• 제목/요약/키워드: Power Conversion Efficiency

검색결과 1,158건 처리시간 0.03초

3[kW]급 연료전지용 전력변환장치의 개발 (Development of 3.0[kW]class Fuel Cell Power Conversion System)

  • 서기영
    • 조명전기설비학회논문지
    • /
    • 제21권2호
    • /
    • pp.54-63
    • /
    • 2007
  • 최근 저전압 대전류 출력 특성을 갖는 연료전지를 위한 새로운 발전시스템으로 주목받고 있다. 연료전지 발전시스템에서는 DC-DC 승압용 컨버터와 DC-AC 인버터가 필요하다. 그러므로 본 논문에서는 연료전지의 전압을 $380[V_{DC}]$로 승압하기 위한 절연형 DC-DC 컨버터와 단상 $220[V_{AC}]$로 변환하기 위한 LC필터를 가진 PWM 인버터로 구성된 전력변환장치를 제안하였다. 특히 제안한 고주파 절연형 ZVZCS PWM DC-DC 컨버터는 환류 다이오드를 포함한 탭부 인덕터 필터를 이용하여 순환 전류를 저감시켰으며, 스위치 및 변압기의 턴-온, 턴-오프시에 오버슈트 전압이나 과도현상이 발생하지 않는다. 그리고 넓은 출력 전압 조정에도 효율을 $93{\sim}97[%]$정도 얻을 수 있으며, 출력 부하전류의 변화에 대해 거의 일정한 출력 전압 특성을 가졌다.

스퍼터법을 이용한 메탈 전구체기반의 Cu2SnS3 (CTS) 박막 태양전지 제조 및 특성 평가 (Fabrication of Cu2SnS3 (CTS) thin Film Solar Cells by Sulfurization of Sputtered Metallic Precursors)

  • 이주연;김인영;;문종하;김진혁
    • Current Photovoltaic Research
    • /
    • 제3권4호
    • /
    • pp.135-139
    • /
    • 2015
  • $Cu_2SnS_3$ (CTS) based thin film solar cells (TFSCs) are of great interest because of its earth abundant, low-toxic and eco-friendly material with high optical absorption coefficient of $10^4cm^{-1}$. In this study, the DC sputtered precursor thin films have been sulfurized using rapid thermal annealing (RTA) system in the graphite box under Ar gas atmosphere for 10 minute. The systematic variation of sulfur powder during annealing process has been carried out and their effects on the structural, morphological and optical properties of CTS thin films have been investigated. The preliminary power conversion efficiency of 1.47% with a short circuit current density of $33.9mA/cm^2$, an open circuit voltage of 159.7 mV, and a fill factor of 27% were obtained for CTS thin film annealed with 0.05g of S powder, although the processing parameter s have not yet been optimized.

Comparison of characteristics of IZO-Ag-IZO and IZO-Au-IZO multilayer electrodes for organic photovoltaics

  • Jeong, Jin-A;Choi, Kwang-Hyuk;Park, Yong-Seok;Park, Ho-Kyun;Kim, Han-Ki
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.131-131
    • /
    • 2010
  • We compared the electrical, optical, structural, and interface properties of indium zinc oxide (IZO)-Ag-IZO and IZO-Au-IZO multilayer electrodes deposited by linear facing target sputtering system at room temperature for organic photovoltaics. The IZO-Ag-IZO and IZO-Au-IZO multilayer electrodes show a significant reduction in their sheet resistance (4.15 and 5.49 Ohm/square) and resistivity ($3.9{\times}10^{-5}$ and $5.5{\times}10^{-5}$Ohm-cm) with increasing thickness of the Ag and Au layers, respectively. In spite of its similar electrical properties, the optical transmittance of the IZO-Ag-IZO electrode is much higher than that of the IZO-Au-IZO electrode, due to the more effective antireflection effect of Ag than Au in the visible region. In addition, the Auger electron spectroscopy depth profile results for the IZO/Ag/IZO and IZO/Au/IZO multilayer electrodes showed no interfacial reaction between the IZO layer and Ag or Au layer, due to the low preparation temperature. To investigate in detail the Ag and Au structures on the bottom IZO electrode with increasing thickness, a synchrotron x-ray scattering examination was employed. Moreover, the OSC fabricated on the IZO-Ag-IZO electrode shows a higher power conversion efficiency (3.05%) than the OSC prepared on the IZO-Au-IZO electrode (2.66%), due to its high optical transmittance in the wavelength range of 400-600 nm, which is the absorption wavelength of the P3HT:PCBM active layer.

  • PDF

플라스틱 기판에 제작된 유기박막태양전지의 출력특성 경시변화 (Time-Variant Characteristics of Organic Thin Film Solar Cell Devices on Plastic Substrates)

  • 노임준;이선우;신백균
    • 한국진공학회지
    • /
    • 제22권4호
    • /
    • pp.211-217
    • /
    • 2013
  • $PCDTBT:PC_{71}BM$$PTB7:PC_{71}BM$을 유기고분자 활성층 재료로 이용한 Bulk Hetero-Junction (BHJ) 구조의 유기박막태양전지를 플라스틱 기판 위에 각각 제작하여, 시간변화에 따른 단락전류밀도($J_{SC}$), 개방전압($V_{OC}$), 곡선인자(FF) 및 전력변환효율(PCE) 등 출력특성의 변화에 대해 고찰하였다. 유기박막태양전지의 출력특성 파라메터는 시간 경과에 따라 모두 감소하는 경향을 나타내었으며, 특히 개방전압의 감소폭이 컸다. 이러한 개방전압 감소의 원인은 빛에 대한 장시간의 노출과 산소를 포함하는 수분과의 접촉에 의한 LUMO 준위와 HOMO 준위 차의 감소가 그 원인이라 생각되며, 그 메커니즘에 대해 고찰하였다. 또한 유기박막태양전지 소자의 직렬 및 병렬 저항 값은 감소하다가 다시 증가하는 경향을 보였다. 이는 LUMO 준위와 HOMO 준위 차가 감소함에 의한 것과 공액 고분자 활성층 내부에서의 열적과정 손실에 기인하여 전극과 고분자의 계면에서의 접촉저항의 증가 때문이라고 생각된다. 유기박막태양전지의 전력변환효율은 초기에 급격한 감소를 보이다가 시간이 지날수록 감소폭이 차츰 둔화되어 한계치에 도달한 후, 포화되는 경향을 보였다. 이것이 유기박막태양전지가 실제 구동에서 발생시킬 수 있는 최소 출력특성값인 것으로 판단된다.

Synergy study on charge transport dynamics in hybrid organic solar cell: Photocurrent mapping and performance analysis under local spectrum

  • Hong, Kai Jeat;Tan, Sin Tee;Chong, Kok-Keong;Lee, Hock Beng;Ginting, Riski Titian;Lim, Fang Sheng;Yap, Chi Chin;Tan, Chun Hui;Chang, Wei Sea;Jumali, Mohammad Hafizuddin Hj
    • Current Applied Physics
    • /
    • 제18권12호
    • /
    • pp.1564-1570
    • /
    • 2018
  • Charge transport dynamics in ZnO based inverted organic solar cell (IOSC) has been characterized with transient photocurrent spectroscopy and localised photocurrent mapping-atomic force microscopy. The value of maximum exciton generation rate was found to vary from $2.6{\times}10^{27}m^{-3}s^{-1}$ ($J_{sat}=79.7A\;m^{-2}$) to $2.9{\times}10^{27}m^{-3}s^{-1}$ ($J_{sat}=90.8A\;m^{-2}$) for devices with power conversion efficiency ranging from 2.03 to 2.51%. These results suggest that nanorods served as an excellent electron transporting layer that provides efficient charge transport and enhances IOSC device performance. The photovoltaic performance of OSCs with various growth times of ZnO nanorods have been analysed for a comparison between AM1.5G spectrum and local solar spectrum. The simulated PCE of all devices operating under local spectrum exhibited extensive improvement with the gain of 13.3-3.7% in which the ZnO nanorods grown at 15 min possess the highest PCE under local solar with the value of 2.82%.

Long-Term Shelf Lifetime of Polymer:Nonfullerene Solar Cells Stored under Dark and Indoor Light Environment

  • Lee, Sooyong;Kim, Hwajeong;Kim, Youngkyoo
    • Current Photovoltaic Research
    • /
    • 제8권4호
    • /
    • pp.107-113
    • /
    • 2020
  • Here we report the long-term stability of polymer:nonfullerene solar cells which were stored under dark and indoor light condition. The polymer:nonfullerene solar cells were fabricated using bulk heterojunction (BHJ) layers of poly[(2,6-(4,8-bis(5-(2-ethylhexyl) thiophen-2-yl)-benzo[1,2-b:4,5-b']dithiophene))-alt-(5,5-(1',3'-di-2-thienyl-5',7-bis(2-ethylhexyl)benzo[1',2'-c:4',5'-c']dithiophene-4,8-dione))] (PBDB-T) and 3,9-bis(6-methyl-2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2',3-d']-s-indaceno[1,2-b:5,6-b']dithiophene (IT-M). To investigate their long-term stability, the PBDB-T:IT-M solar cells were stored in an argon-filled glove box. One set of the fabricated solar cells was completely covered with an aluminum foil to prevent any effect of light, whereas another set was exposed to indoor light. The solar cells were subjected to a regular performance measurement for 40 weeks. Results revealed that the PBDB-T:IT-M solar cells underwent a gradual decay in performance irrespective of the storage condition. However, the PBDB-T:IT-M solar cells stored under indoor light condition exhibited relatively lower power conversion efficiency (PCE) than those stored under the dark. The inferior stability of the solar cells under indoor light was explained by the noticeably changed optical absorption spectra and dark spot generation, indicative of degradations in the BHJ layers.

Effective Interfacial Trap Passivation with Organic Dye Molecule to Enhance Efficiency and Light Soaking Stability in Polymer Solar Cells

  • Rasool, Shafket;Zhou, Haoran;Vu, Doan Van;Haris, Muhammad;Song, Chang Eun;Kim, Hwan Kyu;Shin, Won Suk
    • Current Photovoltaic Research
    • /
    • 제9권4호
    • /
    • pp.145-159
    • /
    • 2021
  • Light soaking (LS) stability in polymer solar cells (PSCs) has always been a challenge to achieve due to unstable photoactive layer-electrode interface. Especially, the electron transport layer (ETL) and photoactive layer interface limits the LS stability of PSCs. Herein, we have modified the most commonly used and robust zinc oxide (ZnO) ETL-interface using an organic dye molecule and a co-adsorbent. Power conversion efficiencies have been slightly improved but when these PSCs were subjected to long term LS stability chamber, equipped with heat and humidity (45℃ and 85% relative humidity), an outstanding stability in the case of ZnO/dye+co-adsorbent ETL containing devices have been achieved. The enhanced LS stability occurred due to the suppressed interfacial defects and robust contact between the ZnO and photoactive layer. Current density as well as fill factors have been retained after LS with the modified ETL as compared to un-modified ETL, owing to their higher charge collection efficiencies which originated from higher electron mobilities. Moreover, the existence of less traps (as observed from light intensity-open circuit voltage measurements and dark currents at -2V) are also found to be one of the reasons for enhanced LS stability in the current study. We conclude that the mitigation ETL-surface traps using an organic dye with a co-adsorbent is an effective and robust approach to enhance the LS stability in PSCs.

Effect of Pre-annealing on the Formation of Cu2ZnSn(S,Se)4 Thin Films from a Se-containing Cu/SnSe2/ZnSe2 Precursor

  • Ko, Young Min;Kim, Sung Tae;Ko, Jae Hyuck;Ahn, Byung Tae;Chalapathy, R.B.V.
    • Current Photovoltaic Research
    • /
    • 제10권2호
    • /
    • pp.39-48
    • /
    • 2022
  • A Se-containing Cu/SnSe2/ZnSe precursor was employed to introduce S to the precursor to form Cu2ZnSn(S,Se)4 (CZTSSe) film. The morphology of CZTSSe films strongly varied with two different pre-annealing environments: S and N2. The CZTSSe film with S pre-annealing showed a dense morphology with a smooth surface, while that with N2 pre-annealing showed a porous film with a plate-shaped grains on the surface. CuS and Cu2Sn(S,Se)3 phases formed during the S pre-annealing stage, while SnSe and Cu2SnSe3 phases formed during the N2 pre-annealing stage. The SnSe phase formed during N2 pre-annealing generated SnS2 phase that had plate shape and severely aggravated the morphology of CZTSSe film. The power conversion efficiency of the CZTSSe solar cell with S pre-annealing was low (1.9%) due to existence of Zn(S.Se) layer between CZTSSe and Mo substrate. The results indicated that S pre-annealing of the precursor was a promising method to achieve a good morphology for large area application.

페로브스카이트 할로겐화물 박막의 발광 측정 조건에 따른 특성 분석 (Photoluminescence Characterization of Halide Perovskite Films according to Measuring Conditions)

  • 조현아;이승민;노준홍
    • 한국재료학회지
    • /
    • 제32권10호
    • /
    • pp.419-424
    • /
    • 2022
  • Halide perovskite solar cells (PSCs) have improved rapidly over the past few years, and research on the optoelectrical properties of halide perovskite thin films has grown as well. Among the characterization techniques, photoluminescence (PL), a method of collecting emitted photons to evaluate the properties of materials, is widely applied to evaluate improvements in the performance of PSCs. However, since only photons emitted from the film in the escape cone are included, the photons collected in PL are a small fraction of the total photons emitted from the film. Unlike PSCs power conversion efficiency, PL measuring methods have not been standardized, and have been evaluated in a variety of ways. Thus, an in-depth study is needed of the methods used to evaluate materials using PL spectra. In this study, we examined the PL spectra of the perovskite light harvesting layer with different measurement protocols and analyzed the features. As the incident angle changed, different spectra were observed, indicating that the PL emission spectrum can depend on the measuring method, not the material. We found the intensity and energy of the PL spectra changes were due to the path of the emitted photons. Also, we found that the PL of halide perovskite thin films generally contains limited information. To solve this problem, the emitted photons should be collected using an integrating sphere. The results of this study suggest that the emission spectrum of halide perovskite films should be carefully interpreted in accordance with PL measuring method, since PL data is mostly affected by the method.

광활성층 모폴로지 제어를 통한 실내광 유기태양전지의 효율 향상 연구 (Morphology Control of Active Layers for Efficient Organic Indoor Photovoltaics)

  • 장용찬;김소영;김정아;김종복;이원호
    • 접착 및 계면
    • /
    • 제23권4호
    • /
    • pp.130-136
    • /
    • 2022
  • 실내광 유기태양전지는 기존 실리콘 태양전지 대비 광전변환효율이 높은 특성 때문에 저 전력의 전자기기나 사물 인터넷의 전력원으로 각광받고 있다. 본 논문은 높은 효율을 나타내는 실내광 유기태양전지를 만들기 위해 미디움-밴드갭을 지니는 광활성층(PTBT:PC71BM)을 합성하고 이의 모폴로지를 제어하고자 하였다. 그 중 하나의 방법으로 용액 첨가제의 종류와 양(0, 1.5, 3.0 vol% DIO, 0.5 vol% CN, 1.5 vol% DIO + 0.5 vol% CN)을 달리해 실험을 진행하여 유기태양전지에 대한 특성을 조사하였다. 그 결과 1.5 vol% DIO + 0.5 vol% CN의 이중 첨가제 시스템에서 최고 효율인 11.31%이 관찰되었다.