Browse > Article
http://dx.doi.org/10.21218/CPR.2021.9.4.145

Effective Interfacial Trap Passivation with Organic Dye Molecule to Enhance Efficiency and Light Soaking Stability in Polymer Solar Cells  

Rasool, Shafket (Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT))
Zhou, Haoran (Global GET-Future Laboratory & Department of Advanced Materials Chemistry, Korea University)
Vu, Doan Van (Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT))
Haris, Muhammad (Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT))
Song, Chang Eun (Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT))
Kim, Hwan Kyu (Global GET-Future Laboratory & Department of Advanced Materials Chemistry, Korea University)
Shin, Won Suk (Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT))
Publication Information
Current Photovoltaic Research / v.9, no.4, 2021 , pp. 145-159 More about this Journal
Abstract
Light soaking (LS) stability in polymer solar cells (PSCs) has always been a challenge to achieve due to unstable photoactive layer-electrode interface. Especially, the electron transport layer (ETL) and photoactive layer interface limits the LS stability of PSCs. Herein, we have modified the most commonly used and robust zinc oxide (ZnO) ETL-interface using an organic dye molecule and a co-adsorbent. Power conversion efficiencies have been slightly improved but when these PSCs were subjected to long term LS stability chamber, equipped with heat and humidity (45℃ and 85% relative humidity), an outstanding stability in the case of ZnO/dye+co-adsorbent ETL containing devices have been achieved. The enhanced LS stability occurred due to the suppressed interfacial defects and robust contact between the ZnO and photoactive layer. Current density as well as fill factors have been retained after LS with the modified ETL as compared to un-modified ETL, owing to their higher charge collection efficiencies which originated from higher electron mobilities. Moreover, the existence of less traps (as observed from light intensity-open circuit voltage measurements and dark currents at -2V) are also found to be one of the reasons for enhanced LS stability in the current study. We conclude that the mitigation ETL-surface traps using an organic dye with a co-adsorbent is an effective and robust approach to enhance the LS stability in PSCs.
Keywords
polymer solar cells; interfacial trap passivation; organic dye molecule; zinc oxide; light soaking stability;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Song, C. E., Ryu, K. Y., Hong, S. J., Bathula, C., Lee, S. K., Shin, W. S., Lee, J.-C., Choi, S. K., Kim, J. H., Moon, S.-J., "Enhanced Performance in Inverted Polymer Solar Cells with D-π-A-Type Molecular Dye Incorporated on ZnO Buffer Layer," ChemSusChem, 6(8), 1445-1454 (2013).   DOI
2 Kang, M. S., Kang, S. H., Kim, S. G., Choi, I. T., Ryu, J. H., Ju, M. J., Cho, D., Lee, J. Y., Kim, H. K., "Novel D-π-A structured Zn (ii)-porphyrin dyes containing a bis (3, 3-dimethylfluorenyl) amine moiety for dye-sensitised solar cells," Chem. Commun, 48(75), 9349-9351 (2012).   DOI
3 Tountas, M., Verykios, A., Polydorou, E., Kaltzoglou, A., Soultati, A., Balis, N., Angaridis, P. A., Papadakis, M., Nikolaou, V., Auras, F., Palilis, L. C., Tsikritzis, D., Evangelou, E. K., Gardelis, S., Koutsoureli, M., Papaioannou, G., Petsalakis, I. D., Kennou, S., Davazoglou, D., Argitis, P., Falaras, P., Coutsolelos, A. G., Vasilopoulou, M., "Engineering of porphyrin molecules for use as effective cathode interfacial modifiers in organic solar cells of enhanced efficiency and stability," ACS Appl. Mater. Interfaces, 10, 20728-20739 (2018).   DOI
4 Kang, S. H., Jeong, M. J., Eom, Y. K., Choi, I. T., Kwon, S. M., Yoo, Y., Kim, J., Kwon, J., Park, J. H., Kim, H. K., "Porphyrin Sensitizers with Donor Structural Engineering for Superior Performance Dye-Sensitized Solar Cells and Tandem Solar Cells for Water Splitting Applications," Adv. Energy Mater, 7, 1602117 (2017).   DOI
5 Choi, I. T., Ju, M. J., Kang, S. H., Kang, M. S., You, B. S., Hong, J. Y., Eom, Y. K., Song, S. H., Kim, H. K., "Structural effect of carbazole-based coadsorbents on the photovoltaic performance of organic dye-sensitized solar cells," J. Mater. Chem. A, 1, 9114-9121 (2013).   DOI
6 Kyaw, A. K. K., Wang, D. H., Wynands, D., Zhang, J., Nguyen, T. Q., Bazan, G. C., Heeger, A. J. "Improved light harvesting and improved efficiency by insertion of an optical spacer (ZnO) in solution-processed small-molecule solar cells," Nano Lett, 13, 3796 -3801 (2013).   DOI
7 Aygul, U., Batchelor, D., Dettinger, U., Yilmaz, S., Allard, S., Scherf, U., Peisert, H., Chasse, T., "Molecular orientation in polymer films for organic solar cells studied by NEXAFS," J. Phys. Chem. C, 116, 4870-4874 (2012).   DOI
8 Kawashima, K., Fukuhara, T., Suda, Y., Suzuki, Y., Koganezawa, T., Yoshida, H., Ohkita, H., Osaka I., Takimiya, K., "Implication of fluorine atom on electronic properties, ordering structures, and photovoltaic performance in naphthobisthiadiazole-based semiconducting polymers," J. Am. Chem. Soc, 138(32), 10265-10275 (2016).   DOI
9 Zhou, H., Ji, J.-M., Kang, S. H., Kim, M. S., Lee, H. S., Kim, C. H., Kim, H. K., "Molecular design and synthesis of D-π-A structured porphyrin dyes with various acceptor units for dye-sensitized solar cells," J. Mater. Chem. C, 7, 2843-2852 (2019).   DOI
10 Liu, Q., Toudert, J., Liu, F., Mantilla-Perez, P., Bajo, M. M., Russell, T. P., Martorell, J., "High performance, flexible, solid-state supercapacitors based on a renewable and biodegradable mesoporous cellulose membrane," Adv. Energy Mater, 7, 1700739 (2017).   DOI
11 Jo, J. W., Jung, J. W., Jung, E. H., Ahn, H., Shin, T. J. Jo, W. H., "Fluorination on both D and A units in D-A type conjugated copolymers based on difluorobithiophene and benzothiadiazole for highly efficient polymer solar cells," Energy Environ. Sci, 8, 2427-2434 (2015).   DOI
12 Liu, Y., Zhao, J., Li, Z., Mu, C., Ma, W., Hu, H., Jiang, K., Lin, H., Ade H., Yan, H., "Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells," Nat. Commun, 5, 1-8 (2014).
13 Yu, G., Gao, J., Hummelen, J. C., Wudl F., Heeger, A. J., "Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions," Science, 270, 1789-1791 (1995).   DOI
14 Hu, H., Jiang, K., Yang, G., Liu, J., Li, Z., Lin, H., Liu, Y., Zhao, J., Zhang, J., Huang, F., Qu, Y., Ma, W. Yan, H., "Terthiophene-based D-A polymer with an asymmetric arrangement of alkyl chains that enables efficient polymer solar cells," J. Am. Chem. Soc, 137, 14149-14157 (2015).   DOI
15 Duan, L. Uddin, A., "Progress in stability of organic solar cells," Adv. Sci, 7, 1903259 (2020).   DOI
16 Kim, T., Younts, R., Lee, W., Lee, S., Gundogdu, K., Kim, B. J., "Impact of the photo-induced degradation of electron acceptors on the photophysics, charge transport and device performance of all-polymer and fullerene-polymer solar cells," J. Mater. Chem. A, 5, 22170-22179 (2017).   DOI
17 Uddin, A., Upama, M. B., Yi, H., Duan, L., "Encapsulation of organic and perovskite solar cells: A review," Coatings, 9(2), 65 (2019).   DOI
18 Weerasinghe, H. C., Vak, D., Robotham, B., Fell, C. J., Jones, D. Scully, A. D., "New barrier encapsulation and lifetime assessment of printed organic photovoltaic modules," Sol. Energy Mater. Sol. Cells, 155, 108-116 (2016).   DOI
19 Gevorgyan, S. A., Espinosa, N., Ciammaruchi, L., Roth, B., Livi, F., Tsopanidis, S., Zufle, S., Queiros, S., Gregori, A., Benatto, G. A. dos R., Corazza, M., Madsen, M. V., Hosel, M., Beliatis, M. J., Larsen-Olsen, T. T., Pastorelli, F., Castro, A., Mingorance, A., Lenzi, V., Fluhr, D., Roesch, R., Maria Duarte Ramos, M., Savva, A., Hoppe, H., Marques, L. S. A., Burgues, I., Georgiou, E., Serrano-Lujan, L., Krebs, F. C., "Baselines for lifetime of organic solar cells," Adv. Energy Mater, 6, 1600910 (2016).   DOI
20 Polydorou, E., Sakellis, I., Soultati, A., Kaltzoglou, A., Papadopoulos, T. A., Briscoe, J., Tsikritzis, D., Fakis, M., Palilis, L. C., Kennou, S., Argitis, P., Falaras, P., Davazoglou, D., Vasilopoulou, M., "Avoiding ambient air and light induced degradation in high-efficiency polymer solar cells by the use of hydrogen-doped zinc oxide as electron extraction material," Nano Energy, 34, 500-514 (2017).   DOI
21 Wang, F., Tan, Z., Li, Y., "Solution-processable metal oxides/chelates as electrode buffer layers for efficient and stable polymer solar cells," Energy Environ. Sci, 8, 1059-1091, (2015)   DOI
22 Liang, Z., Zhang, Q., Jiang, L., Cao, G., "ZnO cathode buffer layers for inverted polymer solar cells," Energy Environ. Sci., 8(12), 3442-3476 (2015).   DOI
23 Walker, B., Choi, H., Kim, J. Y., "Interfacial engineering for highly efficient organic solar cells," Curr. Appl. Phys, 17(3), 370-391 (2017).   DOI
24 Mahmood, A., Hu, J. Y., Xiao, B., Tang, A., Wang, X., Zhou, E., "Recent progress in porphyrin-based materials for organic solar cells," J. Mater. Chem. A, 6, 16769-16797 (2018).   DOI
25 Jeong, M., Jin, H. C., Lee, J. H., Moon, D. K., Kim, J. H., "Effect of interface modification in polymer solar cells: An in-depth investigation of the structural variation of organic dye for interlayer material," Dye. Pigment., 173, 107927 (2020).   DOI
26 Saito, M., Fukuhara, T., Kamimura, S., Ichikawa, H., Yoshida, H., Koganezawa, T., Ie, Y., Tamai, Y., Kim, H. D., Ohkita, H., Osaka, I., "Impact of Noncovalent Sulfur-Fluorine Interaction Position on Properties, Structures, and Photovoltaic Performance in Naphthobisthiadiazole-Based Semiconducting Polymers," Adv. Energy Mater, 10, 1903278 (2020).   DOI
27 Speller, E. M., Clarke, A. J., Aristidou, N., Wyatt, M. F., Francas, L., Fish, G., Cha, H., Lee, H. K. H., Luke, J., Wadsworth, A., Evans, A. D., McCulloch, I., Kim, J. S., Haque, S. A., Durrant, J. R., Dimitrov, S. D., Tsoi, W. C. Li, Z., "Toward improved environmental stability of polymer: fullerene and polymer: nonfullerene organic solar cells: a common energetic origin of light-and oxygen-induced degradation," ACS Energy Lett, 4, 846-852 (2019).   DOI
28 Vohra, V., Kawashima, K., Kakara, T., Koganezawa, T., Osaka, I., Takimiyam, K. Murata, H., "Efficient inverted polymer solar cells employing favourable molecular orientation," Nat. Photonics, 9, 403-408 (2015).   DOI
29 Rasool, S., Hoang, Q. V., Vu, D. V., Bui, T.T.T., Jin, S.-M., Ho, T.T., Song, C. E., Lee, H. K., Lee, S. K., Lee, J.-C., Moon, S.-J., Lee, E., Shin, W. S., "High-efficiency non-halogenated solvent processable polymer/PCBM solar cells via fluorination-enabled optimized nanoscale morphology," J. Mater. Chem. A, 7, 24992-25002 (2019).   DOI
30 Fraga Dominguez, I., Distler, A. Luer, L., "Stability of organic solar cells: The influence of nanostructured carbon materials," Adv. Energy Mater, 7, 1601320 (2017).   DOI
31 Zhao, J., Li, Y., Yang, G., Jiang, K., Lin, H., Ade, H., Ma, W. Yan, H., "Efficient organic solar cells processed from hydrocarbon solvents," Nat. Energy, 1, 1-7 (2016).
32 Jorgensen, M., Norrman, K., Gevorgyan, S. A., Tromholt, T., Andreasen, B. Krebs, F. C. "Stability of polymer solar cells," Adv. Mater, 24, 580-612 (2012).   DOI
33 Ko, S. J., Hoang, Q. V., Song, C. E., Uddin, M. A., Lim, E., Park, S. Y., Lee, B. H., Song, S., Moon, S. J., Hwang, S., Morin, P. O., Leclerc, M., Su, G. M., Chabinyc, M. L., Woo, H. Y., Shin, W. S. Kim, J. Y. "High-efficiency photovoltaic cells with wide optical band gap polymers based on fluorinated phenylene-alkoxybenzothiadiazole," Energy Environ. Sci, 10, 1443-1455 (2017).   DOI
34 Ahmad, J., Bazaka, K., Anderson, L. J., White, R. D., Jacob, M. V., "Materials and methods for encapsulation of OPV: A review," Renew. Sustain Energy Rev, 27, 104-117 (2013).   DOI
35 Kesters, J., Verstappen, P., Raymakers, J., Vanormelingen, W., Drijkoningen, J., D'Haen, J., Manca, J., Lutsen, L., Vanderzande, D. Maes, W., "Enhanced organic solar cell stability by polymer (PCPDTBT) side chain functionalization," Chem. Mater, 27(4), 1332-1341 (2015).   DOI
36 Zimmermann, B., Wurfel, U., Niggemann, M., "Longterm stability of efficient inverted P3HT: PCBM solar cells," Sol. Energy Mater. Sol. Cells, 93, 491-496 (2009).   DOI
37 Gusain, A., Faria, R. M., Miranda, P. B., "Polymer solar cells -Interfacial processes related to performance issues," Front. Chem, 7, 61 (2019).   DOI
38 Rasool, S., Vu, D. V., Lee, H. K., Lee, S. K., Lee, J.-C., Moon, S.-J., So, W. W., Song, C. E., Shin, W. S., "Enhanced photostability in polymer solar cells achieved with modified electron transport layer," Thin Solid Films, 669, 42-48 (2019).   DOI
39 Song, J., Tyagi, P., An, K. Park, M., Jung, H., Ahn, N., Choi, M., Lee, D., Lee, C., "Degradation of electrical characteristics in low-bandgap polymer solar cells associated with light-induced aging," Org. Electron, 81, 105686 (2020).   DOI
40 Rasool, S., Vu, D. V., Song, C. E., Lee, H. K., Lee, S. K., Lee, J.-C., Moon, S.-J., Shin, W. S., "Room temperature processed highly efficient large-area polymer solar cells achieved with molecular engineering of copolymers," Adv. Energy Mater, 9(21), 1900168 (2019).   DOI
41 Gkini, K., Verykios, A., Balis, N., Kaltzoglou, A., Papadakis, M., Adamis, K. S., Armadorou, K.-K., Soultati, A., Drivas, C., Gardelis, S., Petsalakis, I. D., Palilis, L. C., Fakharuddin, A., Haider, M. I., Bao, X., Kennou, S., Argitis, P., S.-Mende, L., Coutsolelos, A. G., Falaras, P., Vasilopoulou, M., "Enhanced Organic and Perovskite Solar Cell Performance through Modification of the Electron-Selective Contact with a Bodipy-Porphyrin Dyad," ACS. Appl. Mater. Interfaces, 12(1), 1120-1131 (2020)   DOI
42 Zeng, H., Zhu, X., Liang, Y., Guo, X., "Interfacial layer engineering for performance enhancement in polymer solar cells" Polymers, 7(2), 333-372 (2015).   DOI