Browse > Article
http://dx.doi.org/10.17702/jai.2022.23.4.130

Morphology Control of Active Layers for Efficient Organic Indoor Photovoltaics  

Yongchan Jang (Department of Polymer Science and Engineering, Kumoh National Institute of Technology)
Soyoung Kim (Department of Polymer Science and Engineering, Kumoh National Institute of Technology)
Jeonga Kim (Department of Polymer Science and Engineering, Kumoh National Institute of Technology)
Jongbok Kim (Department of Energy Engineering Convergence, Kumoh National Institute of Technology)
Wonho Lee (Department of Polymer Science and Engineering, Kumoh National Institute of Technology)
Publication Information
Journal of Adhesion and Interface / v.23, no.4, 2022 , pp. 130-136 More about this Journal
Abstract
Recently, organic semiconductor based indoor photovoltaics have gained attention since they exhibit excellent photovoltaic performance than that of conventional Si-based photovoltaics. In this study, we synthesize the medium bandgap polymer of PTBT and optimize PTBT:PC71BM blend films by introducing solvent additives. To this end, we select DIO and CN solvent additives and vary their contents from 0 to 3 vol%. As a result, we produce the highest power conversion efficiency of 11.31% under LED 1000 lx conditions with DIO (1.5 vol%) + CN (0.5 vol%)
Keywords
Organic photovoltaics; Indoor photovoltaics; Solvent additives; Control of morphologies;
Citations & Related Records
Times Cited By KSCI : 10  (Citation Analysis)
연도 인용수 순위
1 A. Tournebize, P. Bussiere, P. Wong-Wah-Chung, S. Therias, A. Rivaton, J. Gardette, S. Beaupre and M. Leclerc, Advanced Energy Materials, 3, 478 (2013).
2 H. Yin, J. K. W. Ho, S. H. Cheung, R. J. Yan, K. L. Chiu, X. Hao and S. K. So, Journal of Materials Chemistry. A, 6, 9111
3 H. S. Ryu, S. Y. Park, T. H. Lee, J. Y. Kim and H. Y. Woo, Nanoscale, 12, 5792 (2020).
4 X. Xu, W. Liu, X. Luo, H. Chen, Q. Wei, J. Yuan and Y. Zou, ChemSusChem, 14, 3428 (2021).
5 C. J. Brabec, N. S. Sariciftci and J. C. Hummelen, Advanced Functional Materials, 11, 15 (2001).
6 M. A. Saeed, S. H. Kim, H. Kim, J. Liang, H. Y. Woo, T. G. Kim, H. Yan and J. W. Shim, Advanced Energy Materials, 11, 2003103 (2021).
7 J. Kim, M. A. Saeed, S. H. Kim, D. Lee, Y. Jang, J. S. Park, D. Lee, C. Lee, B. J. Kim, H. Y. Woo, J. W. Shim and W. Lee, Macromolecular Rapid Communications., 43, 2200279 (2022).
8 F. C. Chen, Advanced Optical Materials, 7, 1800662
9 S. Kim, M. Jahandar, J. H. Jeong and D. C. Lim, Current Alternative Energy, 2, 3
10 E. Bundgaard and F. C. Krebs, Solar Energy Materials and Solar Cells, 91, 954 (2007).
11 G. Li, R. Zhu and Y. Yang, Nature Photonics, 6, 153 (2012). 
12 C. H. Y. Ho, Q. Dong, H. Yin, W. W. K. Leung, Q. Yang, H. K. H. Lee, S. W. Tsang and S. K. So, Advanced Materials Interfaces, 2, 1500166 (2015).
13 E. F. Manley, J. Strzalka, T. J. Fauvell, T. J. Marks and L. X. Chen, Advanced Energy Materials, 8, 1800611
14 W. Lee, H. Choi, S. Hwang, J. Y. Kim and H. Y. Woo, Chemistry A European Journal, 18, 2551 (2012).
15 S. Kwon, H. Kang, J. Lee, J. Lee, S. Hong, H. Kim and K. Lee, Advanced Energy Materials, 7, 1601496 (2016). 
16 C. H. Y. Ho, Q. Dong, H. Yin, W. W. K. Leung, Q. Yang, H. K. H. Lee, S. W. Tsang and S. K. So, Advanced Materials Interfaces, 2, 1500166 (2015).
17 Y. Gu, C. Wang and T. P. Russell, Advanced Energy Materials, 2, 683 (2012).
18 N. Jain, N. Chandrasekaran, A. Sadhanala, R. H. Friend, C. R. McNeill and D. Kabra, Journal of Materials Chemistry. A, 5, 24749 (2017).
19 C. Mcdowell, M. Abdelsamie, M. F. Toney and G. C. Bazan, Advanced Materials, 30, 1707114 (2018). 
20 H. K. H. Lee, Z. Li, J. R. Durrant and W. C. Tsoi, Applied Physics Letters, 108, 253301 (2016).
21 C. Liu, X. Hu, C. Zhong, M. Huang, K. Wang, Z. Zhang, X. Gong, Y. Cao and A. J. Heeger, Nanoscale, 6, 14297 (2014).
22 M. Cui, A. Lv and Z. Ma, ChemPhysChem, 23, 1 (2022).
23 Y. Cui, Y. Wang, J. Berggvist, H. Yao, Y. Xu, B. Gao, C. Yang, S. Zhang, O. Inganas, F. Gao and J. Hou, Nature Energy, 4, 768 (2019).