Browse > Article
http://dx.doi.org/10.21218/CPR.2020.8.4.107

Long-Term Shelf Lifetime of Polymer:Nonfullerene Solar Cells Stored under Dark and Indoor Light Environment  

Lee, Sooyong (Organic Nanoelectronics Laboratory and KNU Institute for Nanophotonics Applications (KINPA), Department of Chemical Engineering, School of Applied Chemical Engineering, Kyungpook National University)
Kim, Hwajeong (Organic Nanoelectronics Laboratory and KNU Institute for Nanophotonics Applications (KINPA), Department of Chemical Engineering, School of Applied Chemical Engineering, Kyungpook National University)
Kim, Youngkyoo (Organic Nanoelectronics Laboratory and KNU Institute for Nanophotonics Applications (KINPA), Department of Chemical Engineering, School of Applied Chemical Engineering, Kyungpook National University)
Publication Information
Current Photovoltaic Research / v.8, no.4, 2020 , pp. 107-113 More about this Journal
Abstract
Here we report the long-term stability of polymer:nonfullerene solar cells which were stored under dark and indoor light condition. The polymer:nonfullerene solar cells were fabricated using bulk heterojunction (BHJ) layers of poly[(2,6-(4,8-bis(5-(2-ethylhexyl) thiophen-2-yl)-benzo[1,2-b:4,5-b']dithiophene))-alt-(5,5-(1',3'-di-2-thienyl-5',7-bis(2-ethylhexyl)benzo[1',2'-c:4',5'-c']dithiophene-4,8-dione))] (PBDB-T) and 3,9-bis(6-methyl-2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2',3-d']-s-indaceno[1,2-b:5,6-b']dithiophene (IT-M). To investigate their long-term stability, the PBDB-T:IT-M solar cells were stored in an argon-filled glove box. One set of the fabricated solar cells was completely covered with an aluminum foil to prevent any effect of light, whereas another set was exposed to indoor light. The solar cells were subjected to a regular performance measurement for 40 weeks. Results revealed that the PBDB-T:IT-M solar cells underwent a gradual decay in performance irrespective of the storage condition. However, the PBDB-T:IT-M solar cells stored under indoor light condition exhibited relatively lower power conversion efficiency (PCE) than those stored under the dark. The inferior stability of the solar cells under indoor light was explained by the noticeably changed optical absorption spectra and dark spot generation, indicative of degradations in the BHJ layers.
Keywords
Long-term stability; Polymer:nonfullerene solar cells; Shelf lifetime; PBDB-T; IT-M; Indoor light;
Citations & Related Records
Times Cited By KSCI : 8  (Citation Analysis)
연도 인용수 순위
1 Lin, Y., Zhao, F., Prasad, S. K. K., Chen, J.-D., Cai, W., Zhang, Q., Chen, K., Wu, Y., Ma, W., Gao, F., Tang, J.-X., Wang, C., You, W., Hodgkiss, J. M., Zhan, X., "Balanced partnership between donor and acceptor components in nonfullerene organic solar cells with >12% efficiency," Adv. Mater., Vol. 30, No. 16, pp. 1706363, 2018.   DOI
2 Kan, B., Chen, X., Geo, K., Zhang, M., Lin, F., Peng, X., Liu, F., Jen, A. K.-Y., "Asymmetrical side-chain engineering of small-molecule acceptors enable high-performance nonfullerene organic solar cells," Nano Energy, Vol. 67, pp. 104209, 2019.
3 Jeong, J., Seo, J., Nam, S., Han, H., Kim, H., Anthopoulos, T. D., Bradley, D. D. C., Kim, Y., "Significant stability enhancement in high-efficiency polymer:fullerene bulk heterojunction solar cells by blocking ultraviolet photons from solar light," Adv. Sci., Vol. 3, No. 4, pp. 1500269, 2016.   DOI
4 Park, S., Son, H. J., "Intrinsic photo-degradation and mechanism of polymer solar cells: the crucial role of nonfullerene acceptors," J. Mater. Chem. A. Vol. 7, No. 45, pp. 25830-25837, 2019.   DOI
5 Hou, J., Inganas, O., Friend, R. H., Gao, F., "Organic solar cells based on non-fullerene acceptors," Nat. Mater., Vol. 17, pp. 119-128, 2018.   DOI
6 Kan, B., Feng, H., Wan, X., Liu, F., Ke, X., Wang, Y., Wang, Y., Zhang, H., Li, C., Hou, J., Chen, Y., "Small-molecule acceptor based on the heptacyclic benzodi(cyclopentadithiophene) unit for highly efficient nonfullerene organic solar cells," J. Am. Chem. Soc., Vol. 139, No. 13, pp. 4929-4934, 2017.   DOI
7 Zhang, J., Tan, H. S., Guo, X., Facchetti, A., Yan, H., "Material insights and challenges for non-fullerene organic solar cells based on small molecular acceptors," Nat. Energy, Vol. 3. pp. 720-73, 2018.   DOI
8 Chen, S., Wang, Y., Zhang, J., Zhao, J., Chen, Y., Zhu, D., Yao, H., Zhang, G., Ma, W., Friend, R. P., Chow, P. C. Y., Gao, F., Yan, H., "Efficient nonfullerene organic solar cells with small driving forces for both hole and electron transfer," Adv. Sci., Vol. 30, No. 45, pp. 1804215, 2018.
9 Yan, C., Barlow, S., Wang, Z., Yan, H., Jen, A. K.-Y., Marder, S. R., Zhan, X., "Non-fullerene acceptors for organic solar cells," Nat. Rev. Mater., Vol. 3, pp. 18003, 2018.   DOI
10 Lee, S., Park, J., Kim, Y., Kim, S., Iftiquar, S., M., Yi, J., "New generation multijunction solar cells for achieving high efficiency," Curr. Photovoltaic Res., Vol. 6, No. 2, pp. 31-38, 2018.   DOI
11 Wang, Q., Xie, Y., Soltani-Kordshuli, F., Eslamian, M., "Progress in emerging solution-processed thin film solar cells - part I: polymer solar cells," Renewable Sustainable Energy Rev., Vol. 56, pp. 347-361, 2016.   DOI
12 Lee, T. D., Ebong, A. U., "A review of thin film solar cell technologies and challenges," Renewable Sustainable Energy Rev., Vol. 70, pp. 1286-1297, 2017.   DOI
13 Xie, C., Heumuller, T. Gruber, W., Tang, X., Classen, A., Schuldes, I., Bidwell, M., Spath, A., Fink, R. H., Unruh, T., McCulloch, I., Li, N., Brabec, C. J., "Overcoming efficiency and stab -ility limits in water-processing nanoparticular organic photovoltaics by minimizing microstructure defects," Nat. Commun., Vol. 9, pp. 5335, 2018.   DOI
14 Lee, S., Kim, H., Kim, Y., "Influence of physical load on the stability of organic solar cells with polymer:fullerene bulk heterojunction nanolayers," Curr. Photovoltaic Res., Vol. 4, No. 2, pp. 48-53, 2016.   DOI
15 Du, X., Heumueller, T., Gruber, W., Classen, A., Unruh, T., Li, N., Brabec, C. J., "Efficient polymer solar cells based on non-fullerene acceptors with potential device lifetime approaching 10 years," Joule, Vol. 3, No. 1, pp. 215-226, 2019.   DOI
16 Seo, J., Nam, S., Kim, H., Bradley, D. D. C., Kim, Y., "Nano-crater morphology in hybrid electron-collecting buffer layers for high efficiency polymer:nonfullerene solar cells with enhanced stability," Nanoscale Horiz. Vol. 4, No. 2, pp. 464-471, 2019.   DOI
17 Park, G. E., Choi, S., Park, S. Y., Lee, D. H., Cho, M. J., Choi, D. H., "Eco-friendly solvent- free fullerene-free polymer solar cells with over 9.7% efficiency and long-term performance stability," Adv. Energy Mater., Vol. 7, No. 19, pp. 1700566, 2017.   DOI
18 Liu, X., Yan, Y., Yao, Y., Liang, Z., "Ternary blend strategy for achieving high-efficiency organic solar cells with nonfullerene acceptors involved," Adv. Funct. Mater., Vol. 28, No. 29, pp. 1802004, 2018.   DOI
19 Li, Y., Lin, J.-D., Che, X, Qu, Y., Liu, F., Liao, L.-S., Forrest, S. R., "High efficiency near- infrared and semitransparent non-fullerene acceptor organic photovoltaic cells," J. Am. Chem. Soc., Vol. 139, No. 47, pp. 17114-17119, 2017.   DOI
20 Zuo, L., Yu, J., Shi, X., Lin, F., Tang, W., Jen, A. K.-Y., "High-efficiency nonfullerene organic solar cells with a parallel tandem configuration," Adv. Mater., Vol. 29, No. 34, pp. 1702547, 2017.   DOI
21 Yuan, J., Gu, J., Shi, G., Sun, J., Wang, H.-Q., Ma, W., "High efficiency all-polymer tandem solar cells," Sci. Rep., Vol. 6, pp. 26459, 2016.   DOI
22 An, Q., Zhang, F., Gao, W., Sun, Q., Zhang, M., Yang, C., Zhang, J., "High-efficiency and air stable fullerene-free ternary organic solar cells," Nano Energy, Vol. 45, pp. 177-183, 2018.   DOI
23 Chen, Y., Ye, P., Zhu, Z.-G., Wang, X., Yang, L., Xu, X., Wu, X., Dong, T., Zhang, H., Hou, J., Liu, F., Huang, H., "Achieving high-performance ternary organic solar cells through tuning acceptor alloy," Adv. Mater., Vol. 29, No. 6, pp. 1603154, 2017.   DOI
24 Elumalai, N. K., Uddin, A., "Open circuit voltage of organic solar cells: an in-depth review," Energy Environ. Sci., Vol. 9, No. 2, pp. 391-410, 2016.   DOI
25 Kim, H., Nam, S., Jeong, J., Lee, S., Seo, J., Han, H., Kim, Y., "Organic solar cells based on conjugated polymers: history and recent advances," Korean J. Chem. Eng., Vol. 31, No. 7, pp. 1095-1104, 2014.   DOI
26 Kim, B.-J., Park, E.-H., Kang, K.-S., "Optical properties of soluble polythiophene for flexible solar cells," Curr. Photovoltaic Res., Vol. 6, No. 4, pp. 91-93, 2018.   DOI
27 Lee, S., Seo, J., Kim, H., Song, D.-I., Kim, Y., "Investigation of short-term stability in high efficiency polymer: nonfullerene solar cells via quick current-voltage cycling method," Korean J. Chem. Eng., Vol. 35, No. 12, pp. 2496-2503, 2018.   DOI
28 Zheng, Z., Awartani, O. M., Gautam, B., Liu, D., Qin, Y., Li, W., Bataller, A., Gundogdu, K., Ade, H., Hou, J., "Efficient charge transfer and fine-tuned energy level alignment in a THF-processed fullerene-free organic solar cell with 11.3% efficiency," Adv. Mater., Vol. 29, No. 5, pp. 1604241, 2017.   DOI
29 Ramki, K., Venkatesh, N. Sathiyan, G., Thangamuthu, R., Sakthivel, P., "A comprehen -sive review on the reasons behind low power conversion efficiency of dibenzo derivatives based donors in bulk heterojunction organic solar cells," Org. Electron., Vol. 73, pp. 182-204, 2019.   DOI
30 Mehmood, U., Al-Ahmed, A., Hussein, I. A., "Review on recent advances in polythiophene based photovoltaic devices," Renewable Sustainable Energy Rev., Vol. 57, pp. 550-561, 2016.   DOI
31 Gasparini, N., Paleti, S. H. K., Bertrandie, J., Cai, G., Zhang, G., Wadsworth, A., Lu, X., Yip, H.-L., McCulloch, I., Baran, D., "Exploiting ternary blends for improved photostability in high-efficiency organic solar cells," ACS Nano Energy Lett., Vol. 5, No. 5, pp. 1371-1379, 2020.   DOI
32 Sharma, R., Lee, H., Seifrid, M., Gupta, V., Bazan, G. C., Yoo, S., "Performance enhancement of conjugated polymer-small molecule-non fullerene ternary organic solar cells by tuning recombination kinetics and molecular ordering," Sol. Energy, Vol. 201, pp. 499-507, 2020.   DOI
33 Zhang, C., Jiang, P., Zhou, X., Liu, H., Guo, Q., Xu, X., Liu, Y., Tang, Z., Ma, W., Bo, Z., "High-efficiency ternary nonfullerene polymer solar cells with increased phase purity and reduced nonradiative energy loss," J. Mater. Chem. A, Vol. 8, pp. 2123-2130, 2020.   DOI
34 Li, S., Zhan, L., Liu, F., Ren, J., Shi, M., Li, C.-Z., Russell, T. P., Chen, H., "An unfused -core-based nonfullerene acceptor enables high- efficiency organic solar cells with excellent morphological stability at high temperatures," Adv. Mater., Vol. 30, No. 6, pp. 1705208, 2018.   DOI
35 Feng, H., Yi, Y.-Q.-Q., Ke, X., Yan, J., Zhang, Y., Wan, X., Li, C., Zheng, N., Xie, Z., Chen, Y., "New anthracene-fused nonfullerene acceptors for high-efficiency organic solar cells: energy level modulations enabling match of donor and acceptor," Adv. Energy Mater., Vol. 9, No. 12, pp. 1803541, 2019.   DOI
36 Zhou, Z., Liu, W., Zhou, G., Zhang, M., Qian, D., Zhang, J., Chen, S., Xu, S., Yang, C., Gao, F., Zhu, H., Liu, F., Zhu, X., "Subtle molecular tailoring induces significant morphology optimization enabling over 16% efficiency organic solar cells with efficient charge generation," Adv. Mater., Vol. 32, No. 4, pp. 1906324, 2020.   DOI
37 Cui, Y., Yao, H., Zhang, J, Zhang, T., Wang, Y., Hong, L., Xian, K., Xu, B., Zhang, S., Peng, J., Wei, Z., Gao, F., Hou, J., "Over 16% efficiency organic photovoltaic cells enabled by a chlorinated acceptor with increased open-circuit voltages," Nat. Commun., Vol. 10, pp. 2515, 2019.   DOI
38 Li, W., Ye, L., Li, S., Yao, H., Ade, H., Hou, J., "A high-efficiency organic solar cell enabled by the strong intramolecular electron push-pull effect of the nonfullerene acceptor," Adv. Mater., Vol. 30, No. 16, pp. 1707170, 2018.   DOI
39 Yang, Y., Qiu, B., Chen, S., Zhou, Q., Peng, Y., Zhang, Z.-G., Yao, J., Luo, Z., Chen, X., Xue, L., Feng, L., Yang, C., Li, Y., "High-efficiency organic solar cells based on a small-molecule donor and a low-bandgap polymer acceptor with strong absorption," J. Mater. Chem. A, Vol. 6, No. 20, pp. 9613-9622, 2018.   DOI