Browse > Article
http://dx.doi.org/10.4283/JMAG.2005.10.3.108

Potential for Novel Magnetic Structures by Nanowire Growth Mechanisms  

Lapierre R.R. (Centre for Electrophotonic Materials and Devices, Department of Engineering Physics, McMaster University)
Plante M.C. (Centre for Electrophotonic Materials and Devices, Department of Engineering Physics, McMaster University)
Publication Information
Abstract
GaAs nanowires were grown on GaAs (111)B substrates in a gas source molecular beam epitaxy system, using self-assembled Au particles with diameters between 25 and 200 nm as the catalytic agents. The growth rate and structure of the nanowires were investigated for substrate temperatures between 500 and $600^{\circ}C$ to study the mass transport mechanisms that drive the growth of these crystals. The possibilities for fabrication of novel magnetic nanostructures by suitable choice of growth conditions are discussed.
Keywords
Nanowires; Molecular beam epitaxy; Gallium arsenide;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y W. Heo, D. P. Norton, L. C. Tien, Y. Kwon, B. S. Kang, F. Ren, S. J. Pearton, and J. R. LaRoche, Mat. Sci. Eng. R 47, 1 (2004)
2 H.-J. Choi, H.-K. Seong, J. Chang, K.-I. Lee, Y.-J Park, J.-J Kim, S.-K. Lee, R. He, T. Kuykendall, and P. Yang, Adv. Mater. 17, 1351 (2005)
3 J. M. Baik and J.-L. Lee, J. Vac. Sci. Technol. B 23(2), 530 (2005)
4 Y. Sun, D.-Y. Khang, F. Hua, K. Hurley, R. G. Nuzzo, and J. A. Rogers, Adv. Funct. Mater. 15, 30 (2005)
5 J. Motohisa, J. Noborisaka, J. Takeda, M. Inari, and T. Fukui, J. Cryst. Growth 272, 180 (2004)
6 S. Yoshida, I. Tarnai, T. Sato, and H. Hasegawa, Jpn. J. Appl. Phys. 43, 2064 (2004)
7 J. C. Hulteen and C. R. Martin, J. Mat. Chem. 7(7), 1075 (1997)   DOI   ScienceOn
8 R. S. Wagner, in: A. P. Levitt (Ed.), Whisker Technology, Wiley Inter-Science, New York (1970) pp. 47-119
9 T. J. Trentler, K. M. Hickman, S. C. Goel, A. M. Viano, P. C. Gibbons, and W. E. Buhro, Science 270, 1791 (1995)
10 T. I. Kamins, R. S. Williams, D. P. Basile, T. Hesjedal, and J. S. Harris, J. Appl. Phys. 89, 1008 (2001)   DOI   ScienceOn
11 A. I. Persson, M. W. Larsson, S. Stenstrom, B. J. Ohlsson, L. Samuelson, and L. R. Wallenberg, Nature Mat. 3, 677 (2004)
12 Z. H. Wu, M. Sun, X. Y. Mei, and H. E. Ruda, Appl. Phys. Lett. 85, 657 (2004)   DOI   ScienceOn
13 A. I. Persson, B. J. Ohlsson, S. Jeppesen, and L. Samuelson, J. Cryst. Growth 272, 167 (2004)
14 X. Duan and C. M. Lieber, Adv. Mater. 12, 298 (2000)
15 V. Gudmundsson, Y.-Y. Lin, C.-S. Tang, V. Moldoveanu, J. H. Bardarson, and A. Manolescu, Phys. Rev. B 71, 235302 (2005)
16 K. Hiruma, M. Yazawa, K. Haraguchi, K. Ogawa, T. Katsuyama, M. Koguchi, and H. Kakibayashi, J. Appl. Phys. 74, 3162 (1993)
17 S. Bhunia, T. Kawamura, S. Fujikawa, and Y. Watanabe, Physica E 24, 138 (2004)
18 L. Schubert, P. Werner, N. D. Zakharov, G. Gerth, F. M. Kolb, L. Long, U. Gosele, and T. Y Tan, Appl. Phys. Lett. 84(24), 4968 (2004)   DOI   ScienceOn
19 V. Ruth and J. P. Hirth, J. Chem. Phys. 41(10), 3139 (1964)
20 V. G. Dubrovskii, G. E. Cirlin, I. P. Soshnikov, A. A. Tonkikh, N. V. Sibirev, Y. B. Samsonenko, and V. M. Ustinov, Phys. Rev. B 71, 205325 (2005)
21 H. Wang and G. S. Fischman, J. Appl. Phys. 76, 1557 (1994)
22 L. Sun, Y. Hao, C.-L. Chien, and P. C. Searson, IBM J. Res. Dev. 49(1), 79 (2005)
23 V. G. Dubrovskii, I. P. Soshnikov, G. E. Cirlin, A. A. Tonkikh, Y. B. Samsonenko, N. V. Sibirev, and V. M. Ustinov, Phys. Stat. Sol B 241, R30 (2004)
24 K. Hiruma, M. Yazawa, T. Katsuyama, K. Ogawa, K. Haraguchi, and M. Koguchi, J. Appl. Phys. 77, 447 (1995)
25 M. Borgstrom, K. Deppert, and L. Samuelson, J. Cryst. Growth 260, 211 (2004)