DOI QR코드

DOI QR Code

Long-Term Shelf Lifetime of Polymer:Nonfullerene Solar Cells Stored under Dark and Indoor Light Environment

  • Lee, Sooyong (Organic Nanoelectronics Laboratory and KNU Institute for Nanophotonics Applications (KINPA), Department of Chemical Engineering, School of Applied Chemical Engineering, Kyungpook National University) ;
  • Kim, Hwajeong (Organic Nanoelectronics Laboratory and KNU Institute for Nanophotonics Applications (KINPA), Department of Chemical Engineering, School of Applied Chemical Engineering, Kyungpook National University) ;
  • Kim, Youngkyoo (Organic Nanoelectronics Laboratory and KNU Institute for Nanophotonics Applications (KINPA), Department of Chemical Engineering, School of Applied Chemical Engineering, Kyungpook National University)
  • Received : 2020.09.09
  • Accepted : 2020.09.18
  • Published : 2020.12.31

Abstract

Here we report the long-term stability of polymer:nonfullerene solar cells which were stored under dark and indoor light condition. The polymer:nonfullerene solar cells were fabricated using bulk heterojunction (BHJ) layers of poly[(2,6-(4,8-bis(5-(2-ethylhexyl) thiophen-2-yl)-benzo[1,2-b:4,5-b']dithiophene))-alt-(5,5-(1',3'-di-2-thienyl-5',7-bis(2-ethylhexyl)benzo[1',2'-c:4',5'-c']dithiophene-4,8-dione))] (PBDB-T) and 3,9-bis(6-methyl-2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2',3-d']-s-indaceno[1,2-b:5,6-b']dithiophene (IT-M). To investigate their long-term stability, the PBDB-T:IT-M solar cells were stored in an argon-filled glove box. One set of the fabricated solar cells was completely covered with an aluminum foil to prevent any effect of light, whereas another set was exposed to indoor light. The solar cells were subjected to a regular performance measurement for 40 weeks. Results revealed that the PBDB-T:IT-M solar cells underwent a gradual decay in performance irrespective of the storage condition. However, the PBDB-T:IT-M solar cells stored under indoor light condition exhibited relatively lower power conversion efficiency (PCE) than those stored under the dark. The inferior stability of the solar cells under indoor light was explained by the noticeably changed optical absorption spectra and dark spot generation, indicative of degradations in the BHJ layers.

Keywords

References

  1. Elumalai, N. K., Uddin, A., "Open circuit voltage of organic solar cells: an in-depth review," Energy Environ. Sci., Vol. 9, No. 2, pp. 391-410, 2016. https://doi.org/10.1039/c5ee02871j
  2. Kim, H., Nam, S., Jeong, J., Lee, S., Seo, J., Han, H., Kim, Y., "Organic solar cells based on conjugated polymers: history and recent advances," Korean J. Chem. Eng., Vol. 31, No. 7, pp. 1095-1104, 2014. https://doi.org/10.1007/s11814-014-0154-8
  3. Kim, B.-J., Park, E.-H., Kang, K.-S., "Optical properties of soluble polythiophene for flexible solar cells," Curr. Photovoltaic Res., Vol. 6, No. 4, pp. 91-93, 2018. https://doi.org/10.21218/CPR.2018.6.4.091
  4. Zheng, Z., Awartani, O. M., Gautam, B., Liu, D., Qin, Y., Li, W., Bataller, A., Gundogdu, K., Ade, H., Hou, J., "Efficient charge transfer and fine-tuned energy level alignment in a THF-processed fullerene-free organic solar cell with 11.3% efficiency," Adv. Mater., Vol. 29, No. 5, pp. 1604241, 2017. https://doi.org/10.1002/adma.201604241
  5. Ramki, K., Venkatesh, N. Sathiyan, G., Thangamuthu, R., Sakthivel, P., "A comprehen -sive review on the reasons behind low power conversion efficiency of dibenzo derivatives based donors in bulk heterojunction organic solar cells," Org. Electron., Vol. 73, pp. 182-204, 2019. https://doi.org/10.1016/j.orgel.2019.05.047
  6. Mehmood, U., Al-Ahmed, A., Hussein, I. A., "Review on recent advances in polythiophene based photovoltaic devices," Renewable Sustainable Energy Rev., Vol. 57, pp. 550-561, 2016. https://doi.org/10.1016/j.rser.2015.12.177
  7. Lee, S., Seo, J., Kim, H., Song, D.-I., Kim, Y., "Investigation of short-term stability in high efficiency polymer: nonfullerene solar cells via quick current-voltage cycling method," Korean J. Chem. Eng., Vol. 35, No. 12, pp. 2496-2503, 2018. https://doi.org/10.1007/s11814-018-0154-1
  8. Lee, S., Park, J., Kim, Y., Kim, S., Iftiquar, S., M., Yi, J., "New generation multijunction solar cells for achieving high efficiency," Curr. Photovoltaic Res., Vol. 6, No. 2, pp. 31-38, 2018. https://doi.org/10.21218/CPR.2018.6.2.031
  9. Wang, Q., Xie, Y., Soltani-Kordshuli, F., Eslamian, M., "Progress in emerging solution-processed thin film solar cells - part I: polymer solar cells," Renewable Sustainable Energy Rev., Vol. 56, pp. 347-361, 2016. https://doi.org/10.1016/j.rser.2015.11.063
  10. Lee, T. D., Ebong, A. U., "A review of thin film solar cell technologies and challenges," Renewable Sustainable Energy Rev., Vol. 70, pp. 1286-1297, 2017. https://doi.org/10.1016/j.rser.2016.12.028
  11. Li, Y., Lin, J.-D., Che, X, Qu, Y., Liu, F., Liao, L.-S., Forrest, S. R., "High efficiency near- infrared and semitransparent non-fullerene acceptor organic photovoltaic cells," J. Am. Chem. Soc., Vol. 139, No. 47, pp. 17114-17119, 2017. https://doi.org/10.1021/jacs.7b11278
  12. Zuo, L., Yu, J., Shi, X., Lin, F., Tang, W., Jen, A. K.-Y., "High-efficiency nonfullerene organic solar cells with a parallel tandem configuration," Adv. Mater., Vol. 29, No. 34, pp. 1702547, 2017. https://doi.org/10.1002/adma.201702547
  13. Liu, X., Yan, Y., Yao, Y., Liang, Z., "Ternary blend strategy for achieving high-efficiency organic solar cells with nonfullerene acceptors involved," Adv. Funct. Mater., Vol. 28, No. 29, pp. 1802004, 2018. https://doi.org/10.1002/adfm.201802004
  14. Yuan, J., Gu, J., Shi, G., Sun, J., Wang, H.-Q., Ma, W., "High efficiency all-polymer tandem solar cells," Sci. Rep., Vol. 6, pp. 26459, 2016. https://doi.org/10.1038/srep26459
  15. An, Q., Zhang, F., Gao, W., Sun, Q., Zhang, M., Yang, C., Zhang, J., "High-efficiency and air stable fullerene-free ternary organic solar cells," Nano Energy, Vol. 45, pp. 177-183, 2018. https://doi.org/10.1016/j.nanoen.2017.12.050
  16. Chen, Y., Ye, P., Zhu, Z.-G., Wang, X., Yang, L., Xu, X., Wu, X., Dong, T., Zhang, H., Hou, J., Liu, F., Huang, H., "Achieving high-performance ternary organic solar cells through tuning acceptor alloy," Adv. Mater., Vol. 29, No. 6, pp. 1603154, 2017. https://doi.org/10.1002/adma.201603154
  17. Gasparini, N., Paleti, S. H. K., Bertrandie, J., Cai, G., Zhang, G., Wadsworth, A., Lu, X., Yip, H.-L., McCulloch, I., Baran, D., "Exploiting ternary blends for improved photostability in high-efficiency organic solar cells," ACS Nano Energy Lett., Vol. 5, No. 5, pp. 1371-1379, 2020. https://doi.org/10.1021/acsenergylett.0c00604
  18. Sharma, R., Lee, H., Seifrid, M., Gupta, V., Bazan, G. C., Yoo, S., "Performance enhancement of conjugated polymer-small molecule-non fullerene ternary organic solar cells by tuning recombination kinetics and molecular ordering," Sol. Energy, Vol. 201, pp. 499-507, 2020. https://doi.org/10.1016/j.solener.2020.03.008
  19. Zhang, C., Jiang, P., Zhou, X., Liu, H., Guo, Q., Xu, X., Liu, Y., Tang, Z., Ma, W., Bo, Z., "High-efficiency ternary nonfullerene polymer solar cells with increased phase purity and reduced nonradiative energy loss," J. Mater. Chem. A, Vol. 8, pp. 2123-2130, 2020. https://doi.org/10.1039/c9ta12029g
  20. Feng, H., Yi, Y.-Q.-Q., Ke, X., Yan, J., Zhang, Y., Wan, X., Li, C., Zheng, N., Xie, Z., Chen, Y., "New anthracene-fused nonfullerene acceptors for high-efficiency organic solar cells: energy level modulations enabling match of donor and acceptor," Adv. Energy Mater., Vol. 9, No. 12, pp. 1803541, 2019. https://doi.org/10.1002/aenm.201803541
  21. Zhou, Z., Liu, W., Zhou, G., Zhang, M., Qian, D., Zhang, J., Chen, S., Xu, S., Yang, C., Gao, F., Zhu, H., Liu, F., Zhu, X., "Subtle molecular tailoring induces significant morphology optimization enabling over 16% efficiency organic solar cells with efficient charge generation," Adv. Mater., Vol. 32, No. 4, pp. 1906324, 2020. https://doi.org/10.1002/adma.201906324
  22. Cui, Y., Yao, H., Zhang, J, Zhang, T., Wang, Y., Hong, L., Xian, K., Xu, B., Zhang, S., Peng, J., Wei, Z., Gao, F., Hou, J., "Over 16% efficiency organic photovoltaic cells enabled by a chlorinated acceptor with increased open-circuit voltages," Nat. Commun., Vol. 10, pp. 2515, 2019. https://doi.org/10.1038/s41467-019-10351-5
  23. Li, S., Zhan, L., Liu, F., Ren, J., Shi, M., Li, C.-Z., Russell, T. P., Chen, H., "An unfused -core-based nonfullerene acceptor enables high- efficiency organic solar cells with excellent morphological stability at high temperatures," Adv. Mater., Vol. 30, No. 6, pp. 1705208, 2018. https://doi.org/10.1002/adma.201705208
  24. Li, W., Ye, L., Li, S., Yao, H., Ade, H., Hou, J., "A high-efficiency organic solar cell enabled by the strong intramolecular electron push-pull effect of the nonfullerene acceptor," Adv. Mater., Vol. 30, No. 16, pp. 1707170, 2018. https://doi.org/10.1002/adma.201707170
  25. Yang, Y., Qiu, B., Chen, S., Zhou, Q., Peng, Y., Zhang, Z.-G., Yao, J., Luo, Z., Chen, X., Xue, L., Feng, L., Yang, C., Li, Y., "High-efficiency organic solar cells based on a small-molecule donor and a low-bandgap polymer acceptor with strong absorption," J. Mater. Chem. A, Vol. 6, No. 20, pp. 9613-9622, 2018. https://doi.org/10.1039/C8TA01301B
  26. Xie, C., Heumuller, T. Gruber, W., Tang, X., Classen, A., Schuldes, I., Bidwell, M., Spath, A., Fink, R. H., Unruh, T., McCulloch, I., Li, N., Brabec, C. J., "Overcoming efficiency and stab -ility limits in water-processing nanoparticular organic photovoltaics by minimizing microstructure defects," Nat. Commun., Vol. 9, pp. 5335, 2018. https://doi.org/10.1038/s41467-018-07807-5
  27. Lee, S., Kim, H., Kim, Y., "Influence of physical load on the stability of organic solar cells with polymer:fullerene bulk heterojunction nanolayers," Curr. Photovoltaic Res., Vol. 4, No. 2, pp. 48-53, 2016. https://doi.org/10.21218/CPR.2016.4.2.048
  28. Du, X., Heumueller, T., Gruber, W., Classen, A., Unruh, T., Li, N., Brabec, C. J., "Efficient polymer solar cells based on non-fullerene acceptors with potential device lifetime approaching 10 years," Joule, Vol. 3, No. 1, pp. 215-226, 2019. https://doi.org/10.1016/j.joule.2018.09.001
  29. Seo, J., Nam, S., Kim, H., Bradley, D. D. C., Kim, Y., "Nano-crater morphology in hybrid electron-collecting buffer layers for high efficiency polymer:nonfullerene solar cells with enhanced stability," Nanoscale Horiz. Vol. 4, No. 2, pp. 464-471, 2019. https://doi.org/10.1039/c8nh00319j
  30. Park, G. E., Choi, S., Park, S. Y., Lee, D. H., Cho, M. J., Choi, D. H., "Eco-friendly solvent- free fullerene-free polymer solar cells with over 9.7% efficiency and long-term performance stability," Adv. Energy Mater., Vol. 7, No. 19, pp. 1700566, 2017. https://doi.org/10.1002/aenm.201700566
  31. Yan, C., Barlow, S., Wang, Z., Yan, H., Jen, A. K.-Y., Marder, S. R., Zhan, X., "Non-fullerene acceptors for organic solar cells," Nat. Rev. Mater., Vol. 3, pp. 18003, 2018. https://doi.org/10.1038/natrevmats.2018.3
  32. Hou, J., Inganas, O., Friend, R. H., Gao, F., "Organic solar cells based on non-fullerene acceptors," Nat. Mater., Vol. 17, pp. 119-128, 2018. https://doi.org/10.1038/nmat5063
  33. Kan, B., Feng, H., Wan, X., Liu, F., Ke, X., Wang, Y., Wang, Y., Zhang, H., Li, C., Hou, J., Chen, Y., "Small-molecule acceptor based on the heptacyclic benzodi(cyclopentadithiophene) unit for highly efficient nonfullerene organic solar cells," J. Am. Chem. Soc., Vol. 139, No. 13, pp. 4929-4934, 2017. https://doi.org/10.1021/jacs.7b01170
  34. Zhang, J., Tan, H. S., Guo, X., Facchetti, A., Yan, H., "Material insights and challenges for non-fullerene organic solar cells based on small molecular acceptors," Nat. Energy, Vol. 3. pp. 720-73, 2018. https://doi.org/10.1038/s41560-018-0181-5
  35. Chen, S., Wang, Y., Zhang, J., Zhao, J., Chen, Y., Zhu, D., Yao, H., Zhang, G., Ma, W., Friend, R. P., Chow, P. C. Y., Gao, F., Yan, H., "Efficient nonfullerene organic solar cells with small driving forces for both hole and electron transfer," Adv. Sci., Vol. 30, No. 45, pp. 1804215, 2018.
  36. Lin, Y., Zhao, F., Prasad, S. K. K., Chen, J.-D., Cai, W., Zhang, Q., Chen, K., Wu, Y., Ma, W., Gao, F., Tang, J.-X., Wang, C., You, W., Hodgkiss, J. M., Zhan, X., "Balanced partnership between donor and acceptor components in nonfullerene organic solar cells with >12% efficiency," Adv. Mater., Vol. 30, No. 16, pp. 1706363, 2018. https://doi.org/10.1002/adma.201706363
  37. Kan, B., Chen, X., Geo, K., Zhang, M., Lin, F., Peng, X., Liu, F., Jen, A. K.-Y., "Asymmetrical side-chain engineering of small-molecule acceptors enable high-performance nonfullerene organic solar cells," Nano Energy, Vol. 67, pp. 104209, 2019.
  38. Jeong, J., Seo, J., Nam, S., Han, H., Kim, H., Anthopoulos, T. D., Bradley, D. D. C., Kim, Y., "Significant stability enhancement in high-efficiency polymer:fullerene bulk heterojunction solar cells by blocking ultraviolet photons from solar light," Adv. Sci., Vol. 3, No. 4, pp. 1500269, 2016. https://doi.org/10.1002/advs.201500269
  39. Park, S., Son, H. J., "Intrinsic photo-degradation and mechanism of polymer solar cells: the crucial role of nonfullerene acceptors," J. Mater. Chem. A. Vol. 7, No. 45, pp. 25830-25837, 2019. https://doi.org/10.1039/C9TA07417A