Browse > Article
http://dx.doi.org/10.5757/JKVS.2013.22.4.211

Time-Variant Characteristics of Organic Thin Film Solar Cell Devices on Plastic Substrates  

No, Im-Jun (Department of Electrical Engineering, Inha University)
Lee, Sunwoo (Department of Electrical Information, Inha Technical College)
Shin, Paik-Kyun (Department of Electrical Engineering, Inha University)
Publication Information
Journal of the Korean Vacuum Society / v.22, no.4, 2013 , pp. 211-217 More about this Journal
Abstract
Two types of organic thin film solar cell devices with bulk hetero-junction (BHJ) structure were fabricated on plastic substrates using conjugated polymers of $PCDTBT:PC_{71}BM$ and $PTB7:PC_{71}BM$ blended as active channel layer. Time-variant characteristics of the organic thin film solar cell devices were investigated: short circuit current density ($J_{SC}$); open circuit voltage ($V_{OC}$); ; fill factor (FF); power conversion efficiency (PCE, ŋ). All the performance parameters were degraded by progress of the measurement time, while $V_{OC}$ showed the most drastic decrease with time. Possible factors to cause the time-variant alteration of performance parameters were discussed to be clarified.
Keywords
Organic thin film solar cell; Bulk hetero-junction; $PCDTBT:PC_{71}BM$; $PTB7:PC_{71}BM$; Time-variant characteristic;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Hermenau, S. Schubert, H. Klumbies, J. Fahlteich, L. Mueller-Meskamp, K. Leo, and M. Riede, Solar Energy Materials & Solar Cells 97, 102 (2012).   DOI   ScienceOn
2 C. W. Tang, Appl. Phys. Lett. 48, 183 (1986).   DOI   ScienceOn
3 J. J. M. Halls, C. A. Walsh, N. C. Greenham, E. A. Marseglia, R. H. Friend, S. C. Moratti, and A. B. Holmes, Nature 376, 498 (1995).   DOI   ScienceOn
4 F. C. Krebs, Solar Energy Materials and Solar Cells 93, 1636 (2009).   DOI   ScienceOn
5 J. Yang, W. Chen, B. Yu, and H. Wang, Organ. Electron. 13, 1018 (2012).   DOI   ScienceOn
6 Y. M. Nam, J. Huh, and W. H. Jo, Solar Energy Materials and Solar Cells 94, 1118 (2010).   DOI   ScienceOn
7 H. Ohkita and S. Ito, Polymer 52, 4397 (2011).   DOI   ScienceOn
8 M. Hermenau, M. Riede, K. Leo, S. A. Gevorgyan, F. C. Krebs, and K. Norman, Solar Energy Materials & Solar Cells 95, 1268 (2011).   DOI   ScienceOn
9 C. W. Tang, Appl. Phys. Lett. 48, 183 (1986).   DOI   ScienceOn
10 J. J. M. Halls and R. H. Friend, Synthetic Metals 85, 1307 (1997).   DOI   ScienceOn
11 F. C. Krebs, Solar Energy Materials and Solar Cells 93, 1636 (2009).   DOI   ScienceOn
12 G. Dennler, M. C. Scharber, and C. J. Brabec, Adv. Mater. 21, 1323 (2009).   DOI   ScienceOn
13 C. Deibel and V. Dyakonov, Rep. Prog. Phys. 73, 096401 (2010).   DOI   ScienceOn
14 C. Deibel, V. Dyakonov, and C. J. Brabec, IEEE J. Select. Top. Quant. Electron. 16, 1517 (2010).   DOI   ScienceOn
15 M. Pagliaro, R. Ciriminna, and G. Palmisano, Chem. Sus. Chem 1, 880 (2008).   DOI   ScienceOn
16 J. H. Seo, A. Gutacker, Y. Sun, H. Wu, F. Huang, Y. Cao, U. Scherf, A. J. Heeger, and G. C. Bazan, J. Am. Chem. Soc. 133, 8416 (2011).   DOI   ScienceOn
17 R. A. Street, K. W. Song, and S. Cowan, Organ. Electron. 12, 244 (2011).   DOI   ScienceOn
18 C. Deibel and V. Dyakonov, Rep. Prog. Phys. 73, 096401 (2010).   DOI   ScienceOn
19 G. Dennler, M. C. Scharber, and C. J. Brabec, Adv. Mater. 21, 1323 (2009).   DOI   ScienceOn
20 H. Hoppe and N. S. Sariciftci, J. Mater. Res. 19, 1924 (2004).   DOI   ScienceOn
21 D. Derouiche and V. Djara, Solar Energy Materials & Solar Cells 91, 1163 (2007).   DOI   ScienceOn