj

2; 
Ashad.ij is the area projected by downstream WT j in the 
wake region of upstream WT i, which can be calculated 
through the following expression: 
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where Δh=|hj-hi|; dij is the horizontal spacing between WT i 
and WT j. When Δh=|hi-hj|=0 and Ashad.ij=Arotor, it turns to 
be the complete wake effect model in flat terrain expressed 
by Eq. (3). 

 
2.3 Multiple wake effect model in complex terrain 

 
It is quite possible that one WT is affected by a multiple 

wake effect in a wind farm containing a large number of 
WTs. Therefore the multiple wake effect model in complex 
terrain should be taken into account. This model assumes 
that the kinetic energy deficit of interacting wakes is equal 
to the sum of the energy deficits of the individual wakes 
[20]. Thus, the velocity at the intersection of several wakes 
can be calculated using the following expression: 

 

 . ( ) 2

10 0

1 (1 )
N

eq j j i

ij j

v v
v v=

− = −∑  (6) 

 
where vj0 is the wind speed at WT j without any wake 
effect; N is the total number of upwind influencing 
turbines; veq.j is the wind speed at WT j such that all the 
wakes are taken into account; vj is the wind speed at WT j 
affected by the individual WT i. 

 
2.4 Wind turbine power output model 

 
The WTPO is a function of the wind speed. The 

randomness of wind speed determines the WTPO. The 
relationship between the WTPO and the wind speed is non-
linear due to the combined effects of aero-turbine and 
generator characteristics [21]. However, the assumption of 
the linear characteristic of the WTPO with the wind speed 
simplifies the calculations without roughly errors. Ignoring 
the differences between WT types, the commonly used 
linear relationship between the WTPO and the wind speed 
can be calculated using the following expression [22]: 
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Fig. 3. Partial block wake effect model 
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where Pr, vci, vr and vco are the rated power output, the cut-
in wind speed, the rated wind speed, and the cut-out wind 
speed of the WT, respectively; k1=Pr/(vr−vci); k2=−k1vci. 

 
 

3. Wind Farm Reliability Model 
 

3.1 Wind farm element reliability model: Connection 
lines and wind turbines 

 
Generally, four main parts: WTs, package transformers, 

collection lines, substations constitute the wind farm. In 
present techniques, the impact of connection line reliability 
to wind farms has not been considered in wind farms 
reliability modeling. The lines, which are long with high 
failure rates and are used for collecting and delivering 
energy, have a great impact on the wind farm. A series of 
large scale accidents of wind farms disconnected with the 
power grid occurred in China since 2011 just due to the 
breakdown of cable [4]. 

 
3.2 The reliability model of the connection line 

 
The model of cable is investigated in this section as an 

example, but the model is also applicable to common 
connection lines like overhead line. Electric power network 
topology in the wind farm comprises 3 general forms: 
chain, ring and star [23]. Two-state model is applied to 
each cable, representing the operation (up) and outage 
(down) state. The Markov chain of cable is illustrated in 
Fig. 4, where λcable, μcable are failure rate and repair rate. 

Cable-up Cable-down

λcable

μcable  
Fig. 4. Markov chain model of the cable 

 
The probability calculated from the Markov chain above 

is as follows: 
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Only long-term state probabilities are of interest, the 

normal and failure state probabilities of each component 
are expressed as follows: 

 ( ) cable
cable up

cable cable

P
μ

λ μ− ∞ =
+

          (10) 

 ( ) cable
cable down

cable cable

P
λ

λ μ− ∞ =
+

         (11) 

 
3.3 The Reliability of the Wind Turbine 

 
Operation of the WT is affected by the connecting cable. 

Some outage of the WTs is due to the cable failure and the 
equivalent outage of WTs increase. The model of the WTs 
is illustrated below. 

WT-up WT-down

λWT

μWT

WT-down
Conmon Cause 

Outage

λCCO

μCCO  
Fig. 5. Markov chain model of the WT 

 
The common cause outage indicates the WT outage due 

to the cable failures. The WT outage caused by the failure 
itself is alone to be separated from the common cause 
outage. The probability of WT being available '

iWTP  can be 
calculated below: 

 

 
'

.(1 )
i iWT WT cable down f

f Fi

P P P −
∈

= × − ∑         (12) 

 
Where '

iWTP  is the equivalent availability of the ith WT 
considering the common cause outage, PWTi is the 
availability of the ith WT, Fi is a failure set which makes 
the ith WT unavailable due to the common cause of cable, f 
represents a failure that belongs to Fi. 

Fig. 6 below shows 10 WTs connected to the bus in 
chain form. 

WT1WT9WT10

Cable10 Cable1

Bus

 
Fig. 6. Chain form of the WTs 

 
The equivalent availability of each turbine is demonstrated 

below in Fig. 7. 
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As it is seen in the figure above, the equivalent 
availability decreases with the number of cables used to 
connect into the grid increases. 

 
 
4. Wind Farm Multi-State Probabilistic Model 

Based On K-Means Clustering 
 

4.1 Wind farm power output 
 
The MCS is proposed to mimic the WFPO. The step of 

the calculation is as follows:  

1) Input the location coordinates of each WT. 
2) Generate the wind speed and wind direction. 
3) Obtain the state of WTs and cables according to MCS. 
4) Calculate the equivalent wind speed at each location of 

WT, especially the WT in the state of outage does not 
impact the WTs downstream. 

5) Calculate all the WTPO according to the equivalent 
wind speed. 

6) Calculate the WFPO. 
7) Determine whether it is the end of the simulation time. 

If it is, end the simulation and generate the output. If 
not, return to step 2). 

 
4.2 Multi-State probabilistic model based on clustering 
 

In order to apply time series WFPO simulated hourly 
to power system reliability evaluation, the multi-state 
probabilistic model is obtained through clustering the WFPO 
data.  

Clustering is a process of partitioning or grouping a 
set of data objects into a number of clusters such that 
similar patterns are assigned to one cluster [24]. K-means 
clustering is one of the simplest unsupervised learning 
algorithms that solve the well-known clustering problem. 
In this paper, K-means clustering will be used to partition a 
time series of WFPO into K different clusters and the wind 
farm will be equivalent to a K-state conventional unit. 

The K-means clustering attempts to find the cluster 
centers (c1, c2, ... , cK) such that the sum of the squared 
distances(called Distortion) of each data point (xi) to its 
nearest cluster center (ck) is minimized, as shown by 
following expression: 
 

 2

1,2, ,1

, [ min ( , )]
n

i kk Ki

Distortion Dis d
=

=

   = ∑ x c  (13) 

 
where d(xi, ck) is the Minkowski distance function and its 
expression is given by: 
 

 1/

1
( , ) ( ( )

m
p p

i k i k ij kjp
j

d x c
=

= − = −  )∑x c x c  (14) 

 
where p is a positive integer; m is the dimension of 
vector ck. 

Typically d(xi, ck) is chosen as the Euclidean distance, 
which is a special case (p=2) of the Minkowski distance. 

The K-means clustering includes the following steps [24]: 

1) Fix the number of clusters K and initialize the center 
locations of each cluster, (c1

(0), c2
(0),…, cK

(0)). Each cluster 
center is a m-dimensional vector i.e., ci

(0)={ci1
(0), ci2

(0), 
…, cim

(0)}. 
2) Start the iterative procedure. Set the iteration count t =1. 
3) Calculate the distance measure, dki

(t-1), between kth 
cluster center and ith data set (data point in m-space). 
The distance measure used is Euclidean distance as 
given by Eq. (15). 

 

 ( 1) ( 1) ( 1) 2 1/2

2
1

( ( )
m

t t t
ki i k ij kj

j
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=

= − = −  )∑x c     (15) 

 
4) Assign each data object xi to its nearest cluster center ck. 
5) Update each cluster center ck

(t) as the mean of all xi that 
have been assigned as closest to it as given by Eq. (16). 

 

 
( ) /

i

t
k i k

x k

c x n
∈

= ∑  (16) 

 
where nk is the number of data items belonging to kth 
cluster. 

6) Calculate the Distortion Dis as given by Eq. (13). This 
function depicts the sum of all intra cluster distances, 
which is lower the better. 

7) If the value of Dis has converged, return the final 
cluster centers (c1

(t), c2
(t),…, cK

(t)). Else set t=t+1 and go 
to (3). 

 
 

5. Example Analysis 
 

5.1 Relevant data of wind farm 
 
In this paper, a wind farm containing 2MW WTs with a 

total of 160MW installed (the main technical parameters of 
the WT are given in Table 1 [25].) is selected as an 
example to do the relevant research and its specific layout 
is shown in Fig. 8. The topography of the wind farm is 
complex and the rotor altitude of each WT varies. The 
wind speed and wind direction of the wind farm are 
measured by the anemometer tower, which is at the altitude 
of 70 m. Besides, the data next to the WT in Fig. 8 is the 
rotor altitude of the WT. 

Due to the randomness of wind direction, wind rose is 
used to describe the wind direction. And the wind rose of 
the selected wind farm is shown in Fig. 9. In this paper, 

Table 1. The main technical parameters of asynchronous 
wind turbine 

r0 vci vr vco Pr h 
45m 3m/s 12m/s 25m/s 2MW 60m 
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two-parameter Weibull distribution is used to simulate the 
wind speed. Thus, assuming the values of c and k change 
monthly, the values of c and k from Capo Vado wind farm 
in [26] are used for further analysis in this paper and the 
values of c and k are presented in Table 2. 

 

5.2 Modeling of wind farm power output probability 
distribution 

 
Using a 50-year time series of wind speed and wind 

direction simulated hourly, a time series of power output 
of the wind farm (seen in Fig. 8) is calculated with a 
multiple wake effect model in complex terrain taken into 
consideration. With K-means clustering used to divide the 
time series of power output of the wind farm into K (K= 
6,7,8,9,10) different clusters, multistate WFPO probability 
distribution models is shown in Table 3. 

Table 3 shows that the wind farm mentioned in Section 
5.1 is equivalent to a (6~10)-state conventional unit. And the 
maximum of WFPO increases with the increase of the state 
number; however, its corresponding probability decreases. 

In order to study the accuracies of using (6~10)-state 
WFPO probability distribution models to simulate the 
WFPO, the error curves of comparing the simulated power 
output with the actual power output of the wind farm are 
plotted in Fig. 10. 

From Fig. 10, it can be noted that the errors between the 
simulated power output and the actual power output of the 
wind farm are volatile, but the overall errors are all less 
than 1% when the simulation times is about 50% of the 
total simulation times (438,000 times, 50 years, simulating 
hourly). Compared with the mean and standard deviation 
of the time series of the actual WFPO calculated in Fig. 10 
when the simulation times is 438,000, the errors of the 
means and standard deviations of the simulated time series 

Table 3. Multistate wind farm power output probability distribution models 
6-state 7-state 8-state 9-state 10-state 

Pout/p.u. Prob. Pout/p.u. Prob. Pout/p.u. Prob. Pout/p.u. Prob. Pout/p.u. Prob. 
0.0132 0.5825 0.0077 0.5128 0.0074 0.5093 0.0049 0.4654 0.0041 0.4485 
0.1192 0.1922 0.0752 0.1715 0.0730 0.1689 0.0526 0.1534 0.0463 0.1492 
0.2672 0.0913 0.1632 0.1116 0.1568 0.1103 0.1104 0.1011 0.0986 0.1038 
0.4498 0.0531 0.2903 0.0751 0.2704 0.0692 0.1788 0.0778 0.1659 0.0872 
0.6533 0.0363 0.4616 0.0497 0.4026 0.0428 0.2823 0.0645 0.2628 0.0604 
0.9134 0.0446 0.6590 0.0350 0.5507 0.0350 0.4153 0.0416 0.3663 0.0367 
—  —  0.9143 0.0442 0.7203 0.0242 0.5636 0.0341 0.4826 0.0324 
—  —  —  —  0.9251 0.0403 0.7338 0.0229 0.6169 0.0267 
—  —  —  —  —  —  0.9280 0.0391 0.7762 0.0193 
—  —  —  —  —  —  —  —  0.9360 0.0357 
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Fig. 10. Error curves of multistate wind farm power output 
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Fig. 8. The layout of wind turbines in wind farm 
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Fig. 9. Wind rose of the wind farm 

 
Table 2. Monthly Weibull parameters for Capo Vado site 

Month c(m/s) k Month c(m/s) k 
JAN 7.5 1.36 JUL 5.13 1.86 
FEB 7.15 1.63 AUG 4.97 1.83 
MAR 7.05 1.46 SEP 5.61 1.54 
APR 6.21 1.3 OCT 6.51 1.48 
MAY 5.42 2.03 NOV 7.04 1.44 
JUN 5.53 1.89 DEC 8.62 1.39 
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of the WFPO are shown in Table 4. 
Combining with Fig. 10 (when the simulation times is 

438,000, the errors of (6~10)-state models: 7>8>6>10>9) 
and Table 4, the means reflect the accuracy rate of the 
multistate models and the standard deviations are related to 
the volatility of the multistate models to simulate WFPO. 
Because of the probability in the process of simulation, the 
accuracy rates of the multistate models do not increase with 
the state number, but do the volatility of the multistate models. 

Due to the uncertainties of the simulation accuracies 
of the (6~10)-state models, boxplot is used to describe 
the volatility of the error of every multistate model in 
simulating WFPO (seen in Fig. 11). The boxplot is obtained 
through using every multistate model to simulate WFPO for 
100 simulations (the time of every simulation is 50 years). 

As it can be seen from Fig. 11, the average error of every 
multistate model in simulating WFPO varies from 0.1% to 
0.2% and the maximum error is not more than 0.5%. 
Therefore, every multistate model can ensure its reliability 
and accuracy when simulating WFPO. In other words, the 
multistate models can effectively simulate WFPO. 

 
5.3 Wind farm adequacy assessment 

 
In this paper, the IEEE-RTS 79 [27] Test System with 

the wind farm (in Section 5.1) integrated into the 16th node 
is applied to carry out the adequacy assessment. And the 
multistate models (seen in Table 3) are used to simulate 
the WFPO to investigate the impact of multistate models 
on the IEEE-BTS 79 generating system adequacy. The 
reliability indexes LOLP (Lost of Load Probability) and 
EDNS (Expected Demand Not Supplied) are calculated for 
the corresponding analysis. 

Fig. 12 shows the results of LOLP and EDNS calculated 

using (6~10)-state models to simulate WFPO. In Fig. 12, 
the LOLP and EDNS both fluctuate slightly with the state 
number, basically in accord with the reliability impact of 
the actual WFPO on the original test system. 

Fig. 13 shows the values of EDNS change with the various 
annual peak loads ranging from 0.9p.u. to 1.1p.u. (the peak 
load of the test system is 2850 MW) with (6~10)-state 
models integrated into the test system. It can be seen from 
Fig. 13 that the values of EDNS are relatively close, using 
a model with six or more states to represent the wind farm. 
The differences between the EDNS using the actual WFPO 
and the EDNSs using (6~10)-state models to represent the 
wind farm are relatively small but increase with the various 
annual peak loads ranging from 0.9p.u. to 1.1p.u.. 

From above analysis, the multistate models can be used 
to represent wind farm in reliability evaluation of a power 
system with wind farms. 

In order to analyze the accuracies of using multistate 
models to represent wind farm in reliability evaluation of a 
power system with wind farms, the boxplots of LOLP error 
and EDNS error are obtained through 50 simulations (the 
time of every simulation is 50 years) (seen in Fig. 14). The 
errors of LOLP or EDNS are calculated between the one 
calculated using the actual WFPO and the ones calculated 
using (6~10)-state models to represent the wind farm in the 
reliability evaluation of a power system with wind farms. 

Fig. 14 shows that the average error of LOLP is volatile 
(varies between 1% and 2%) and the maximum error is not 
more than 5%; the average error of EDNS decreases with 
the increasing state number (varies between 2% and 3%) 
and the maximum error is not more than 7%. Therefore, the 

Table 4. Errors of the mean and standard deviation of every 
multistate model 

State Number Mean (%) Standard deviation (%) 
6 0.2867 0.7558 
7 0.3488 0.4464 
8 0.3088 0.2904 
9 0.2702 0.2282 

10 0.2737 0.1084 
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Fig. 11. Boxplot of every multistate model 
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Fig. 12. LOLP and EDNS of every multistate model 
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Fig. 13. Curves of EDNS with the various annual peak loads
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multistate models can effectively represent wind farm in 
reliability evaluation of a power system with wind farms 
and ensure the accuracy. 

 
 

6. Conclusion 
 
This paper has introduced a modeling approach for 

WFPO probability distribution based on clustering algorithm. 
Firstly, combining the basic theories of Jensen model and 
Lissaman model, a partial wake effect model of WTs at the 
different altitudes in complex terrain is established. A wind 
farm reliability model, especially considering the outage 
of wind farm internal connection lines is set up in this paper. 
Finally, after an introduction of K-means clustering in detail, 
a wind farm can be equivalent to a multi-state conventional 
unit with K-means clustering as a method. 

Taking an installed capacity of 160 MW wind farm as 
an example, it turns out that the multistate models can 
effectively simulate the WFPO. The studies on the IEEE-
RTS 79 Test System, with reliability indexes LOLP and 
EDNS calculated, indicate that the multistate models can also 
effectively represent wind farm in reliability evaluation of 
a power system with wind farms and ensure the accuracy. 
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