• 제목/요약/키워드: Potential for growth

검색결과 4,029건 처리시간 0.038초

Dispersion stability of ultra-fine $BaTiO_3$ suspensions in aqueous medium

  • Chun, M.P.;Chung, Y.B.;Ma, Y.J.;Cho, J.H.;Kim, B.I.
    • 한국결정성장학회지
    • /
    • 제15권6호
    • /
    • pp.239-243
    • /
    • 2005
  • The effect of pH and particle size on the dispersion stability of ultra-fine $BaTiO_3$ suspensions in aqueous medium have been investigated by means of zeta potential, sediment experiments, and powder properties (particle analysis, specific surface area) etc. Zeta potential as a function of pH for two particles of different size increases from -75 to +10 mV with decreasing pH from 8.5 to 1.4. The curve of zeta potential for small particle (150 nm) has slow slope than that of large particle (900nm), giving IEP (isoelectric point) value of pH=1.6 for small particle and pH=1.9 for large particle respectively, which means that it is more difficult to control zeta potential with pH fur small particle than large particle. The dispersion stability of $BaTiO_3$ particles in aqueous medium was found to be strongly related with the agglomeration of colloidal suspensions with time through the sedimentation behaviors of colloidal particles with time and pH value.

Targeting Acetate Kinase: Inhibitors as Potential Bacteriostatics

  • Asgari, Saeme;Shariati, Parvin;Ebrahim-Habibi, Azadeh
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권11호
    • /
    • pp.1544-1553
    • /
    • 2013
  • Despite the importance of acetate kinase in the metabolism of bacteria, limited structural studies have been carried out on this enzyme. In this study, a three-dimensional structure of the Escherichia coli acetate kinase was constructed by use of molecular modeling methods. In the next stage, by considering the structure of the catalytic intermediate, trifluoroethanol (TFE) and trifluoroethyl butyrate were proposed as potential inhibitors of the enzyme. The putative binding mode of these compounds was studied with the use of a docking program, which revealed that they can fit well into the enzyme. To study the role of these potential enzyme inhibitors in the metabolic pathway of E. coli, their effects on the growth of this bacterium were studied. The results showed that growth was considerably reduced in the presence of these inhibitors. Changes in the profile of the metabolic products were studied by proton nuclear magnetic resonance spectroscopy. Remarkable changes were observed in the quantity of acetate, but other products were less altered. In this study, inhibition of growth by the two inhibitors as reflected by a change in the metabolism of E. coli suggests the potential use of these compounds (particularly TFE) as bacteriostatic agents.

Potential for Novel Magnetic Structures by Nanowire Growth Mechanisms

  • Lapierre R.R.;Plante M.C.
    • Journal of Magnetics
    • /
    • 제10권3호
    • /
    • pp.108-112
    • /
    • 2005
  • GaAs nanowires were grown on GaAs (111)B substrates in a gas source molecular beam epitaxy system, using self-assembled Au particles with diameters between 25 and 200 nm as the catalytic agents. The growth rate and structure of the nanowires were investigated for substrate temperatures between 500 and $600^{\circ}C$ to study the mass transport mechanisms that drive the growth of these crystals. The possibilities for fabrication of novel magnetic nanostructures by suitable choice of growth conditions are discussed.

Effect of Salinity, Temperature and Carbon Source on the Growth and Development of Sclerotia of Sclerotinia sclerotiorum Isolated from Semi-arid Environment

  • Abdullah, Mansour T.;Ali, Nida Y.;Suleman, Patrice
    • The Plant Pathology Journal
    • /
    • 제24권4호
    • /
    • pp.407-416
    • /
    • 2008
  • Studies were conducted to determine the effects of temperature, solute potential and carbon source on the mycelial growth, sclerotia development, and apothecium production of an isolate of Sclerotinia sclerotiorum. Mycelial growth rate was greatest at $25^{\circ}C$ on potato dextrose agar (PDA) medium amended with up to 2% NaCl (${\psi}s{\leq}1.91\;MPa$) and thereafter, growth rate declined. The least number of sclerotia were produced at $20^{\circ}C$on both PDA and malt extract agar (MEA) amended with 8% NaCl (${\psi}s=6.62\;MPa$). With increasing temperature and decreasing solute potential the number and size of sclerotia were significantly reduced. The combined effect of temperature, solute potential and carbon source on sclerotia production were highly significant and had an impact on the development of the rind layer cells of sclerotia. These cells lacked a transparent cell wall which was surrounded by a compact melanized layer, and some of these cells appeared to be devoid of cell contents or were totally vacuolated. The survival of the sclerotia with increase in salinity and temperature appeared to affect melanization and the nature of the rind cells. The observations of this study re-enforces the need for an integrated disease management to control S. sclerotiorum.

A Theoretical Modeling for Suggesting Unique Mechanism of Adolescent Calcium Metabolism

  • Lee, Wang-Hee;Cho, Byoung-Kwan;Okos, Martin R.
    • Journal of Biosystems Engineering
    • /
    • 제38권2호
    • /
    • pp.129-137
    • /
    • 2013
  • Purpose: Modeling has been used for elucidating the mechanism of complex biosystems. In spite of importance and uniqueness of adolescent calcium (Ca) metabolism characterized by a threshold Ca intake, its regulatory mechanism has not been covered and even not proposed. Hence, this study aims at model-based proposing potential mechanisms regulating adolescent Ca metabolism. Methods: Two different hypothetic mechanisms were proposed. The main mechanism is conceived based on Ca-protein binding which induces renal Ca filtration, while additional mechanism assumed that active renal Ca re-absorption regulated Ca metabolism in adolescents. Mathematical models were developed to represent the proposed mechanism and simulated them whether they could produce adolescent Ca profiles in serum and urine. Results: Simulation showed that both mechanisms resulted in the unique behavior of Ca metabolism in adolescents. Based on the simulation insulin-like growth factor-1 (IGF-1) is suggested as a potential regulator because it is related to both growth, a remarkable characteristic of adolescence, and Ca metabolism including absorption and bone accretion. Then, descriptive modeling is employed to conceptualize the hypothesized mechanisms governing adolescent Ca metabolism. Conclusions: This study demonstrated that modeling is a powerful tool for elucidating an unknown mechanism by simulating potential regulatory mechanisms in adolescent Ca metabolism. It is expected that various analytic applications would be plausible in the study of biosystems, particularly with combination of experimental and modeling approaches.

The Present and Future of the Food Market in Northeast Asia: Confectionery Markets

  • Jeong, Han-Na-Ra;Moon, Junghoon
    • Agribusiness and Information Management
    • /
    • 제4권1호
    • /
    • pp.41-47
    • /
    • 2012
  • The Asian food market has been growing recently, due to the role played by major Asian countries, which include Korea, China, and Japan. This study is purposed to investigate the potential of the food market in these Northeast Asian countries and to suggest future direction for global food companies. For in-depth analysis, this study is limited in scope to the confectionery market and analyzes that market within two frameworks: first, the 'Market Attractiveness Matrix' which transforms the 'BCG Matrix' to fit into the food market in order to analyze the flow in the Asian confectionery market; and second, analysis of the potential growth of the market using a Category Development Index (CDI), which aids in understanding the growth potential of a market. The European food market has recently reached its capacity and is now experiencing a low growth rate (Data Monitor, 2011). It is time for food companies to find a new 'blue ocean' to avoid fierce competition in the mature markets of Europe. Therefore, this analysis of the confectionery market, using the Market Attractiveness Matrix and CDI will suggest opportune directions for global food companies.

  • PDF

Involvement of Transient Receptor Potential Melastatin 7 Channels in Sophorae Radix-induced Apoptosis in Cancer Cells - Sophorae Radix and TRPM7 -

  • Kim, Byung-Joo
    • 대한약침학회지
    • /
    • 제15권3호
    • /
    • pp.31-38
    • /
    • 2012
  • Sophorae Radix (SR) plays a role in a number of physiologic and pharmacologic functions in many organs. Objective: The aim of this study was to clarify the potential role for transient receptor potential melastatin 7 (TRPM7) channels in SR-inhibited growth and survival of AGS and MCF-7 cells, the most common human gastric and breast adenocarcinoma cell lines. Methods: The AGS and the MCF-7 cells were treated with varying concentrations of SR. Analyses of the caspase-3 and - 9 activity, the mitochondrial depolarization and the poly (ADPribose) polymerase (PARP) cleavage were conducted to determine if AGS and MCF-7 cell death occured by apoptosis. TRPM7 channel blockers ($Gd^{3+}$ or 2-APB) and small interfering RNA (siRNA) were used in this study to confirm the role of TRPM7 channels. Furthermore, TRPM7 channels were overexpressed in human embryonic kidney (HEK) 293 cells to identify the role of TRPM7 channels in AGS and MCF-7 cell growth and survival. Results: The addition of SR to a culture medium inhibited AGS and MCF-7 cell growth and survival. Experimental results showed that the caspase-3 and -9 activity, the mitochondrial depolarization, and the degree of PARP cleavage was increased. TRPM7 channel blockade, either by $Gd^{3+}$ or 2-APB or by suppressing TRPM7 expression with small interfering RNA, blocked the SR-induced inhibition of cell growth and survival. Furthermore, TRPM7 channel overexpression in HEK 293 cells exacerbated SR-induced cell death. Conclusions: These findings indicate that SR inhibits the growth and survival of gastric and breast cancer cells due to a blockade of the TRPM7 channel activity. Therefore, TRPM7 channels may play an important role in the survival of patients with gastric and breast cancer.

Structure of Oxide Film Prepared by Two-step Anodization of Aluminum

  • Ko, Eunseong;Ryu, Jaemin;Kang, Jinwook;Tak, Yongsug
    • Corrosion Science and Technology
    • /
    • 제5권4호
    • /
    • pp.137-140
    • /
    • 2006
  • The effect of pre-existing barrier-type film on porous aluminum oxide film formation during anodization was investigated to control the uniform film growth rate. Initial potential fluctuations during anodization indicated that the breakdown of barrier-film is preceded before the porous formation and the induction time for the porous film growth increases with the increases of pre-existing film thickness. The porous film growth mechanism is lot affected by the presence of barrier film on aluminum surface. In parallel, uniform growth of barrier film underneath the porous structure was attained by two-step anodization processes.

A STUDY ON ANTIGENICITY OF RECOMBINANT HUMAN GROWTH HORMONE (LBD-007) IN MICE AND GUINEA PIGS

  • Park, Jong-Il;Han, Sang-Seop;Roh, Jung-Koo
    • Toxicological Research
    • /
    • 제9권1호
    • /
    • pp.125-132
    • /
    • 1993
  • Antigenic potential of recombinant human growth hormone (LBD-007), a newly developed drug for growth hormone deficiency, was investigated in mice and guinea pigs. 1. Mice showed production of antibodies against LBD-009 (1.5IU/kg) with aluminum hydroxide gel(alum) as an adjuvant, Judaged by the heterologous anaphylaxis (PCA) test using rats. On the other hand, antibodies against ovalbumin (OVA) inoculated with alum were definitely detected. 2. In the studies with guinea pigs, both the inoculation of LBD-009 (0.15IU/kg-1.5IU/kg) only and of LBD-009 with complete Freund's adjuvant (CFA) as an adjuvant did produce weak positive reactions in homologous passive cutaneous anaphylaxis (PCA). On the other hand, the inoculation of ovalbumin with complete Freund's adjuvant (CFA) produced positive reaction in PCA.

  • PDF

Targeting nerve growth factor for pain relief: pros and cons

  • Sahar Jaffal;Raida Khalil
    • The Korean Journal of Pain
    • /
    • 제37권4호
    • /
    • pp.288-298
    • /
    • 2024
  • Nerve growth factor (NGF) is a neurotrophic protein that has crucial roles in survival, growth and differentiation. It is expressed in neuronal and non-neuronal tissues. NGF exerts its effects via two types of receptors including the high affinity receptor, tropomyosin receptor kinase A and the low affinity receptor p75 neurotrophin receptor highlighting the complex signaling pathways that underlie the roles of NGF. In pain perception and transmission, multiple studies shed light on the effects of NGF on different types of pain including inflammatory, neuropathic, cancer and visceral pain. Also, the binding of NGF to its receptors increases the availability of many nociceptive receptors such as transient receptor potential vanilloid 1, transient receptor potential ankyrin 1, N-methyl-D-aspartic acid, and P2X purinoceptor 3 as well as nociceptive transmitters such as substance P and calcitonin gene-related peptide. The role of NGF in pain has been documented in pre-clinical and clinical studies. This review aims to shed light on the role of NGF and its signaling in different types of pain.